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Abstract:

This article deals with the approximate algorithm for two dimensional multi-space fractional bioheat
equations (M-SFBHE). The application of the collection method will be expanding for presenting a
numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials™ (SJ-GL-
Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to
demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The
numerical results revealed that the used approach is very effective and gives high accuracy and good

convergence.

Key words: Accuracy, Collocation method, Shifted Jacobi-Gauss-Lobatto polynomials, Two dimensional

fractional bioheat equation.

Introduction

Fractional calculus has been utilized to
ameliorate the modeling fineness of many
phenomena naturalistic in science and engineering.
It was applied in the assorted fields such as
diffusion problems, viscoelasticity, mechanics of
solids, biomedical engineering, control theory, and
economics, etc. (1).

Pennes’ suggested in (1948) the essential
structure of the mathematical designing that
describes temperature propagation in human tissues,
the model known as the bioheat equation remains
extensively used in the hyperthermal and freezing
treatments (2). The fractional bioheat model which
extracted the focus of the researchers and these
contributed to a significant amount of the researches
based on approximate and analytic methodology,
for example (Singh et al. in (3), finite difference and
homotopy perturbation method, Jiang and Qi in (4),
Taylor's series expansion, Damor et al.in (5),
implicit finite difference method, Ezzat et al. in (6),
Laplace transform mode, Ferrés et al. and Kumar et
al. in (7-8), implicit finite difference method,
“backward finite difference method” and “Legendre
wavelet Galerkin scheme”, Qin and Wu and Damor
et al. in (9-10), quadratic spline collocation method

and Fourier-Laplace transforms, Kumar and Rai in
(11), finite element based on Legendre wavelet
Galerkin method, Roohi et al. in (12), Galerkin
scheme, Hosseininia et al. and Al-Saadawi and Al-
Humedi in (13-14), “Legendre wavelet method” and
“Collocation method”).

In this paper, the SJ-GL-Ps in the matrix
form is employed for the present numerical
approach in order to solving the following two-
dimensional M-SFBHE. Therefore, the space-
fractional version of the two-dimensional unsteady
state Pennes bioheat equation can be obtained by
replacing the space derivatives with the derivatives
of arbitrary positive real orders v;, v, € (1,2] as:

T (x,y,t) K 0" T(x,y,t) d"2T(x,y,t)
P 5t < dx” dyv2 )
+ Wbcb(T(xl Y, t) - Ta) = Qext(xv Y, t) + Qmet'
0<t<T,0<x<R,0<y

<R,, (D)

with initial and boundary conditions

T(x,y,0) =T, 0<x<R,0<y<R,;, -..(2)
aT(0,y,t)

—KT=QO,OSySR2,t>O, (3)
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dT (x,0,t)

K= 0S xS RE>0, ()
TRy, y, t
%—O,OSySRZ,t>O, .(5)
dT (x,R,, t)

K—g FE=00SxSRyt>0, . (6)

where p,c, K, T, t,x,y,Ta, qo, Wy = ppWp, Qexr and
Qmer Symbolizes density, specific heat, thermal
conductivity, temperature, time, distances with x, y,
artillery temperature, heat flux on the skin surface,
blood exudation rate, metabolic heat obstetrics in
lacing tissue and external heat exporter in skin
tissue respectively. The units and value of the
symbolizations that expressed in this equation are
tabulating in Tablel.

Table 1(15). The units and values utilized in this
paper of the M-SFBHE.

SymbOIS Ta P, Pp CCp K Wp Qmet
Units | °C | kg/m® | J/kg°C | W/m°C | m¥s/m® | wim® |
values | 37 | 1000 | 4000 0.5 0.0005 | 420

The sections of this article are structured as
follows: In the next section, some definitions of
essentials principles of the fractional calculus will
be showing. Followed by the shifted Jacobi
polynomials operational matrix for ordinary
derivatives and their fractional derivatives, the
approximate approach for 1D, 2D and 3D
temperature function in matrix form depending on
shifted Jacobi polynomials for fractional
differentiation are given, to establish a numerical
solution for M-SFBHE, so a method for solution is
explained, after that to determine an error bound
T(x,y,t) is called for, an efficient error estimation
for the SJ-GL-Ps will be given. The final section
deals with the numerical results for the M-SFBHE.

Preliminaries and Notations
The essentials principles of the fractional
calculus theory that utilized in this article will be
explain.
Definition (16): The Riemann-Liouville fractional
integral of order v > 0 defined as:
X

I"o(x) = 1 (x —s)"" 1 @(s)ds,v >0,
@) (D)

1°0(x) = o(x).

Definition (12): The Riemann-Liouville definition
of fractional differential operator where v > 0 given
as follows:

DY@ (x)
1 B(s)
=Jr(n_v)ﬁfo (x —s)v—n+1 dssm—1<v<mn, ©
d"o(x)
v=n
dx™m

Definition (11): The Caputo definition of fractional
differential operator defined as:

D@ (x)
1 x (D(")(s)
:Ir(n—v) 0 (X—S)V—n+1ds'n_15v<n. ©
L d"e(x) o
dx™ ,V="n.

The relation that governing the Riemann-
Liouville and Caputo of fractional order given via
the forms (3):

DUI"@(x) = @(x),

n-1

IPDY0(x) = 6(x) - z CICREES
Forf =0,v > —1, and constant C, Caputo
fractional derivative has some fundamental
properties which are needed here as follows (17):
i)D’C =0,
0 for B € Ny and B < [v]
i)pvxF={ T(B+1) .
{mxﬁ ,,8 Eor ¢ No,ﬁ > [17], (11)

iii) D? (i ¢ (Di(x)) = i ¢;D¥ 9;(x),

i O i=0
where {c;}]-, are constant.

Deflnltlon (17): (generalized Taylor’s formula).
Assume that D™@(t) € €(0,1) for i = 0(1)(n —
1), then one has:

xiv iv +

D™ (&) ..(12)

* r'nv + 1)

where 0<é&é<x, Vx € (0,R). Also, one has
assume

0 () - Z D 0(0%)

and M, = [D™@($)].

In case v = 1, the generalized Taylor’s formula in
Eq. (10) is the classical Taylors formula.

Shifted Jacobi Polynomials for
Derivatives and Fractional Derivatives
The Jacobi polynomials which are orthogonal
in the interval [—1, 1] are defined as the following
formula:
Pi(aﬁ)(t)
_(+a+p-D{a* - +tRi+a+p)2i+a+p—2)}
- 2ii+a+BRi+a+p—2)
(i+a—-Di+B-DQRi+a+p) P
iita+p)Ri+a+p-2) -2 ’
n=23,.. . (14)

Ordinary

AOR
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where PP (1) =1,
2)t+ (a—pB)].

For transform Jacobi polynomials on a
region 0 < x < R, one can procedure the replace of

. 2 .
variables t:?x—l in the above formula.

Therefore, the shifted Jacobi polynomials (SJPs) are
constructed in the relation as follows (2)

2
PP (Z-1) = RSP (x) ,x € [0,R].

L
The analytlc form of the SJPs PR(,‘;"‘B ) (x) of
degree i is given as following:
Pai @)
O DTkt a+ B DTG+,
- Zijr(i+a+ﬁ T Ok + B+ DG —k)k ™

€N, . (15)
F(L+ﬁ+1)

PP =1[(a+p+

where (a B)(O) — ( )l G ) R((f ﬁ)(R) —
I'(a+i+1)
ilr(a+1)’

From the SJPs, the formulas that most
utilized can be obtain which are the “shifted
Legendre polynomials” (SLPs) L;(x); the “shifted
Chebyshev polynomials” (SCPs) of the first kind
Tg i (x); the “shifted Chebyshev polynomials” of the
second kind Ug;(x); the nonsymmetric SJPs, the
two important special cases of “shifted Chebychev
polynomials” of third(fourth) kinds Vg;(x) and
Wk i(x); and also, the symmetric SJPs that called
“Gegenbauer (ultraspherical) polynomials”
Cri(x).These  orthogonal  polynomials  are

interrelated to the SJPs by the following relations
(18)

Li(x) = POV(),  Tri(x) =

() (23
)
)(X)

Q) o573

r(+) R

Ug,i(x) = (), Vr,i(x) =

TN CE

(2i-1)! RL
(20!
WR,l(x) (21 11)” R(122)(x) CRl(x) -

i!l"(a+%) (a—— - )
r(i+a+3) P ().

The orthogonal property of SJPs is given by
R

..(16)

j PP ()PP ()0 dx = e, . (17)

0

where w” = xB (R — x)° and
Ra+3+1 I'(k+a+D)T(k+p+1) . k

hgy = {k!k+a+p+1)  T(k+a+p+1) ’ PR
0, i #k.

The first-order derivative of the vector
00 =[PP (0, RGP (), .., BGP ()] can be
expressed by

do(x)
= DW@(x), ..(18)

where DM is the (N + 1) X (N + 1) shifted Jacobi
operational matrix of derivative introduced by (19):
A(L, ), 1>,
W =q.=1"1
D dij {0 otherwise,

Al("v})

CR™P(ita+B+D(i+a+B+2);GG+a+2); TG+a+B—1)

Frj+a+p+1)30-j—D!
. (]—l+1 jtita+p+2,jtita+p+2,j+ta+1l 1)
372

jta+2, 2j+a+pf+2
For example, for even N we have

DD =
0 0 0 0 0
A1(2,0) A1(2,1) 0 0 0
A:(3,00 A1 A(B2) 0 ol
((N,0) A (N, 1) A;(N,3) A (NN-1) 0

To generalize the shifted Jacobi operational
matrix of ordinary derivatives into the fractional
derivative. By utilizing Eq. (18), it is obvious that
dr (Z)(x)

(D<1>) ?(x), ..(19)
Where n€N and the superscript in D,
symbolizes matrix powers. Thus
D™ =(pM)*,  n=12 - (20)
Corollary (1): In the case of a=£=0, it is

obvious that the SJPs for derivatives in the matrix
form for integer calculus is in complete agreement
with the SLPs for derivatives in the matrix form for
integer calculus.

Corollary (19): In the case of a = = —%, it is

clear that the SJPs for derivatives in the matrix form
for integer calculus is in complete agreement with
the SCPs for derivatives in the matrix form for
integer calculus.

Lemma:- Let p;j."ﬁ)(x) be the SJPs. Then

DR () =0,i=0,1,2,..,[v] - L,v > 0.

Proof:- Using the properties (ii) and (iii) of the Eq.
(11) into Eq. (15) lead us to prove the lemma. O
The following theorem is generalizing the
operational matrix of derivatives form an arbitrary
fractional order based on SJPs that have given in

Eq.(18)
Theorem(18):- Suppose that @(x) be shifted Jacobi
vector defined in

assume also, v > O. Then
D"@(x) = D 9(x),

(aﬁ)( )] and

~(21)
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where DI is the (N + 1) x (N + 1) shifted Jacobi
operational matrix of derivatives of fractional order

v in the Caputo formula and is defined by:
Y

0 00 0
0 o o . 0
_|B°Uvl,0) B¥(jvl.1) B*(vl.2) .. B°(Iv].N)
BV(}',O) B"(.i,l) B"(.i,Z) o B”(i,N)
_BV(N,O) BV(N,1) B"(iv,z) B"(N,N)_
where
i
BY(i,)) = Z Sijk .. (22)
k=[v]
and &;y is given by
5ijk

(—1D)F*RWBVHITG 4+ B+ DI+ B+ DI(i+k+a+ L +1)

:hR,r(;+a+/;+1)r(k+/;+1)r(i+a+ﬁ+1)r(k—v+1)(i—

DT +l+a+B+ D@+ DIU+k+p—v+1)
Z TU+B+ DIl +k+a+B—v+2)G—-DL!

Proof By apply Eg. (11) into Eq. (15) (the SJPs
(“ B (x) of degree ), the resulting:

DVPR‘_‘;‘ A x)

_ 2(_1)i_k FG@+p+ DI +k+a+p+1)D"x*

B REEIT(k+ B+ DI +a+ B+ 1) —k)!
ik TG+B+DI(i+k+a+pf+1)xk?
'Z( ) RT(k+ B+ DI(i+a+ B+ 1)1 — k)'F(k—v+1)
[v] vl+1,. - (24)

Now, approximate x*~V by (N + 1) terms
of shifted Jacobi series, the obtained result:

xkV x Zuk] P(aﬁ)(x), ..(25)

where the coefficients p;; can be obtain as
following

R
1
Liej = —f xk-v PR(Of’B) (x)xP (R — x)%dx
h’R,j 5 J
R

=— | x*7xP(R —x)®
hR'j 0

]
TG+ B+DIG+1+a+p+ Dxtdx
XZ(‘”’ lRll"(l+[3+1)F(j+a+B+1)(j—l)!l!

__j D)/ TG+B+DIG+l+a++1)
" hey L RTA+ B+ DTG +a+ B+ DG - D
R
Xfxﬁ””“” (R—x)%dx  ..(26)
0
Z[( it FU+B+1)F'(j+l+a+ﬁ-|'-1)
hR; RTU+B+DIG+a+p+1D(—D!L!
F(a+1)l“(ﬁ+l+k—v+1)
FrBG+l+k—v+2)

Ra+[3+k+l—v+1

- (23)

3 F(j + ,8 + 1)Ra+ﬁ+k—v+1
- TG +a+B+Dhgy
j , 1)j_lr(a+1)F(j+l+a+ﬂ+1)l"([?+l+k—v+1)
XZ— T+B+ D@+ +1+k—v+2)G— DI
Now, substituting Eq. (25) into Eq. (23),
observe that

N
DR = ) B HRS P ),
=0
i=[v],[vl+1,.. N .. (27)

where BY (i, j) is given in Eq. (21).
The Eq. (26) in a vector form can be write as:

~ [B”(z 0),BY(i,1), ..., B’(i, N\)]0(x), i
= [v](1)N. ..(28)
Also from above Lemma, the obtained

| equation:

DR () % [0,0, ..., 0] (x), i
=0(D)([vl-1D,v>0. ..(29)

By a combination of the Egs. (28-29), the
desired result will obtain.

One can notes that if v=n € N, then
above theorem gives the same formula as in Eg.
(18).

Corollary (1):- If a= =0 and R = 1, then
8ijk is given as follows:

Sijk .

B D" rG+Dri+ Dri+k+1)
 hg(i—K)ITG+ DIk + DI+ DMk —v +1)

()G + L+ DI+ k — v + 1)
Z G=D'I'TA+DIrl+k—v+2)°

By the aid of properties of the SJPs with
simplification, the obtained result is:

' Oijk = Pijr = (2j + 1)

y (=) 4 D)1 (i + k)
Z(l+k—v+1)(i—k)!k!(j—l)!(l!)zl“(k—v+1)'

Then one can easily demonstrated that
i

=0

BY(i,)) = Z Pijie

k=[v]
where @, i is given as in (1). It is clear that the SIPs
for derivatives in the matrix form for fractional
calculus with @« = g = 0, is in complete agreement
with the SLPs for derivatives in the matrix form for
fractional calculus as in (1).

Corollary (20):-lIfa = = —% then & given as
follows:
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Sijik
(=1D)FR7T( + %)F(i + %)F(i + k)

- eR_jr(/)r(% +TOT(k — v + 1)@ — k)!
j

DTG+ Drd+k—v+ %)
XZ 1 . '
=+ +k—-v+1( - D!

by the aid of properties of the SJPs with
simplification, the obtained result is:
Sijk = Gijk
(—1)i‘k2i(i+k—1)!1"(k—v+%) ,

€r jRVT(k + %)(i —)ITk—v—j+DI(k+j—v+ 1)J
= 0(1)N.
Then one can easily elucidate that

L

BY(i,j) = Z Pijis
k=[v]
where ¢ and €g ; are given as in (20). It is clear

that the SJPs for derivatives in the matrix form for
any arbitrary fractional order with a = 8 = —%, is

complete accord with the SCPs for derivatives in
the matrix form for fractional calculus obtained by
(20).
Shifted Jacobi Operational Matrix of
Fractional Differentiation

A temperature function T(x) define for
0 < x < R, may be expressed in terms of the SJPs
as

T(x) = Z Ci PR(;{,}B)(X)' ..(30)
i=0
where the coefficients c; are given by
Ry
¢ = . i.[ T(x) P}?(z'iﬁ)(x)w}gff (x)dx,i
()
=0,12,.... ..(31)

In practice, consider the (N + 1)-term SJPs so that
N

()~ ) PP = Cow),
i=0

where the shifted Jacobi coefficient vector ¢; and

the shifted Jacobi vector @(x) are given by CR =

[COI Cll ey CN]; ®(x) =

[PEP 60, PP G, . BER ()]

By extending the above property in two
variable functions, can approximate a two variable
function T(x,y) define for 0<x <R, and
0 <t < T dependent on double SJPs as

et =) ) ay R @RGP,

i=0 j=0

.(32)

.(33)

where

aij =
—L R (T ) PP ) PP ()0 @B (x, ) dtdx, ... (34
o Jo Ryl T,j

hgih7,j
such that w @B (x,t) = wlg‘ff) (x) w%ﬂ)(t).
In practice, consider the (N + 1) and (M +

1)-terms double SJPs with respect to x, t so that

N M
Ty (x,t) = z z a; PP (OB ()

i=0 j=0
= 0(x)"A 0(¢), ..(35)
where the shifted Jacobi coefficient matrix A and
the shifted Jacobi vectors @(x) and @(t) are given
by:

N,M

A= {ai]'}l"jzo ’
00 =[PP 00, PP G, . BED )]
o) =[PP, PSP, .. PSP 0]

Now, in order to approximate a three
variable temperature function T(x,y,t) define for
0<x<R;,0<y<R,and 0<t <7 dependent
on triple Jacobi series as
T(x,y,t)

=Dt PP RSP ® - (36)
i=0 j=0 k=0
In practice, consider the (N; + 1), (N, + 1)
and (M + 1)-terms triple SJPs with respect to x, y, t
so that where
fkij
) f f 1 760,60 B RSP )PP )0 P (x,y, 1)

th,ith,th,k

0 0
such that
0Py, = o) o P e ©).

Ty N, (Y, 1)
Ny N M

~ Z Z Z fkijPR(f_'iB)(x)PR(Z'f) (}’)P:r(flk'ﬁ)(t)

i=0 j=0 k=0
=0@)' T O(x)®D(y), ...(38)
where the symbol @ is the Kronecker tensor
product, the shifted Jacobi vectors
?(x),0(y) and @(t) are given by
0G0 = [P 00, PP (o), o, B (0] )
00 = [P ) PEL W), B )] L .. (39)
é(t) = [Pg%’ﬁ)(t), PP ), .., P}j‘v'f)(t)] ‘

Also shifted Jacobi coefficient matrix T is
given in a block form as follows

T
fooo Loor - toon, Eo1o  Foin ton, N,

_ [Qoo tior  tiow, ot tiny N, j .. (40)
tmoo tmor 7 Emon, tmio Emna Emw,N,

1275
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Method for Solution

The selection of collocation points is
playing significant role in the efficiency and
convergence of the “collocation method”. For
boundary value problems, the “Gauss-Lobatto”
points represent one of the principal keys utilized
for approximation. It should be renowned that for a
differential equation with the singularity at x = 0 in
the region [0, R] one is unable to apply the
“collocation method” with “Jacobi-Gauss-Lobatto”
points because the two assigned abscissas 0 and R
are necessary to use as two points from the
collocation nodes. Use the “collocation method”
with “Jacobi-Gauss-Lobatto” nodes to treat the two
dimensional M-FSBHE; i.e., collocate this equation
only at the M x (N; —1)x (N, —1) “Jacobi-
Gauss-Lobatto” points (0, 7),(0, R;) and (0, R,)
respectively. These equations and with initial,
boundary conditions generate (M + 1) X (N; +
1) X (N, + 1) nonlinear algebraic equations by
using one of the iteration methods can be solved.

Now, set
PN1 (O,Ry) =
span{ (a B)(x) P(ﬁvﬁ)( ) R(flgl)(x)}

Recall the “Jacobl Gauss-Lobatto”

generators. Such that N; is any positive integer,
Py, (0,Ry) stands for the group of all algebraic

polynomials from degree at most N;. Denoting xy, ;
by xg, n, i and w(“ﬁ) by ng;fjj,i, 0<i<Ng,to
the grid points and “Ghristoffel numbers” (19) of
the standard or “shifted Jacobi-Gauss-Lobatto”

guadrature on the (—1,1) or (0, R,) respectively.

71 (xn,i +1), . (41)

@B) _ (ﬁ)‘”ﬂ“ (@p)
R{,N4,i 2 Rll '

For any @(x) € Py, (0,R,), we have
R

f wgff) O(x)dx

0

a+f+1 1
= (ﬁ f(l—x)“(1+x)BP<%(x+1)>

2
Z wf{f f;)(le )0 ( 21 (xn,i + 1)>

XRyNyi = 0<is<NM,

a+f+1

=()

_ (a,B

= Z W,, Nll(Z)(le Nyi)» .. (42)
i=0

where xg, y,; and w,g“ f,)l are the grid points and

equivalent weights of the “shifted Jacobi-Gauss-
quadrature” technique on the region [0,R,]
respectively. In the same procedure on the intervals
[0, R,] and [0, T°] then one can readily show that

R, '
YRyNyj = 7(3’1\/2,]' + 1), 0<j<N,, ..(43)
T
traup =5 (tue +1),  0SkSM, ..(44)
(@p) _ (R a+p+1 (@B) @p) _
RyNz,j — (72) WR,.j and Wy pk =

a+pB+1
G e
Now, the proposed method algorithm for
Eqg. (1) will build based on SJ-GL-Ps, under the
given conditions, in the series or matrix form by
utilizing Egs. (41, 43-44) into the shifted Jacobi
vectors @(x), @(y) and @(t) define by Eq. (39). In
addition, the “shifted Jacobi-Gauss-Labatto”
coefficient matrix T is given by Eq. (40).
The 1% temporal and spatial derivatives and their
fractional derivatives can approximate as:

w [DPo(0)] o0,
% = 0T [DIYo()| @31, . . (45)
02T (x, Y, t) V2
= 0 Toe [l 00))

The solution method for the two
dimensional M-SFBHE can be applied based on
Jacobi-Gauss-Labatto in the matrix form that given
in Eq. (1), the resulted function will be:

ped(6) [DL] 0@ (y)
~ K (07 D 00| @0 1)
+ 0O [ 0()))
+ Wy, ® () TO(X)®D(y)
=G(x,y,t),
Wherea G(X, Y t) = Qext(xl Y t) + Qmet +
WbeTal.

By collocating Eq. (46) at M x (N; — 1) X
(N, — 1) point, as
pc®’ (tr mi) [D?)] ’ T(Z)(le,Nl,i)®®(YR2,N2,j)
— K (8 (tra)T [ DIV O ()| ®B G, v, 1)
+ 0 (tr i) TOCtR, 8, )® [ DY Oy v, )| )
+ Wy ® (tr i) TOXR N, ) ®D VR, N, j)
= G(le,Nl,i' YR,,Ny,jr tT,M,k)'
fori =1(1)(N; — 1),j =1(1)(N, — 1) and
k=1(1)M,
where xg n, ;i (0<i<N;)and yg,n,; (0<)<
N,) are the shifted Jacobi-Gauss-Lobatto quadrature
of P}gi’iﬁ )(x) and PR(Z'].B )(y) respectively, while

trmx (0 <k < M) are the roots of PT(ff{'B )(t), that
generates a system of M x (N; —1)x (N, —1)
nonlinear algebraic equations in the unknown
extension coefficients, f;;, i=1(1)(N; —1),
j=1(D)(N, — 1) and k = 1(1)M, and the rest of

.. (46)

. (47)
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this system is obtained from the initial, boundary
conditions by utilize Egs. (2-6), as

?°(0) T(D(le,Nl,i)®®(YR2,N2,j) = )
fO(le,Nl,i'sz N, j) 0<is<N,0<j<NN,
O (trpmp)T [D(l)@(o)] B (Vr,n,j) =
J10 VR, j tr k)0 S J <Ny, 0 <k <M
0 (trmi) T | DR BR)| @B (VR . ) =
91r, VR j tr i) 0 S J < Ny, 0 <k <M
0t )70 (xz, v, )® [ DV 0(0)| =
G20Xp Ny i trmp)0 S TSN, 0<k<M
0 (t7,14) 70 (o, ,)® [DEVB(R,) | =
o, Xp Ny tr M) 0 S TSN, 0<k<M

This  generates (M +1)x(N;+1) X
(N, + 1) nonlinear algebraic equations, which can
be solved by using a Levenberg-Marquardt
MATLAB code algorithm effective and be more
robust than other methods (because this algorithm
combines the advantages of gradient-descent and
Gauss-Newton methods) (21, 22), taking T as its
variable, with an initial guess of all zeros, to reduce
Egs. (47-48), consequently, the approximate
solution Ty, v, (x, ¥, 1) at  the point

(xRN, 00 YRoN, o b7k ) Given in Eq. (38) can be
calculated.

Error Bound

Now, an analytic expression will present for
the error norm of the preferable approximation for a
smooth temperature function T(x,y,t) € Q, where
Q=1[0,R] X[0,R,] X[0,7] by its expansion
employing triple Jacobi polynomials. This shows an
upper bound on the error expected in the numerical
solutions. Let at first examine the space

MR, n, = span (PP COREP (RSP (0},
i =0(1)Ny,j=0,(1)N, k
=0()M,
assume that Ty y, n,(x,y,t) belong to Hf\f,'f\,llNz, be
the preferable approximation of temperature
function T (x, y, t). Then depending on the qualifier
of the best approximation, have V8, y, n,(x,y,t) €

a,B
HM.N1.N2

||T(x' Y, t) - TM,Nl,NZ (x, Y, t)”oo

< ||T(x, y,t)

— Oy, Y, O (49)
appear that the previous inequality be correct if
Ovn, v, (x,y,t)  denotes  the interpolating
polynomial for T(x,y,t) at points
(%ny i YN, j» tik), Where xy ;, (0 <i<N,;) are

\ ... (48)

the roots of PR(ff;fl) +1(0), Yn,,j» (0 < j < Ny) are the
roots of p}§“;5>+1(y) and ty (0 < k < M) are

the roots of P}‘Lﬁ)l(t) Then by similar procedures
asin (2):
T(x,y,t) — GMNlNZ(x y,t)

_ MM T(ny,0)
= axMir (N, +1)|1—[( = *w.1)
oN2TIT (x, &, t)

+ ayN2+1(N + 1)|1_[(y yNz])

oMT (x, y, 1)
T OTIM + 1)1 l_[@ tui)

0N1+N2+M+3T(n 5 ‘u)
- axN1+1ayN2+1atM+1
ito(x = xu) H, oy = Ing) TR0t = )
(N, + DI(N, + DI (M + 1)!
where 1,7 € [0,R,],&,& € [0,R,] and p, fi € [0,T7],
and can obtain:

||T(‘xl Y, t) - eM,Nl,NZ (xl Y, t)”
max 0427,y O 200 = 2, D,
(xyt)eﬂ OxN1t1 (Nl + 1)!
N.
+ . max N2t (x,&,1) ”Hjio(y - yNz'j)”oo
(x,y,)EQ ayN2+1 (NZ + 1)!
+ max aM+1T(xl yl I'[) ||HII\(/I=0(t - tMrk)”oo
@y DEQ] gM+1 (M + 1)!
N i 6N1+N2+M+3T(ﬁ, g’ [1)
(xy,t)eQ FxN1+1gyNa+1gEM+1

T2, (x — let)” ”H v - yNzJ)” M=o (e — th)”
(N, + DTN, + DM+ 1)!

since T'(x, y, t) is a smooth temperature function on

Q, then there exist a constants C;, C,, C3 and C,,

such that:

" T(n, y,t) )
axN1+1 -
oN2tIT(x, &, t)
dyNa+1 =
M T (x,y, 1)
6tM+1
aN1+N2+M+3T(fi, g’ ﬁ)
DxNiH1gyNa+1geM+1

max
(x,y,6)EQ

max
(x,y,t)EQ

s .. (52)

max

(x,y,)EQ < C3

max
(x,y,t)EQ

<c,

The factor [|[T32,(x — xy,;)||_minimized
as follows: Let we utilize the one-to-one mapping
x =%(z+ 1) between the intervals [—1,1] and
[0, R;] to deduce that

1277

- (50)



Open Access
2020, 17(4):1271-1282

Baghdad Science Journal

P-1SSN: 2078-8665
E-ISSN: 2411-7986

min
Xy, i€[0R1] xE[ORl] | |(x lez

R
1_[ (2 - 2w ‘

— min max
= zny,i€l-11] z€[-1,1]

R]_ Ni+1

=(F) e H(z—lel -(53)
( B)

_ R_ art min  max N‘:*'l(z)

- 2 le_ie[—l,i] z€[-1,1] (aﬁ’) ,
Kny

(a B) _ F(2Ni+a+p+1) . .
where Ky = NN (Nt et BT the leading
coeff|C|ent of PA(,“fl) (z) and zy, ; are the roots of

,6“+[’)1)(z) It is a well-famed reality (23), that the

Jacobi polynomials satisfy
o PR @) < s+ 0 > -1,
where q = max(a,ﬁ,—%) and Cs is a favorable

constant, and reach the maximum of their absolute
value on the interval [—1,1], at z = —1 provided

thata > pand a = — lfrom (24),

(a.B) ( )
A% [ @] = At
T(N; +a +2)

TN+ DI T(a+ 1)
= 0((N; + 1)9),
from Egs. (51-52), get
||T(X, V t) - TM,Nl,NZ (X, bz t)”oo <

Ni+1 Np+1
() (1) o
1 xl(;‘l"”(N1+1)! 2 (“B)(N +1)!

M+1
~(§) (M+1)4
3 k@B (M)

(RZl)N1+1(RZZ)N2+1(§)M+1(N1+1)q

K KPP e D (N + D1V + D (M)

Hence, an upper bound of the maximum
absolute errors achieved for the approximate
solution. The convergence of the recommended
method depends fundamentally on the above error
bound. Moreover, the speed of convergence of
“Jacobi collocation methods” was proved be fast for

any choice of shifted Jacobi parameters (25, 26).

.. (54)

Estimation of the Error Function

In this section, an efficient error estimation
will present for the SJ-GL-Ps and also a technique
for obtaining the corrected solution of the M-
SFBHE as in equation (1) under the Egs. (2-6) by
using the residual correction method and thus the
approximate solution Eq. (38) which corrected by
the proposed method (27).

For our aim, let's define ey y, v, (x, ¥, 8) =
T(x,y,t) — Tyn, N, (x, ¥, t) as the error function of
the Collocation approximation Ty y, n,(x,y,t) t0
T(x,y,t), where T(x,y,t) is the exact solution for
the Eq. (1) under Eqgs. (2-6). Hence, Ty, n, (X, ¥, t)
satisfies the following system:

L[TM,Nl,NZ (x,y, t)]
c 0Ty, N, (X, Y, 1)

ot

_K 0" Ty n, N, (6,7, 1) 4 02Ty Ny v, (6, 8)
dx¥1 ayvz

+ WyepTun, v, (X, ¥, 1)

= Qext(xv Y, t) + Qmet + WyepTy

+ Ry Ny N, ...(55)
with the initial and boundary conditions
Ty, N, (6y,0) =T,0 <x <Ry,
0 <y <Ry, ...(56)
aT, 0,y,t
_K M,Nl,Nz( y,t) — 40,0 <y <R,
0x
t>0, ..(57)
BT x,0,t
_ MN1N2( ) — g, 0<x <R,
dy
t>0, ...(58)
aT, Ry, y,t
_K M,Nl,Nz( 1Y ): 0,0 <y <R,
0x
t>0, ..(59)
oT X, R, t
g 2T, (6 R 8 0,0 <x <Ry,
dy
t>0. ...(60)
Here, Ry, n,(x,y,t) is the residual

function of the M-SFBHE as in Eg. (1) which
obtained by substituting the approximate solution
Ty, n, (%, Y, t) into Egs. (1-6).
Now, let us subtract Egs. (55-60) from Eqgs.
(1-6) respectively, Then, the Error equation which
obtained is:
c deyn, N, (X, Y, 1)

ot
_K <avl emn, N, (6 Y, 1)

0"z ey n, v, (X, Y, t))

dx¥1 dyvz
+ Wycremn, v, (5,5, 1)
= —Run, N, .. (61)
with the homogeneous conditions:
eM’Nl’NZ(x,y, O) = O, 0 <x < Rll
0<y<R,, .. (62)
de 0,y,t
g 2o, 090 _ o Y <Ry,
0x
t>0, ...(63)
de x,0,t
_K M,NerZ( ) _ 0,0 <x< Rl,
dy
t>0, ..(64)
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deyn, n,(R1, Y, 0)

_K =0,0<y<R,,
0x g ’
£>0, ...(65)
de X, Ry, t
—K M,N1.N2( 2 ) = 0’0 S X S R]_P
dy
£>0. ...(66)

Finally, the error in Eq. (61-66) will be
solved in the same method for solution suggestion
and thus the  resulting  approximation:
€yn,n, (Y, 1) 10 ey y, v, as following:

ey, (Y1)
Ny N M

I B P P RSP ©
i=0 j=0 k=0

=0 T o(x)®D(y). ...(67)
Of our note to the Eq. (1), while the

theoretical solution is not known, thus the

maximum absolute error can be estimated

approximately by using

Evn, N, (6, 1)

= max{€yy, n,(*y,1),0<t <T,0<x <Ry, 0

<y <R} ...(68)
The above error estimation depends on the

convergence rates of expansion in Jacobi
polynomial (22). Therefore, it provided reasonable
convergence rates in spatial and temporal

discretization.

Numerical Examples

In this section, the approach presented in
section (method for solution), has been applied for
solving the two dimensional M-SFBHE in the two
examples based on SJ-GL-Ps. The two dimensional
M-SFBHE were transformed into non-linear
algebraic Eqs. (47-48) respectively. The Levenberg-
Marquardt MATLAB code technique, taking T as

its variable, was used to minimize these equations
as a set of least squares problems. This T is then
used in Eqg. (38) to acquire our approximate surface
of T(x,y,t).

By taking in these examples, that R; =
R, =T =1, a==0 for various choices of
vy, v, and use Gauss-Labatto points.

Examplel:

Consider the two dimensional M-SFBHE
Eq. (1) case where by choosing Q,.,: SO the exact
solution under initial and Neumann boundary
conditions is:
T(x,y,t) = e tx?y3 + 37. ...(69)
Table2. Maximum errors obtained for Example
1 with v4 =1.9999 and v, = 1.6.

Ny =N, Maximum Error
=M

3.687987900278245¢-04
3.638748477925446e-04
2.600028022214929e-05
2.043736270707086e-05
2.694529089808384e-05
2.938213830816494e-05
3.094610488574290e-05
3.204782999688405e-05
3.285274994624388e-05

SBoo~vwourwN

™
=
=

us
=
s

[
=
¥}

s
=

Numerical Solution

™
A
¥

04

X 0 0 y

Table 2 show that the maximum errors
satisfy from solving the problem under SJ-G-LPs
study on x €[0,R;],y €[0,R,] and t € [0,T]
when N, =N,=M =234,5,6,789 and 10.
Figure 1 clarify a comparison between then
numerical and exact solutions of Example 1. Figure
2 indicate the maximum error values are observed
to be of a low error for all sample sizes, with the
best performance occurring for Ny =N, =M =5
(Ny=N,=M=2) at just wunder 2.1x
1075 (3.7 x 10™%) respectively.

Exact Solution T(x,y.t)

Figure 1. Numerical and exact solutions for Example 1 at v; = 1.9999, v, = 1.6
T:Rlszzl, N1:N2:M:10
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Error

y

Figure 2: Maximum error for Example 1 at v = 1.9999,v, = 1.6
T = R1:R2:1,N1:N2:M:10.

Example 2:

Consider the two dimensional M-SFBHE
Eq. (1) case where by choosing Q.,: SO the exact
solution under initial and Neumann boundary
conditions is:
T(x,y,t) = t*(1 — x2y3) + 37. ..(70)
Table 3. Maximum errors obtained for Example
2with vy =1.6andv, = 1.9

N,=N,=M Maximum Error

2.249997568501527e-01
4.875079414209438e-02
3.660574066088884¢e-10
4.734701519737428e-10
5.071569830761291e-10
5.086349119665101e-10
4.956604016115307e-10
4.692637389780430e-10
4.219486982037779e-10

Boo~voun~wnN

Numerical Solution

Table 3 show that the maximum errors
satisfy from solving the problem under SJ-G-LPs
study on x €[0,R;],y €[0,R,] and t € [0,T]
when N, =N,=M =23456,7.89 and 10.
Figure 3 clarify a comparison between then
numerical and exact solutions of Example 2. Figure
4 indicate the maximum error values are observed
to be of a low error for all sample sizes, with the
best performance occurring for Ny =N, =M =4
(Ny=N,=M=2) at just wunder 3.7Xx
10710 (2.5 x 1071 ) respectively.

Exact Solution T(x,y,t)

Figure 3. Numerical and exact solutions for Example 2at v; =1.6, v, = 1.9
T = R1:R2:1, N1:N2:M:10
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06

X

l.\

1

0.6

¥

Figure 4: Maximum error for Example2 at v; =1.6,v, = 1.9
T: R1:R2:1,N1:N2:M:10.

Conclusions

In this article, an approximate approach for
solving two-dimensional M-SFBHE has been
introduced. The fractional derivatives are described
in the Caputo form. The proposed technigque
depends on the collocation method of operational
matrix formula for the shifted Jacobi-Gauss-Lobatto
polynomials. The error of the approximate solution
is estimated theoretically and the convergence
average of the suggested approach in both spatial
and temporal nodes graphically is investigated
analyzed. The approximate calculations show that
the present technique has higher accurate, good
convergence (depending on Figures 2 and 4) by
using few grid points.
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