
Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(3) Supplement (September):1002-1009 E-ISSN: 2411-7986

1002

DOI: http://dx.doi.org/10.21123/bsj.2020.17.3(Suppl.).1002

CTJ: Input-Output Based Relation Combinatorial Testing Strategy Using Jaya

Algorithm

Mohammed Issam Younis*1 Abdul Rahman A. Alsewari2 Ng Yeong Khang2

Kamal Z. Zamli2

1Department of Computer Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq;

younismi@coeng.uobaghdad.edu.iq
2Faculty of Computing, Universiti Malaysia Pahang, Pahang, Malaysia;

*Corresponding author: younismi@gmail.com; younismi@coeng.uobaghdad.edu.iq, Tel.: +9647714195762
*ORCID ID: 0000-0003-4884-3747

Other e-mails: alsewari@ump.edu.my, ngyk95@gmail.com, kamalz@ump.edu.my

Other ORCID IDs: 0000-0002-7802-6628, 0000-0001-5054-2594,0000-0003-4626-0513

Received 15/7/2019, Accepted 10/3/2020, Published 8/9/2020

 This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

Software testing is a vital part of the software development life cycle. In many cases, the system
under test has more than one input making the testing efforts for every exhaustive combination impossible

(i.e. the time of execution of the test case can be outrageously long). Combinatorial testing offers an

alternative to exhaustive testing via considering the interaction of input values for every t-way combination

between parameters. Combinatorial testing can be divided into three types which are uniform strength
interaction, variable strength interaction and input-output based relation (IOR). IOR combinatorial testing

only tests for the important combinations selected by the tester. Most of the researches in combinatorial

testing applied the uniform and the variable interaction strength, however, there is still a lack of work
addressing IOR. In this paper, a Jaya algorithm is proposed as an optimization algorithm engine to construct

a test list based on IOR in the proposed combinatorial test list generator strategy into a tool called CTJ. The

result of applying the Jaya algorithm in input-output based combinatorial testing is acceptable since it
produces a nearly optimum number of test cases in a satisfactory time range.

Key words: Jaya algorithm, software testing, combinatorial testing, t-way testing, system reliability

Introduction:
Combinatorial testing is a black-box testing

technique that generates test cases by combining
the values of different input parameters using

combinatorial optimization strategies to reduce the

interfaces fail and increase the reliability of the
system (1). Taking the study from the failure of the

medical device application, the failure-triggering

fault interaction (FTFI) is 68% for the single

parameter value, 97% of failures triggered by 2
combination values while the percentage of

failures caused by 3 and 4 combination values are

99% and 100% respectively (2). By using
combinatorial testing, all input values of the test

objects and interactions between each parameter

are tested. This testing causes a higher detection of

interaction failures compared to single parameter

testing.
More specifically, combinatorial test

generation relates to the process of searching the

optimum number of test cases for test
consideration based on the interaction of t-way

parameters (where t indicates the interaction

strength). Many different optimization strategies

are used to generate the test cases for
combinatorial testing such as Harmony Search (3),

Genetic Algorithm (4), Ant Colony Algorithm (4),

Simplified Swarm Optimization (5), Differential
Evolution Algorithm (6) and so on.

Most of these aforementioned algorithms have

control parameters. For example, Harmony Search
requires 4 parameter controls namely maximum

http://dx.doi.org/10.21123/bsj.2020.17.3(Suppl.).1002
https://creativecommons.org/licenses/by/4.0/

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(3) Supplement (September):1002-1009 E-ISSN: 2411-7986

1003

iteration, harmony size, harmony memory

consideration rate, and pitch adjustment. Similarly,
Ant Colony adopts maximum iteration, population

size, evaporation rate, pheromone influence, and

heuristic influence as the parameter controls.

Tuning of these control parameters is necessary to
ensure the balance between exploration (i.e.

sufficiently roaming through all the potential areas

in the search space) and exploitation (i.e. searching
around the known best). Often, the tuning of these

control parameters is difficult as poor tuning can

lead to falling into local optima and unnecessary
increase in computational performance.

Addressing these issues, our work proposes to

adopt the Jaya algorithm as the backbone

algorithm for a combinatorial optimization
problem. Apart from being a significantly new

algorithm, the Jaya algorithm (7) has only two

parameter controls (i.e. common controls to all
search algorithms: population size and maximum

iteration). This is an important feature as the Jaya

algorithm offers a fair learning curve as well as

straightforward adoption effort as there is no need
for significant tuning (8, 9). Additionally, the ease

of resolving discrete optimization problems and

convergence to global optimum value make the
Jaya algorithm even better than other optimization

algorithms (10). Furthermore, the Jaya algorithm

offers a faster convergence speed than that of the
TLBO algorithm. Hence, a new strategy in

overcoming input-output based relation

combinatorial testing using Jaya algorithm called

CTJ is introduced. Summing up, the main
contribution of the work can be summarized as

follows:

 Unlike the state-of-the-art implementation, CTJ

is the first implementation that adopts parameter-
free algorithm as the backbone algorithm.

 CTJ also supports combinatorial input-output

based relation.

 CTJ performs well when compared with the

state-of-the-art implementations.

Related Work:
This section contains the mathematical

notation of Input-output based relation
combinatorial testing, followed by a survey on

combinatorial testing.

To express IOR in a mathematical form, a
combination of input-output relationship (Rel) and

covering array is needed to come out with input-

output based relations covering array. Rel can be

written in this form, Rel = {{x1}, {x2}, … ,{xn}}
where x is the combination of inputs that will

generate the specific output. Input-output based

relations covering array, IOR (N, C, Rel) is the

mathematical form of IOR relation. N represents

the number of test case in the test suite, C is the
number of value of each input parameter (v1P1,

v2P2, … , vnPn) where v is the amount of input

value and p is the amount of parameter that has the

same amount of v while Rel is the input-output
relationship as stated above (11).

 The greedy algorithm has previously been used

by Schroeder, the researcher who proposed
combinatorial testing with IOR feature in one of

his studies to determine particular combinations of

inputs which affect the outputs of the program
(12). Furthermore, the study of the variable

strength combinatorial test suite using the Greedy

algorithm is done by Wang and his colleagues to

increase the flexibility of controlling the
interaction strength (13).

 The density-based algorithm was first applied in

the research in interaction testing by Colbourn and
his associates, but it was limited only to pairwise

testing (14). Colbourn and his colleagues then

continued the research by increasing the limit of

interaction strength (15). There is another research
conducted by Wang and his colleagues that

introduced variable strength interaction in

combinatorial testing using density as the
optimization algorithm (13).

 AURA is a non-deterministic input-output

based relationship combinatorial testing strategy
proposed by Ong and Kamal (16). This strategy is

focusing on solving the mapping of symbolic

values to actual data manually and the lack of

flexibility of existing test suite generation. AURA
supports uniform interaction strength and variable

interaction strength with the strength up to 3 as

well as input-output based relationships.
 There are several types of research have been

done on showing the implementation of the Ant

Colony Optimization algorithm in combinatorial
testing. These include the study of comparing the

efficiency of ACO with simulated annealing and

genetic algorithm (17) as well as applying ACO in

variable interaction strength combinatorial testing
(18). ACO has been proposed to be applied in IOR

combinatorial testing in recent research by Ramli

and her associates (19) but there is a lack of results
of implementation in the study.

 Genetic Algorithm has been implemented in

solving combinatorial testing optimization

problems such as in the research by Shiba and his
associates (4). Srivastava and Kim developed

variable strength interaction combinatorial testing

using GA to focus on the parts that are critical by
implementing a more selective approach (20).

Furthermore, McCaffrey conducted a study to

identify the effectiveness of GA in pairwise testing

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(3) Supplement (September):1002-1009 E-ISSN: 2411-7986

1004

(21). Nevertheless, GA has not yet been applied

for the optimization in combinatorial testing that
has an IOR feature.

 Several types of research have applied the

Harmony Search algorithm in combinatorial

testing. In 2011, Alsewari applied the HS
algorithm in t-way interaction test data generation

(22). Besides, the HS algorithm is being

implemented in pairwise testing strategy (PHSS)
and PHSS is outperformed existing strategies in

terms of the size of the test suite generated in the

study in (23). Besides, utilization of HS algorithm
in variable strength interaction combinatorial

testing with constraint support is carried out by (3).

However, to the best of the authors' knowledge,

there is no research deals with the IOR feature
using HS.

 Based on the findings, Particle Swarm

Optimization has been implemented in pairwise
testing by Chinese researchers in 2010 (24). Other

than that, test suite generation using variable

interaction strength also implemented PSO to solve

the combinatorial problem (25). Still, there is no
combinatorial testing that employs the IOR feature

using PSO.

 There are few types of research related to
combinatorial testing using Simulated Annealing

for optimization that have been carried out. Cohen

and Colbourn used SA to solve the optimization
problem while constructing a test suite for

interaction testing (26). SA also is used to combine

with algebraic construction to build covering

arrays for interaction testing that is strength three
(27). Again, no research uses the SA algorithm to

optimize the combinatorial problem in

combinatorial testing that features IOR.

CTJ Implementation:
This section gives a details description of

the proposed Jaya algorithm. To realize the input-
output based relation combinatorial testing based

on Jaya algorithm, there are five levels of actions

to be carried out. The five-level actions start by
reading the input values entered by the user, data

analyzation and data mapping, input values

combination generation, test case generation, and
final test suite generation.

Step1: Data Analysis and Data Mapping

The purpose of the analysis is to ensure the

information user keyed in is in the right format and
syntax. Any wrong information inclusive of amiss

format and syntax entered will cause the system

not able to recognize even more the system will

crash. Therefore, preventive action is taken to
counter the happening of the above situation by

giving users feedback messages so that they can

recheck the problem and make the correction.

Data mapping is carried out right after data
analysis. The input values from each parameter

that has been verified during the data analysis

process will undergo the mapping process with
integers. By applying data mapping, the time taken

to generate all possible combinations of input

values and the test case will be reduced due to the
size of the input data is decreased. Often, the size

of a string is larger than an integer. Smaller byte of

data always processes faster than the larger one.

Hence, the string values of input data are being
substituted with integers during data processing.

Step2: Combinations of Input Value Generation

 In this step, the combination of input values is
generated to be used in test case generation based

on the interaction strength or based on the

selection input/output combinations. Each input

value that belongs to the same parameter and has
mapped to the corresponding integer is merged

with other values of parameters to form

combinations of values. There are two types of
combinations implemented which are

combinations of input values based on input-output

relationship and interaction strength.

Step3: Test Case Generation Based on Jaya

Algorithm

 After gathering all combinations of input

values, the next step is to generate the test case. It
starts with generating a test case by randomly pick

one of the input values from each parameter. The

generated test case which will be assessed by
determining the number of combinations of input

values that generated in Step2 covered by the test

case. The best and worst test cases in terms of
coverage in the population will be picked for

modification purposes. Each test case in the

population will be improved by applying the

modification formula in the Jaya algorithm (Eq.
(1)) based on the best and worst test cases. If the

test case generated after employing the

modification has better coverage than the previous
one, it will then replace the former test case. After

one iteration, the best and worst test cases will be

re-selected, and the modification is done based on

the new best and worst test cases.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(3) Supplement (September):1002-1009 E-ISSN: 2411-7986

1005

Figure 1. The flowchart of test case generation

using Jaya algorithm.

The process is iterated until the maximum number
of generations is achieved. The best test case

generated at the end of the iterative process is

added into a temporary test suite. The whole
process keeps repeating until all combinations of

input values are fully covered as illustrated in Fig.

1.

Assume that the best candidate solution (best) has
the best value of f(x) while the worst candidate

solution (worst) has the worst value of f(x) in the

candidate suite, and Xj,k,i is the value under the jth
design variable of the kth candidate solution for

the ith iteration. Thus, Eq. (1) is fulfilled the

requirements.

𝑋𝑗,𝑘,𝑖
′ = 𝑋𝑗,𝑘,𝑖 + 𝑟1,𝑘,𝑖(𝑋𝑗,𝑏𝑒𝑠𝑡,𝑖 − |𝑋𝑗,𝑤𝑜𝑟𝑠𝑡,𝑖|) −

𝑟2,𝑗,𝑖(|𝑋𝑗,𝑤𝑜𝑟𝑠𝑡,𝑖| − 𝑋𝑗,𝑘,𝑖) Equation (1)

Experimental Results and Discussion:

This section is divided into three parts which are
parameter tuning of CTJ, two experiments for IOR

and one experiment for uniform strength

interaction strength to evaluate the difference

between CTJ with another existing strategy in
handling combinatorial optimization.

Parameter Tuning of CTJ

All experiments conducted are using Intel i7-
6500U as the CPU with the RAM of 8GB in

Windows 10 Professional operating system. There

are only two common controlling parameters
involved in CTJ which are population size and

number of iterations. Hence, the tuning of

parameters setting is performed to ensure the

optimal results and efficiency of CTJ before the
experiments are carried out. The tuning process is

executed using one of the configurations from each

IOR and uniform interaction strength experiments
in (28) and (22). Three types of parameter settings

stated in Table 1 are being experimented for 10

iterations to figure out which parameter setting will

generate the most optimum and efficient result.

Table 1. Parameters settings.
Parameters

Setting

Population Size Number of

Iterations

S1 10 100

S2 50 500

S3 100 1000

The first experiment is adapted from (28) by using

10 parameters with 3 values each and the first 30th

input-output relationships are utilized. From the

result of the execution in Table 2, S1 setting is
generated test cases in the shortest time but it

yielded the highest number of test cases generated.

S3 has the best number of generated test cases but
it consumed a very long time to finish the

execution. If compared to S2, S3 took

approximately four times of S2 time to reduce five
test cases to be generated in the best result. It is

impractical to consume such a long time to reduce

a small number of test cases. The number of test

cases produced in S1 is reduced significantly
compared to S2 which reduced 18 test cases. This

result is much more optimum and acceptable to be

used.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(3) Supplement (September):1002-1009 E-ISSN: 2411-7986

1006

Table 2. Test case size and execution time in 30

input-output relationships configuration.

Parameters

Setting

Number of Test

Cases
Average Execution

Time (seconds)
Best Average

S1 136 139.6 63.089

S2 118 122.5 1148.0973

S3 113 116.6 4337.3287

The second configuration of experiment is
originated from (22) and the configuration is 6

parameters with 6 values each with uniform

interaction strength of 3. The best and average
number of test cases generated as well as the

average execution time are stated in Table 3. S1 in

this experiment is still the fastest parameter setting

that completed the test case generation. However,
the number of test cases it produced is still

undesired compared to S2 and S3 settings. The

time taken for the S3 setting to complete the
generation of test cases is approximately 3 hours

while S2 only took 55 minutes. The difference in

the number of test cases generated between S3 and

S2 is just eight test cases. These issues show that it
is unrealistic to use an S3 setting in the real

environment.

Based on both experiments that are conducted to
decide the parameter settings, the S2 setting is

selected to be parameter setting for all experiments

since it is capable to generate the optimum number
of test cases in a satisfactory time frame.

Table 3. Test case size and execution time in CA

(N; 3, 6
6
) configuration.

Parameters

Setting

Number of Test

Cases

Average

Execution

Time

(seconds)
Best Average

S1 387 396.9 215.0552

S2 354 358.8 3270.3555

S3 346 349.3 10784.2423

Experiments for Input-Output Based

Relation
Two experiments published in (28) are

conducted to evaluate the performance of CTJ in

IOR. The strategies that have implemented the

IOR feature which included in both experiments

are Density (13), TVG (29), ReqOrder (30),
ParaOrder (13), Union (31), Greedy (12), ITTDG

(11) and AURA (16). Both experiments share the

same input-output relationships, but their
configuration of parameters and their values are

different. The first experiment used IOR (N, 310,

R) configuration while the second experiment

employed IOR (N, 23, 33, 43, 51, R) configuration.
All IOR relationships are stated in Table 4. The

experiment will be carried out for 6 IOR

configurations. Initially, the first 10 relationships
will be tested as the first IOR configuration and the

second 10 relationships will be added into the first

IOR configuration to become the second IOR
configuration for the second evaluation. For the

subsequence evaluations, another 10 relationships

will be added into the previous configuration until

all 60 relationships are assessed.

Table 4. 60 Input-output relationships (R) that utilized in IOR experiments.
 10th

relationship

20th

relationship

30th

relationship

40th

relationship

50th

relationship

60th

relationship

Relationship

(R)

{1, 2, 7, 8} {2, 3, 4, 8} {1,3,6,9} {0,2,7,9} {2,3,9} {0,6,7,9}

{0, 1, 2, 9} {2, 3, 5} {2,4,7,8} {1,2,3} {1,5,8} {2,6,7,9}

{4, 5, 7, 8} {5, 6} {0,2,6,9} {1,2,6} {1,3,5,7} {2,6,8}

{0, 1, 3, 9} {0, 6, 8} {0,1,7,8} {2,5,9} {0,1,2,7} {2,3,6}

{0, 3, 8} {8, 9} {0,3,7,9} {3,6,7} {2,4,5,7} {1,3,7,9}

{6, 7, 8} {0, 5} {3,4,7,8} {1,2,4,7} {1,4,5} {2,3,7}

{4, 9} {1, 3, 5, 9} {1,5,7,9} {2,5,8} {0,1,7,9} {0,2,7,8}

{1, 3, 4} {1, 6, 7, 9} {1,3,6,8} {0,1,6,7} {0,1,3,6} {0,1,6,9}

{0, 2, 6, 7} {0, 4} {1,2,5} {3,5,8} {1,4,8} {1,3,7,8}

{4, 6} {0, 2, 3} {3,4,5,7} {0,1,2,8} {3,5,7,9} {0,1,3,7}

The result of the first experiment which used IOR

(N, 310, R) configuration with the relationships in

Table 4 is shown in Table 5 and the highlighted
number of test cases represents the most minimum

number of test cases produced out of all strategies.

Overall, ITTDG is still outperformed other

strategies in terms of the size of test cases
generated. However, CTJ is still delivered an

almost optimum solution if compared to the best

result generated by ITTDG and ParaOrder. The

average difference between the best result of CTJ
and other strategies is five test cases only. Besides,

the time of execution of CTJ is considerably fast.

For R10, CTJ took only approximately 5 minutes

to finish the test case generation. 7 minutes, 19
minutes, 27 minutes, 33 minutes and 35 minutes

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(3) Supplement (September):1002-1009 E-ISSN: 2411-7986

1007

are taken by CTJ to complete the execution of R20, R30, R40, R50 and R60 respectively.

Table 5. Test cases size and execution time of IOR (N, 3
10

, R) configuration.

R Density TVG ReqOrder ParaOrder Union Greedy ITTDG AURA

CTJ

Best Average

Average

Execution

Time

(seconds)

10

20

30

40

50

60

86

95

116

126

135

144

86

105

125

135

139

150

153

148

151

160

169

176

105

103

117

503

858

1599

2057

2635

3257

104

110

122

134

138

143

81 89

99

132

139

147

158

88

100

118

128

134

145

90.3

101.3

122.5

130.1

137.8

148.9

334.604

444.927

1148.097

1660.429

2006.527

2128.845

94

114

120 122

148
142

131

141

Table 6 is the result of the execution of experiment

two in IOR. The most minimum number of test

cases produced by CTJ in R10 and R20 only vary
for 5 test cases if compared to the best algorithms.

While R30 to R60, the difference between the best

result of CTJ and Density is not more than 12 test

cases. Additionally, the time taken to complete the

execution in experiment two is in the range of 500

to 1000 seconds which approximately 8 to 16
minutes only. These show CTJ generates solutions

that are close to optimum.

Table 6. Test cases size and execution time of IOR (N, 2
3
, 3

3
, 4

3
, 5

1
, R) configuration.

R Density TVG ReqOrder ParaOrder Union Greedy ITTDG AURA

CTJ

Best Average

Average

Execution

Time

(seconds)

10 144 144 154 144 505 137 144 144 144 144.5 509.888

20 160 161 187 161 929 158 160 182 165 167.1 712.472

30 165 179 207 179 1861 181 169 200 170 173.2 699.674

40 165 181 203 183 2244 183 173 207 173 176 748.750

50 182 194 251 200 2820 198 183 222 191 194.7 842.738

60 197 209 250 204 3587 207 199 230 209 211.5 987.918

The number of test cases generated through CTJ is

still acceptable in overall if compared to the size of
the test suite produced through exhaustive testing.

Furthermore, the results produced by other

strategies often go for a very high population size
and a more iteration for improvement of the

solutions while the parameters setting of CTJ for

these experiments are only 500 iterations with the
population size of 50. Different parameters setting

will affect how well the strategy performed and

hence resulting in a different size of test suite

produced.

Conclusion:
In this paper, the existing strategies that

are used in solving combinatorial testing such as

Greedy, Density, AURA, ACO, GA, HS, PSO and

SA have been studied. CTJ which stands for the

combinatorial testing strategy that featured input-
output based relation using Jaya algorithm is

proposed and introduced. Referring to the results

of the experiments, CTJ performs with acceptable
performance especially in test case generation

through input-output based relation. Overall,

comparing the CTJ results to the results of existing
test case generation strategies, CTJ generates more

test cases compared to the other strategies, but this

study focuses on generating test cases with
acceptable test list size within short processing

time. One of the constraints or challenges that face

the testers is the test list generation time. The test

list generation processing time needs to be as fast
as possible to conduct the testing with a short time.

So, in this research the test list generation

processing time is the major factor. The search
engine in CTJ is the main part which is based on

the Jaya algorithm. Jaya algorithm depends on the

global search approach to find the best solutions
which may lead to moving far from the available

solutions in the population space. Based on the low

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(3) Supplement (September):1002-1009 E-ISSN: 2411-7986

1008

performance of the CTJ in the test case generation,

the Jaya algorithm in CTJ must go through some
modifications in order to improve the performance

of CTJ and even generate a more optimum number

of test cases. In addition, CTJ can be enhanced by

adding the support of variable interaction strength,
constraints, and seeding.

Acknowledgment:
 This research is funded by, UMP

(RDU190334), A Novel Hybrid Harmony Search

Algorithm with Nomadic People Optimizer

Algorithm for Global Optimization and Feature
Selection, and (FRGS/1/2018/ICT05/UMP/02/1)

(RDU190102), A Novel Hybrid Kidney-Inspired

Algorithm for Global Optimization Enhance
Kidney Algorithm for IoT Combinatorial Testing

Problem.

Conflicts of Interest:

The authors declare that they have no conflicts of

interest.

Authors' declaration:
- Conflicts of Interest: None.

- We hereby confirm that all the Figures and
Tables in the manuscript are mine ours.

Besides, the Figures and images, which are not

mine ours, have been given the permission for
re-publication attached with the manuscript.

- The author has signed an animal welfare

statement.

- Ethical Clearance: The project was approved by
the local ethical committee in University of

Baghdad.

References:
1. Younis MI. MVSCA: multi-valued sequence covering

array. J Eng. 2019; 25 (11):82-91.DOI:
10.31026/j.eng.2019.11.0 7.

2. Kuhn DR, Wallace DR, Gallo AM. Software fault

interactions and implications for software testing.

IEEE T Softw Eng. 2004; 30 (6): 418-421.

3. Alsewari ARA, Zamli KZ. Design and

implementation of a harmony-search-based variable-
strength t-way testing strategy with constraints

support. Inform Software Tech. 2012; 54(6):553–568.

4. Shiba T, Tsuchiya T, Kikuno T. Using artificial life

techniques to generate test cases for combinatorial

testing. COMPSAC 2004. 2004; 72-77.

5. Ahmed BS, Sahib MA, Potrus MY. Generating

combinatorial test cases using simplified swarm

optimization (SSO) algorithm for automated GUI

functional testing. Eng Sci Technol. 2014;17(4): 218-

226.

6. Liang X, Guo S, Huang M, Jiao X. Combinatorial test

case suite generation based on differential evolution

algorithm. JSW. 2014; 9 (6): 1479-1484.

7. Rao R. Jaya: A simple and new optimization

algorithm for solving constrained and unconstrained

optimization problems. Int J Ind Eng Comput. 2016; 7

(1): 19-34.
8. Singh SP, Prakash T, Singh V, Babu MG. Analytic

hierarchy process based automatic generation control

of multi-area interconnected power system using Jaya

algorithm. Eng Appl Artif Intell. 2017;60: 35-44.

9. Warid W, Hizam H, Mariun N, Abdul-Wahab NI.

Optimal power flow using the Jaya algorithm.

Energies. 2016; 9 (9): 1-18.

10. Mishra S, Ray PK. Power quality improvement

using photovoltaic fed DSTATCOM based on Jaya

optimization. IEEE T Sustainable Energy. 2016; 7

(4): 1672-1680.
11. Othman RR, Zamli KZ. ITTDG: integrated t-

way test data generation strategy for interaction

testing. Sci Res Essays. 2011; 6 (17): 3638-3648.

12. Schroeder PJ, Faherty P, Korel B. Generating

expected results for automated black-box testing.

ASE 2002. 2002; 139-148.

13. Wang Z, Xu B, Nie C. Greedy heuristic

algorithms to generate variable strength combinatorial

test suite. QSIC 2008. 2008; 155-160.

14. Colbourn CJ, Cohen MB, Turban R. A

deterministic density algorithm for pairwise
interaction coverage. On IASTED Conf Softw Eng.

2004; 345-352.

15. Bryce RC, Colbourn CJ. A density-based

greedy algorithm for higher strength covering arrays.

Softw Test Verif Rel. 2009; 19 (1): 37-53.

16. Ong HY, Zamli KZ. Development of

interaction test suite generation strategy with input-

output mapping supports. Sci Res Essays, 2011, 6

(16): 3418-3430.

17. Mao C, Yu X, Chen J, Chen J. Generating test

data for structural testing based on ant colony

optimization. QSIC 2012, 2012, pp. 98-101.
18. Chen X, Gu Q, Li A, Chen D. Variable

strength interaction testing with an ant colony system

approach. APSEC 2009, 2009, pp. 160-167.

19. Ramli N, Othman RR Ali MSAR. Optimizing

combinatorial input-output based relations testing

using Ant Colony algorithm. ICED 2016, 2016, pp.

586-590.

20. Srivastava PR, Kim T. Application of genetic

algorithm in software testing. Int J Softw Eng its

Appl, 2009, 3 (4): 87-96.

21. McCaffrey JD. Generation of pairwise test sets
using a genetic algorithm. COMPSAC 2009, 2009, 1,

pp. 626-631.

22. Alsewari AA, Zamli KZ. Interaction test data

generation using harmony search algorithm. In 2011

IEEE Symp Indu Elect Appli, Langkawi, Malaysia,

2011, IEEE Computer Society, pp. 559-564. DOI:

10.1109/ISIEA.2011.6108775.

23. Alsewari AA. A harmony search based

pairwise sampling strategy for combinatorial testing.

International J Phys Sci, 2012, 7 (7): 1062 - 1072.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(3) Supplement (September):1002-1009 E-ISSN: 2411-7986

1009

24. Chen X, Gu Q, Qi J, Chen D. Applying particle

swarm optimization to pairwise testing. COMPSAC

2010, 2010, pp. 107-116.

25. Ahmed BS, Zamli KZ. A variable strength

interaction test suites generation strategy using

particle swarm optimization. J Syst Softw, 2011, 84

(12): 2171-2185.
26. Cohen MB, Gibbons PB, Mugridge WB,

Colbourn CJ. Constructing test suites for interaction

testing. ICSE03, Portland, Oregon USA, IEEE

Computer Society, 2003, pp. 38-48.

27. Cohen MB, Colbourn CJ, Ling ACH.

Augmenting simulated annealing to build interaction

test suites. ISSRE 2003, 2003, pp. 394-405.

28. Alsewari AA, Tairan NM, Zamli KZ. Survey

on input output relation based combination test data

generation strategies. ARPN J Eng Appl Sci, 2015, 10

(18): 8427-8430.

29. Arshem J. TVG. Available:

http://sourceforge.net/projects/tvg (accessed on 1 June

2019).
30. Ziyuan W, Changhai N, Baowen X. Generating

combinatorial test suite for interaction relationship.

SOQUA 2007, ACM, Dubrovnik, Croatia, 2007, pp.

55-61.

31. Schroeder PJ, Korel B. Black-box test

reduction using input-output analysis. ACM

SIGSOFT, 2000, 25 (5): 173-177.

 استراتيجية اختبار التوافقية القائمة على المدخلات والمخرجات باستخدام خوارزمية جايا

 2كمال زهيري زاملي 2خانج يونج أن جي 2يراوعبد الرحمن أحمد السي 1*محمد عصام يونس

 العراق ،بغداد ،جامعة بغداد ،كلية الهندسة ،قسم هندسة الحاسبات1

 الحاسوب ، جامعة ماليزيا باهانج ، باهانج ، ماليزياكلية نظم 2

 :الخلاصة
. الأختبار ويكاد يكون من المستحيل اختبار كل مجموعة من المدخلات نظرًا لأن تنفيذ حالات الاختبار يتطلب وقتا طويلا للغاية

ت لكل المعاملات المركبة المتعددة طرق الاندماجي هو السبيل لتخطي عقبات الاختبار الشامل من خلال أختبار كل قيم المدخلا

يمكن تقسيم الاختبار التجميعي إلى ثلاثة أنواع هي تفاعل القوة الموحد ، والتفاعل المتغير والقوة ، والعلاقة القائمة على المدخلات الترتيب.

معظم الابحاث في . ان الطريقة الاخيرة الانفة الذكر تختزل الفحص الاندماجي الى مجموعة ضمن اختيار الشخص الفاحص. والمخرجات
الاختبار الاندماجي طبقت في تفاعل القوة الموحدة وقوة التفاعل المتغيرة ، ومع ذلك ، هناك اهتمام قليل جدا بالعلاقة بين المدخلات

خوارزمية جايا في هذا البحث كخوارزمية مثلي لانشاء جدول الفحص الاندماجي باستراتيجية تعتمد على العلاقة والمخرجات. لذا تم اقتراح

في الاختبار الاندماجي القائم على المدخلات والمخرجات مقبولة لأنها تنتج العدد جايا بين المدخلات والمخرجات. نتيجة تطبيق خوارزمية
 .ار في نطاق زمني مقبولالأمثل تقريباً لحالات الاختب

 .متعدد الترتيب، موثوقية النظام خوارزمية جايا ، اختبار البرمجيات ، الاختبار الأندماجي ، اختبار الكلمات المفتاحية:

