
Baghdad Science Journal Vol.16 (Special Issue) 2019

Special Issue on the 7th International Conference on Computing and informatics (ICOCI2019) from 27-29

march 2019 (Dhurakij Pundit University (DPU), Bangkok, Thailand

453

DOI: http://dx.doi.org/10.21123/bsj.2019.16.2(SI).0453

Social Worked-Examples Technique to Enhance Student Engagement in

Program Visualization

Abdullah Al-Sakkaf* Mazni Omar** Mazida Ahmad***

Received 14/9/2018, Accepted 7/11/2018, Published 20/6/2019

 This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:
Learning programming is among the top challenges in computer science education. A part of that,

program visualization (PV) is used as a tool to overcome the high failure and drop-out rates in an

introductory programming course. Nevertheless, there are rising concerns about the effectiveness of the

existing PV tools following the mixed results derived from various studies. Student engagement is also

considered a vital factor in building a successful PV, while it is also an important part of the learning process

in general. Several techniques have been introduced to enhance PV engagement; however, student

engagement with PV is still challenging. This paper employed three theories—constructivism, social

constructivism and cognitive load to propose a technique for enhancing student engagement with program

visualisation. The social worked-examples (SWE) technique transforms the traditional worked-example into

a social activity, whereby a greater focus is placed on the collaboration role in constructing students’

knowledge. This study identified three principles that could enhance student engagement through the SWE

technique: active learning, social collaboration and low-load activity.

Key words: Engagement, Introductory Programming Education ,Program Visualization, Worked-example

Introduction:
Learning programming is among the top

challenges in computer science education (CSE).

Researchers have reported that the difficulty in

learning and teaching programming is due to

several factors categorised under the nature of

programming, problems relating to the student, and

the teaching method implemented (1).

Programming incorporates several complex skills,

such as planning, program design and problem-

solving; hence, novice programmers often find

programming difficult at first. Furthermore, it is

acknowledged as a complex cognitive task that

requires a knowledge of how programs are

executed. Further, novices tend to be limited with

regards to the knowledge of a programming

language. In addition, they often lack the mental

models necessary to problem solve and find it

difficult to grasp programming concepts.

Universiti Utara Malaysia, Malaysia

 Corresponding author:* abbdullah1@hotmail.com
** mazni@uum.edu.my
*** mazida@uum.edu.my

Education technology is increasingly becoming

a vital solution used to improve learning skills the

overheads in terms of learning the new

programming language syntax and semantics, as

well as learning the programming tools and

environment and developing problem-solving skills

make learning programming an exhausting task for

novices. As a result, this can lead to anxiety,

frustration, fear, and demotivation (2,3).

Among novice programmers. Several solution

have been proposed to overcome the challenges in

programming education, include: pair-

programming, software visualization (SV),

automated assessment tools, programming

environments and debuggers, interactive e-books,

and enhanced IDE (4). These technologies promise

to improve student programming skills, especially

using visualization. Algorithm visualization (AV),

and program visualization (PV) are two main types

of SV. The main goal of PV is to display the

runtime behaviour and execution of the program in

order to help the student understand how the

program is executed in the background. The usage

of visualization to support teaching and learning of

programming begun in 1980s (5). PV could be a

Open Access

https://creativecommons.org/licenses/by/4.0/
mailto:abbdullah1@hotmail.com
mailto:zulie@uum.edu.my
mailto:joanneaj@infusion.com.my

Baghdad Science Journal Vol.16 (Special Issue) 2019

Special Issue on the 7th International Conference on Computing and informatics (ICOCI2019) from 27-29

march 2019 (Dhurakij Pundit University (DPU), Bangkok, Thailand

454

valuable resource to help novice students to

improve their programming skills, and build a

correct mental model for program or algorithm

execution. Disappointingly, the pedagogical

effectiveness of PV has shown mixed results (6);

hence, the effectiveness of PV remains an open

issue.

Student engagement and collaboration are

important factors in enhancing the effectiveness of

PV (7); as such, these factors must be considered

carefully when designing a PV system. Engagement

Taxonomy (ET) and Extended Engagement

Taxonomy (EET) have been proposed as guidelines

as to how to increase student engagement with

software visualization (5,7). Furthermore, in

software visualization research, the role of

engagement in SV has received increased attention

over the last decade and has been influenced by the

works of (8), and (5). The development concept has

shifted the focus toward engagement in terms of

how to increase engagement and active learning

when both designing and evaluating new tools

(9,10). Student engagement is correlated with

several positive indicators with PV, such as

increased learning time, time-on-task, student

motivation and student retention. As a result,

researchers have been paying more attention on

how to engage learners with PV, or with

educational technologies in general, however, it has

been shown that existing PVs have failed to engage

students effectively (11).

On the other hand, collaborative learning has been

actively implemented in computer science

education, such as is pair programming. (7) stated

that establishing a relationship between the

engagement level and collaboration process is

essential. As the levels of engagement increased, it

increases the opportunity to improve collaborative

activities; as a result, instructors need to figure out

ways to use PV at these levels (7). (12) states that

collaborative learning will increase the spent time

by a student in solving exercise individually.

Possible forms of collaboration in PV include

writing code collaboratively, running it, and

exploring a step-by-step, embedded textual chat in

the system. Codechella, and Villa have provided

good examples of collaborative PV system

implementation features. Nevertheless, discussion

about how PV enhances student learning with the

potential benefits of the collaboration is still scarce

(12).

Finally, designing a low cognitive load activity

is important to help novices, while it is also

important to increase the benefit from engaging in

collaborative activities, particularly in terms of

gained knowledge. Worked examples and Parson’s

problems are two examples of activity with a low

cognitive load. Worked examples have been proven

to have a positive effect on beginners when

acquiring their first skills (13).

In this paper, the author proposes a new

technique to improve student engagement and

learning outcomes with PV. Further, it sets out to

explore how to improve student engagement with

PV using social worked-example techniques. This

technique is based on the sociocultural theory and

cognitive load theory. A detailed discussion of the

theoretical background is presented in the following

section. In the third section, the new technique is

presented and discussed in detail. The final section

draws together the key findings and the future work.

Theoretical Background:

Constructivism

Previous studies have observed the lack of

discussion about the theoretical framework that lies

behind the design and development of PV (14–16).

The lack of theory and framework in the

development of artefacts has long been argued in

the literature on CER and educational technology

(17,18). Learning about the relevant theories is a

good starting point in understanding the learning

process (19). Constructivism has a long history in

cognitive psychology, while it also has a place in

computer science (CS) education (14,17,20). This

view is supported by (21), who argue that the

combination of constructivism learning theory with

the use of technology could make use of the best

application of educational technology, while it

would also facilitate the course design.

Moreover, constructivism and active learning

theory are commonly used in the PV domain, as

supported by the findings of (8) and (5), which

suggest that active approaches are more effective.

Constructivism states that people actively construct

knowledge rather than passively receive and store

ready-made knowledge. On constructivism, the

student-centred is the main pedagogy that emphasis

more on the student's previous experience rather

than the teacher's, and on the active construction of

knowledge rather than the passive receipt of

information. Constructivism has many

interpretations; among them, Piaget’s cognitive

constructivism and Vygotsky’s social

constructivism.

A cognitive constructivist theory predicted that

the more effort put in to engage students in an

activity, the more robust learning could be achieved

Baghdad Science Journal Vol.16 (Special Issue) 2019

Special Issue on the 7th International Conference on Computing and informatics (ICOCI2019) from 27-29

march 2019 (Dhurakij Pundit University (DPU), Bangkok, Thailand

455

(8,17). In light of cognitive constructivism, the role

of SV is not as an artefact to transfer knowledge to

the student, but rather to enable the student to

construct the knowledge through active engagement

(8). Active learning is one of the principles of

cognitive constructivism, whereby the learner could

actively construct new understandings by becoming

actively engaged with their activity (22). Therefore,

the PV designer should consider different types of

activities and engagement features to increase the

learners’ active engagement and enable them to

construct knowledge (8,20).

Social constructivism

Social constructivism, which is influenced by

Vygotsky's sociocultural theory, places a greater

emphasis on the social context. This theory

indicates that knowledge construction is stimulates

from learner’s feedback interaction. As the process

of creating knowledge cannot be isolated from the

social environment, learning is thus viewed as a

process of active knowledge construction. This

theory perspectives on learning argue that cognitive

development is a social process rather than an

individual process. Social constructivism has

variety of theories, includes: Vygotsky’s

sociocultural theory (SCT) (23), Piaget’s socio

cognitive conflict theory (24) and Bandura’s social

cognitive theory (25).

Social constructivists focus on the important

role of social and cultural nature of individuals’

knowledge construction and tend to see knowledge

as something that is defined through social

collaboration and language use. In addition, the

theory asserts that cognitive development depends

on social interaction from guided learning. In PV,

the largest focus on the development was more

toward personal constructivism. Based on Piaget’s

cognitive constructivism, personal constructivism

emphasizes the construction of knowledge by

individuals. In contrast, social constructivists

emphasize the role of the social and cultural nature

in the construction of knowledge. In spite of

Vygotsky’s social constructivism, program

visualization is seen as a sociocultural tool, as

pointed out by (14).

Cognitive Load Theory

Cognitive load theory (CLT) is important due to the

complex nature of learning programming

languages. CLT has been conceived as a form of

guidance for instructional designers eager to create

instructional resources that are presented in a way

that encourages the activities of the learners and

optimizes their performance, and in turn, their

learning (26). The theory of cognitive load provides

an explanation as to why learning is impaired due to

the exceeding limitation of working space capacity.

Cognitive load is defined as the effort needed to

manage the flow of information during instruction

(27). The theory distinguishes two different types of

cognitive load on a student's working memory:

intrinsic load and extraneous load (28,29). CLT

emphasises the role of working memory during

learning due to its limited capacity. For example,

during the learning process, if the working memory

is overloaded, this could exhaust the learner.

For novice programmers, programming

considered to have a highly intrinsic cognitive load

since it simultaneously recalls different concepts,

constructs and language syntax (30). Likewise, in

the domain of computer programming, the

extraneous cognitive load is high and is caused by

programming language itself and the development

tools (30). (31) illustrates this point clearly, as they

argue that “From the first line of a Java program,

you know we are in serious trouble:

public static void main (String[] args) We have

visibility modifiers, return types, method names, a

class, parameters and arrays, and we haven't started

the program”. Several different concepts appear in

just one line, which makes it harder to novice to

connect them all; as a result, the working memory

gets overloaded fast. This issue occurs in many

other programming languages, and even in new

languages that have introduced a very simple syntax

(e.g., Python) because the student still needs to

master a multitude of new concepts and techniques.

There are many applications of CLT in the

domain, such as worked-example and Parson’s

problem. These activities could provide the entire

solution to a problem, which the learner can study,

and completion problems, which provide partial

solutions for learners to fill in. The principle of the

worked example (or worked-out example) is

derived from the cognitive load theory, which refers

to a step-by-step solution to a problem (32).

According to CLT, for a novice student, using

worked examples will reduce the cognitive load

placed on learners to learn new concepts. When

lecturer asks novice student to solve a problem

individually in early learning phases that could

make them exhausted, that could strain their

working memory; however, it is recommended to

teach student step-by-step tutorial, first, of how an

expert solves those problems (worked examples).

Recent studies have shown that worked-examples

improve learning (33), and student engagement

(34).

Baghdad Science Journal Vol.16 (Special Issue) 2019

Special Issue on the 7th International Conference on Computing and informatics (ICOCI2019) from 27-29

march 2019 (Dhurakij Pundit University (DPU), Bangkok, Thailand

456

Another feature driven from CLT are Parson’s

problems, which focus on reducing the cognitive

load in novice students when learning to program.

Parson’s problems are used to reduce the cognitive

load of an activity, which is a type of code

completion problem. It has also been named as

Parson's puzzles, Parson’s programming puzzles

and Mangled code (33). In Parson’s problems, a

correct code is fragmented and mixed in several

code blocks in which the student has to piece the

blocks together to regenerate the correct code. It

could be useful to teach syntactic and semantic

language constructs (33). Parson’s problems are

designed as an engaging programming practice,

which did not require students to type any code or

encounter syntax errors (35), as shown in Figure 1.

In Parson’s problems, the design should return

instant feedback by highlighting blocks that are in

the wrong place or have the incorrect indentation

(35). Using Parson’s problems could effectively

enhance novice code writing skills (34,36), because

it only requires a student to understand the problem,

and it never produces a syntax error.

Figure 1. Parsons problem exercise from Runestone e-book.

Related Work on PV:

Several PV systems were reviewed concerning

to the aforementioned design principles. As shown

in Table 1, four existing PV systems were compared

in terms of their features. First, Runestone is an

interactive e-book that teaches computer science to

novice learners (27,33,35). The e-book includes a

PV system to visualize the code execution for a

student while they are going through the e-book.

CLT is imperative in designing this e-book.

Parson’s problems and worked-examples are used

heavily in the e-book in the form of the Example +

Practice approach. This approach has a lower

cognitive load. This research investigates a number

of design principles based on CLT, however, the

Runestone e-book is poor in terms of its social

features, which, based on our theoretical

framework, are important to the learning process.

Table 1 Comparison of existing tools.

PV Worked-example Parsons problem Control flow Narration Discussion Chat

Runestone

(24,30,32)
X X X

Codepourri

(34)
X X X X

Codechella

(35)
X X X

ViLLE

(36)
X X X

Note: (X) indicates the feature was implemented

Online Python Tutor is a web-based PV, which

is not limited to Python only; it supports six other

programming languages: Java, JavaScript,

TypeScript, Ruby, C and C++. It has become a

popular PV tool for CS education and allows

students to step through the code execution and

visualize the state during that. Nevertheless, this

tool does not address the context of the social

interaction. However, several tools have developed

on top of the python tutor to solve this issue, such

as Codepourri, and Codechella. Codepourri extends

Python Tutor to visualize students’ annotated

Baghdad Science Journal Vol.16 (Special Issue) 2019

Special Issue on the 7th International Conference on Computing and informatics (ICOCI2019) from 27-29

march 2019 (Dhurakij Pundit University (DPU), Bangkok, Thailand

457

worked examples (37). Figure 2 shows Codepourri

utilizing annotation to provide line-by-line

explanations for worked examples. In doing so, it

crowdsources the process of adding annotations to

any line of code. In addition, it enables students to

vote the best annotation in order to be used in

tutorial creation. On the other hand, Codechella is

built upon Python Tutor; instead, it adds the real-

time collaborative code writing to Python Tutor

(37). In addition, it adds a chat feature, multiple

mouse cursor sharing, and executes the

visualization together. This study reported an

improvement in student engagement and knowledge

acquisition.

Figure 2. Codepourri add annotation to worked

example (38).

Finally, ViLLE is a program visualization tool

designed for teaching basic programming to novice

programmers. It was first developed in 2007 and

continues to evolve by introducing new features

(39). Currently, ViLLE has now become a

collaborative tool that enables students to work

collaboratively to solve assignments and earn

rewards as a group. The platform enables students

to discuss and chat while they do their assignments.

Thus far, several studies have found ViLLE is

beneficial in learning fundamental programming

and that the collaborative use of the tool improves

learning even more. Figure 3 presents the main

feature of ViLLE, which includes control flow,

visualizing the state of a program, and

programming line explanation (as a narration).

Figure 3. ViLLE user interface (40).

The Proposed Social Worked-Example (SWE)

Technique:

This paper proposes a technique to enhance

learning effectiveness and student engagement,

based on the aforementioned theoretical framework.

The social worked-example Technique (SWE) is a

technique that transforms the traditional worked-

example into a social activity, whereby a greater

focus is placed on the collaborative role in

constructing students’ knowledge. The SWE

technique has been introduced as an interactive

activity to engage the student in using PV. This

technique is based on a number of attractive

principles that include low-load activity, narrative

interaction and social collaboration.

Low-load activity. According to CLT, for a novice

student, using worked examples will reduce the

cognitive load placed on them to learn new

concepts. However, there is little empirical

evidence of worked examples in the programming

education domain (34). Low cognitive load

activities could lead to effective and engaging

learning (27). The PV activity should maintain the

student’s optimal working-memory to avoid

overloading the working memory. In contrast, using

a poor design for this activity will lead to

overloading the working memory too early, which

negatively impacts the student engagement and

learning process.

For the novice student, it is recommended to

define or extend programming code rather than

write it from scratch. It has been suggested that

each example is followed by one or two practice

activists (35). As consequence, each worked-

example will be followed by a Parson’s problem or

more to focus attention on worked example.

Parson’s problems provide feedback by

highlighting blocks that are in the wrong place or

Baghdad Science Journal Vol.16 (Special Issue) 2019

Special Issue on the 7th International Conference on Computing and informatics (ICOCI2019) from 27-29

march 2019 (Dhurakij Pundit University (DPU), Bangkok, Thailand

458

have the incorrect indentation. Obtaining prompt

feedback as to whether the answer is correct is an

important factor to consider when designing

Parson’s problems. This could be in terms of

highlighting the wrong step and/or providing more

description or hints to accomplish the problem.

Finally, a distractor, which are extra blocks that are

not needed for correct answers could be used with

Parson’s problems.

Narrative interaction. Narrative contents and

textual explanations are important factors that are

often used in program visualization to help the

student to better understand the concept explained

within the system (41). Moreover, it could also help

a student to understand the graphical representation

of the execution of the code, which is represented

visually (42). Integrating a narrative in PV to

explain each step of the executed code may enhance

the student’s understanding of the executed code. In

addition, it will also help teachers to highlight an

important topic while the code is executed.

Furthermore, collaboration contributes positively to

student engagement with visualization.

In the SWE, the system will display a unique

narration of each step of the code execution process.

When writing a worked-example, the teacher is also

required to provide either a description or

explanation of each phase of execution. The

narrative could either discuss what is happening

right now or why it is happening. Such explanations

are important for students to gain insight and a deep

understanding of code execution. As PV has a

control flow, the student can either go back or

forward within the PV to traverse the narration

provided.

Social collaboration. Social interaction is crucial to

the learning process and is based on social

constructivism. Since knowledge construction

cannot be separated from the social environment,

considering PV as a collaborative learning

environment is an interesting perspective (7).

Visualization provides a shared external

representation to the different peers (7).

Combining PV and collaborative activities

requires a careful design decision for success. In

SWE, we integrate collaborative activities in several

ways. First, for each narration added by the lecturer,

the student has the ability to comment, discuss or

ask questions regarding the specific step. Teachers

or other students are allowed to contribute to the

discussion or answer the questions. This feature is

important to both student and teachers in different

ways, while it also creates a channel between

students and teachers in discussing PV. From the

teacher’s perspective, this kind of discussion could

provide a number of useful insights, such as

determining which step is ambiguous for the

student, understanding how students are thinking,

identifying student misconceptions, etc. From a

student’s perspective, PV could enhance social

interaction, which would thus result in better

learning. The online discussion brings many

benefits to students, such as building a learning

community, facilitating knowledge sharing,

enhancing student engagement, and encouraging

high-level thinking (43).

Conclusion:
This paper investigated the theoretical

background as to how to improve worked example

techniques in order to enhance student engagement.

Considering constructivism, social constructivism

and cognitive load theories, we propose a social

worked-example technique. SWE is a technique

that aims to turn worked-examples into a social

activity by placing a greater focus on the

collaborative role in constructing knowledge. As

such, the proposed technique suggests several

principles which are: low-load activity, narrative

interaction and social collaboration; that can be

applied in order to gain desired outcomes. Further

experimental investigations are needed to evaluate

this technique and measure its effect on student

grade, programming skills and student engagement.

Acknowledgments:
This work was supported by the Ministry of Higher

Education of Malaysia under Fundamental Research

Grant Scheme (FRGS) [S/O code: 13581].

Conflicts of Interest: None.

References:
1. Alhazbi S. Active blended learning to improve

students’ motivation in computer programming

courses: A case study. In Advances in engineering

education in the Middle East and North Africa 2016

(pp. 187-204). Springer, Cham.

2. Konecki M, Kadoić N. Intelligent assistant for

helping students to learn programming. In2015 38th

International Convention on Information and

Communication Technology, Electronics and

Microelectronics (MIPRO) 2015 May 25 (pp. 924-

928). IEEE.

3. Drosos I, Guo PJ, Parnin C. HappyFace: Identifying

and predicting frustrating obstacles for learning

programming at scale. In2017 IEEE Symposium on

Visual Languages and Human-Centric Computing

(VL/HCC) 2017 Oct 11 (pp. 171-179). IEEE.

4. Pears A, Seidman S, Malmi L, Mannila L, Adams E,

Baghdad Science Journal Vol.16 (Special Issue) 2019

Special Issue on the 7th International Conference on Computing and informatics (ICOCI2019) from 27-29

march 2019 (Dhurakij Pundit University (DPU), Bangkok, Thailand

459

Bennedsen J, Devlin M, Paterson J. A survey of

literature on the teaching of introductory

programming. InACM sigcse bulletin 2007 Dec 1

(Vol. 39, No. 4, pp. 204-223). ACM.

5. Naps T, Rodger S, Velázquez-Iturbide Á, Rößling

G, Almstrum V, Dann W, et al. Exploring the role of

visualization and engagement in computer science

education. SIGCSE Bull. 2003 Jun;35(2):131.

6. Ben-Ari M, Bednarik R, Levy RB-B, Ebel G,

Moreno A, Myller N, et al. A decade of research and

development on program animation: The Jeliot

experience. J Vis Lang Comput. 2011;22(5):375–84.

7. Myller N, Bednarik R, Sutinen E, Ben-Ari M.

Extending the Engagement Taxonomy: Software

Visualization and Collaborative Learning. Trans

Comput Educ. 2009;9(1):7:1-7:27.

8. Hundhausen C, Douglas SA, Stasko JT. A Meta-

Study of Algorithm Visualization Effectiveness. J

Vis Lang Comput. 2002;13(3):259–90.

9. Sorva J, Karavirta V, Malmi L. A Review of

Generic Program Visualization Systems for

Introductory Programming Education. ACM Trans

Comput Educ. 2013;13(4):15.1-15.64.

10. Yohannis A, Prabowo Y. Sort Attack: Visualization

and Gamification of Sorting Algorithm Learning. In:

2015 7th International Conference on Games and

Virtual Worlds for Serious Applications (VS-

Games). IEEE; 2015. p. 1–8.

11. Végh L, Takáč O. Using Interactive Card

Animations for Understanding of the Essential

Aspects of Non-recursive Sorting Algorithms. In:

Janech J, Kostolny J, Gratkowski T, editors.

Proceedings of the 2015 Federated Conference on

Software Development and Object Technologies.

Cham: Springer International Publishing; 2017. p.

336–47.

12. Rajala T, Kaila E, Holvitie J, Haavisto R, Laakso M-

J, Salakoski T. Comparing the collaborative and

independent viewing of program visualizations. In:

2011 Frontiers in Education Conference (FIE).

IEEE; 2011. p. F3G–1–F3G–7.

13. Atkinson RK, Derry SJ, Renkl A, Wortham D.

Learning from Examples: Instructional Principles

from the Worked Examples Research. Rev Educ

Res. 2000 Jun;70(2):181–214.

14. Hidalgo-Céspedes J, Marín-Raventós G, Lara-

Villagrán V. Learning principles in program

visualizations: A systematic literature review. In:

2016 IEEE Frontiers in Education Conference (FIE).

2016. p. 1–9.

15. Velázquez-Iturbide Á, Hernán-Losada I, Paredes-

Velasco M. Evaluating the Effect of Program

Visualization on Student Motivation. IEEE Trans

Educ. 2017;PP(99):1–8.

16. Shaffer C, Cooper M, Alon AJD, Akbar M, Stewart

M, Ponce S, et al. Algorithm Visualization: The

State of the Field. ACM Trans Comput Educ. 2010

Aug;10(3):1–22.

17. Malmi L, Sheard J, Simon, Bednarik R, Helminen J,

Kinnunen P, et al. Theoretical Underpinnings of

Computing Education Research: What is the

Evidence? In: Proceedings of the Tenth Annual

Conference on International Computing Education

Research. New York, NY, USA: ACM; 2014. p. 27–

34. (ICER ’14).

18. Sheard J, Simon S, Hamilton M, Lönnberg J.

Analysis of research into the teaching and learning

of programming. InProceedings of the fifth

international workshop on Computing education

research workshop 2009 Aug 10 (pp. 93-104).

ACM.

19. Meyer KA, editor. Student Engagement Online:

What Works and Why: ASHE Higher Education

Report, Volume 40, Number 6. John Wiley & Sons;

2014 Dec 4.

20. Moreno A, Sutinen E, Joy M. Defining and

evaluating conflictive animations for programming

education: The case of Jeliot ConAn. InProceedings

of the 45th ACM technical symposium on Computer

science education 2014 Mar 5 (pp. 629-634). ACM.

21. Gilakjani AP, Lai-Mei L, Ismail HN. Teachers' use

of technology and constructivism. International

Journal of Modern Education and Computer

Science. 2013 May 1;5(4):49.

22. Urquiza-Fuentes J, Velázquez-Iturbide JÁ. Toward

the effective use of educational program animations:

The roles of student's engagement and topic

complexity. Computers & Education. 2013 Sep

1;67:178-92

23. Vygotsky LS. 1978 Mind in Society (Cambridge,

MA: Harvard University Press).

24. Piaget J. The equilibration of cognitive structures:

The central problem of intellectual development.

University of Chicago Press; 1985.

25. 25. Bandura, A. Social foundations of thought and

action: A social cognitive theory. Englewood Cliffs,

NJ: Prentice- Hall, Inc. 1986.

26. Chandler P, Sweller J. Cognitive Load Theory and

the Format of Instruction. Cogn Instr. 1991

Dec;8(4):293–332.

27. Ericson B, Guzdial M, Morrison B. Analysis of

Interactive Features Designed to Enhance Learning

in an Ebook. In: Proceedings of the Eleventh Annual

International Conference on International

Computing Education Research. New York, NY,

USA: ACM; 2015. p. 169–78. (ICER ’15).

28. Morrison BB, Margulieux LE, Ericson B, Guzdial

M. Subgoals Help Students Solve Parsons Problems.

In: Proceedings of the 47th ACM Technical

Symposium on Computing Science Education -

SIGCSE ’16. New York, New York, USA: ACM

Press; 2016. p. 42–7.

29. Morrison BB, Dorn B, Guzdial M. Measuring

cognitive load in introductory CS. In: Proceedings of

the tenth annual conference on International

computing education research - ICER ’14. New

York, New York, USA: ACM Press; 2014. p. 131–8.

30. Mason R, Cooper G. Mindstorms robots and the

application of cognitive load theory in introductory

programming. Comput Sci Educ. 2013

Baghdad Science Journal Vol.16 (Special Issue) 2019

Special Issue on the 7th International Conference on Computing and informatics (ICOCI2019) from 27-29

march 2019 (Dhurakij Pundit University (DPU), Bangkok, Thailand

460

Dec;23(4):296–314.

31. Bailie F, Courtney M, Murray K, Schiaffino R,

Tuohy S. Objects First - Does It Work? J Comput

Sci Coll. 2003 Dec;19(2):303–5.

32. Sweller J, Ayres P, Kalyuga S. The Worked

Example and Problem Completion Effects. In:

Cognitive Load Theory. New York, NY: Springer

New York; 2011. p. 99–109.

33. Ericson B, Margulieux L, Rick J. Solving parsons

problems versus fixing and writing code. In:

Proceedings of the 17th Koli Calling Conference on

Computing Education Research - Koli Calling ’17.

New York, New York, USA: ACM Press; 2017. p.

20–9.

34. Sorva J, Seppälä O. Research-based Design of the

First Weeks of CS1. In: Proceedings of the 14th Koli

Calling International Conference on Computing

Education Research. New York, NY, USA: ACM;

2014. p. 71–80. (Koli Calling ’14).

35. Ericson B, Rogers K, Parker M, Morrison B,

Guzdial M. Identifying Design Principles for CS

Teacher Ebooks through Design-Based Research. In:

Proceedings of the 2016 ACM Conference on

International Computing Education Research - ICER

’16. New York, New York, USA: ACM Press; 2016.

p. 191–200.

36. Sirkiä T. Combining parson’s problems with

program visualization in CS1 context. In:

Proceedings of the 16th Koli Calling International

Conference on Computing Education Research -

Koli Calling ’16. New York, New York, USA: ACM

Press; 2016. p. 155–9.

37. Guo PJ, White J, Zanelatto R. Codechella: Multi-

user program visualizations for real-time tutoring

and collaborative learning. In: 2015 IEEE

Symposium on Visual Languages and Human-

Centric Computing (VL/HCC). IEEE; 2015. p. 79–

87.

38. Gordon M, Guo PJ. Codepourri: Creating visual

coding tutorials using a volunteer crowd of learners.

In: 2015 IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC). IEEE; 2015.

p. 13–21.

39. Laakso M-J, Kaila E, Rajala T. ViLLE –

collaborative education tool: Designing and utilizing

an exercise-based learning environment. Educ Inf

Technol. 2018 Jul;23(4):1655–76.

40. Rajala T, Laakso M-J, Kaila E, Salakoski T. VILLE

– Multilanguage Tool for Teaching Novice

Programming. Turku Centre for Computer Science;

2007. (TUCS Technical Reports).

41. Urquiza-Fuentes J, Velázquez-Iturbide JÁ.

Pedagogical Effectiveness of Engagement Levels –

A Survey of Successful Experiences. Electron Notes

Theor Comput Sci. 2009 Jan;224:169–78.

42. Urquiza-Fuentes J, Velázquez-Iturbide Á. A Survey

of Successful Evaluations of Program Visualization

and Algorithm Animation Systems. Trans Comput

Educ. 2009;9(2):9:1-9:21.

43. Ding L, Er E, Orey M. An exploratory study of

student engagement in gamified online discussions.

Comput Educ. 2018;120(February):213–26.

Baghdad Science Journal Vol.16 (Special Issue 1) 2019

Special Issue on the 7th International Conference on Computing and informatics (ICOCI2019) from 27-29 march

2019 (Dhurakij Pundit University (DPU), Bangkok, Thailand

461

 لتعزيز مشاركة الطلاب في برنامج التصور -تقنيات العمل الاجتماعي امثلة

 مازدة احمد مازن عمر عبدالله السخاف

 ماليزياجامعة اوتارا ماليزيا،

 الخلاصة:

(كأداة للتغلب على PVيعد تعلم البرمجة من بين أهم التحديات في تعليم علوم الكمبيوتر. حاليا، يتم استخدام تصوير البرامج)

استنادا معدلات الفشل والتسرب العالية في مادة اساسيات البرمجة. ومع ذلك، هناك مخاوف متزايدة بشأن فعالية أدوات تصوير البرامج الحالية

ناجحًا، كما تعد أيضًا جزءًا مهمًا PVالى النتائج المختلطة المستمدة من الدراسات المختلفة. تعتبر مشاركة الطلاب أيضًا عاملاً حيوياً في بناء

 PVركة الطلاب في من عملية التعلم بشكل عام. تم إدخال العديد من التقنيات لتعزيز المشاركة في أدوات تصوير البرامج؛ ومع ذلك، فإن مشا

لتعزيز لا يزال يمثل تحدياً كبيراً. استخدمت هذه الورقة ثلاث نظريات مختلفة: البنيوية، والبناء الاجتماعي، والحمل المعرفي لاقتراح تقنية

المكتمل التقليدي إلى (على تحويل المثالSWEالاجتماعية)الأمثلة المكتملة مشاركة الطلاب في استخدام أدوات تصوير البرامج. تعمل تقنية

نشاط اجتماعي ، حيث يتم التركيز بشكل أكبر على دور التعاون في بناء معرفة الطلاب. حددت هذه الدراسة ثلاثة مبادئ يمكن أن تعزز

 : التعلم النشط والتعاون الاجتماعي والأنشطة ذاتس التحميل المنخفض.SWEمشاركة الطلاب من خلال تقنية

 تصوير البرامج، تعليم البرمجة التمهيدية، المفتاحية:الكلمات

