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Abstract:

In this paper, a least squares group finite element method for solving coupled Burgers' problem in  2-D is
presented. A fully discrete formulation of least squares finite element method is analyzed, the backward-
Euler scheme for the time variable is considered, the discretization with respect to space variable is applied
as biquadratic quadrangular elements with nine nodes for each element. The continuity, ellipticity, stability
condition and error estimate of least squares group finite element method are proved. The theoretical results
show that the error estimate of this method is o(h™). The numerical results are compared with the exact
solution and other available literature when the convection-dominated case to illustrate the efficiency of the
proposed method that are solved through implementation in MATLAB R2018%.

Keywords: Burgers' problem, Group finite element method, Least square.

Introduction:

Nonlinear partial differential equations arise in
many fields of science, particularly in physics and
engineering 2. The Burgers' equation is an
important equation. It is widely used to model
several physical flow phenomena in fluid dynamics
teaching and in engineering. Several methods have
been intensively studied to this equation, such as the
least squares finite element methods. Some of the
most relevant literature can be summarized,
Barbara, Roberta, Paula and Rom&o * applied the
least squares finite element method for 1-D
Burgers’ equation with the linearization of Newton
method. The numerical solution obtained was
compared with the exact solution and the L*errors
were calculated for this method. Konzen, Azevedo,
Sauter and Zingano * studied the Galerkin least
squares finite element method for 1-D Burgers’
equation subjected to initial conditions with
compact support. The numerical simulations are
performed by considering a sequence of auxiliary
spatially dimensionless  Dirichlet’s  problems
parameterized by its numerical support and the
numerical solutions was compared with exact
solutions. Ye and Zhang ° applied the discontinuous
least-squares (DLS) finite element method to
second-order elliptic equations. Theoretical error
estimates were presented and numerical solutions
were given to demonstrate the accuracy

approximate of this method. Kalchev, Manteuffel
and Miinzenmaier ° studied Mixed (££*)~! and
(LL™) least-squares finite element methods with
application to linear hyperbolic problems. They
were founded upon and extended the LL* approach
that is rather general and applicable beyond the
setting of elliptic problems. The error bounds and
the factors affecting the convergence show the
guarantee optimal rates.

The group finite element method (GrFEM), also
known as product approximation is a finite element
(FE) technique for types of nonlinear PDEs.
Experiments with the GrFEM have shown an
increase in economy and in the nodal accuracy
compared to FE solutions of the Burgers' equations
™ In this paper, the least squares group finite
element method for 2-D coupled Burgers’ problem
with a fully-discrete approximation for the time
variable is presented. The continuity, ellipticity,
stability and error estimate for this method is
proved. The numerical solutions are compared with
the exact solution and other available solutions
when the convection-dominated case to measure the
numerical errors and the efficiency of our method.

Time dependent modeling problem
Consider the nonlinear time-dependent for the
two dimensional coupled Burgers’ problem *,
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u —eV.Vutuu,+vu, =0 Qx(0,T]
ve—eV.Vvtuv,+vv, =0, Qx(0,T],
u(x,y,t) =py,v(x,y,t) =p,, 0Qx(0,T],

u(x,y,0) = u’(x,y), v(x,v,0) =v°(x,y),
Qx(0,T],

where ezé IS a viscosity constant where Re is
Reynolds number, Q c R?with boundary aQ,
Q= QuaQ, T > 0 represents the given final time
and p;, p, € L?(Q). The conservation form of
Burgers' equation which expresses the nonlinear
terms of a PDE in grouped form is represented as
following, here the uu, and vwv, terms are

replaced by %(uz)x and %(vz)y respectively,

ut—EV.Vu+%(u2)x+vuy =0, Qx(0,T],

.l
1
v, — V.YV + u v, +§(V2)y =0, Qx(0,T]

w2

ulx,y,t) = py,v(x,yt) =p,, 0 x (0,T],
u(x,y,0) =u’(x,y), v(xy0) =v(xy),
Qx(0,T],

The fully formulations of 1 — 2 using the finite
difference approach for the time discretization such
as the backward differences quotient are,

yt — 1 1
k —€eV.Vu" + 5 (W) + v"u}
= 0, Q X (0; T]I
pt—pn1 1
- —eV.V™ + ut v} + > (@2,
=0, QO x(0,T],
un(leJt):le Un(x,y,t):pz;
00 x (0,T],

SO,

k
u™ — keV.Vu™ + > (W), +kv™u} =f,
ax(0,T], ..3
k
v — keV. Vo™ + ku™ v} + 3 (@™, =g,
ax(0,T] ..4

u"(x,y,t) = pr,v"(%,y,t) = pp,00 % (0,T],

where, f=u"!, g=v"?1 and k=t"—¢t"?!
is the time step.

Least - squares finite element method
(LSGrFEM)

In this section, the least-squares functional will
be defined and proved the continuity and ellipticity
for it, then the LSGrFEM for the problem 3-4 will
be derived. The least-squares functional is defined
as the following ™,

Filo. )=
||<0 — keV.Vop +§(<p2)x + ko, — f||2, ...5
:FZ(lp'g) =

[ — kev. vy + ko, + 5 @), - g||2,
Vo, YpeH(Q)....6

Lemma 1. F; (¢, 0) and F, (3, 0) given by 5-6 are
continuous.

Proof. Note that«

k
Fo(0,0) = |0 — kev. 90+ (07) + kg,

2

)

2

)

k
Fa@,0) = [ — keV. Vb + kot + 5 (),

by triangle and Cauchy Schwartz’s inequalities:

k
F1(0,0) < (llgll - kellV. Vgl + 5 1 (0>)x

2
+klpllloyll)

F,(,0) < (Illl)Il — kel|V. V|l + kll@ll[hxl
k 2
+5 )
by Young's inequality and the inverse estimate 2,

Fi(9,0) < C {0l = elF0 I ) +

101y + 1017 + oy} <

Cllloll? + 1112, 7
Fa(9,0) < CUYIE ~ NPYIr ) + oI +
Wl 5 0 )} < Coll N + 01

Lemma 2. F;(p,0) and F, (3, 0) given by 5-6 are
V-elliptic.
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Proof. Note that¢
k
(90 + 50D + ko, 0) =

(¢ — keV. Vo + (0 + kipoy )
+ (keV.Vo , @),

(W + ko, + 5@, ¥) = (Y —keV. VY +
ko, + g(lpz)y :ll)) + (keV. VY, ),

by Cauchy Schwartz’s inequality,

(el + 41 @)l + k|lwey, | ol <
(lo — keV. Ve + £(9?)x + ko, || +
IkeV. Vol)lloll,

(1l + Kl |l + £ @Dy [ Il <
(| — kev. vy + ko, + £@p2), || +
lIkeV. vl I,

from 5 and 6 note that,

1 1
lkeV. Vol < F2(¢p,0) and ||keV. V|| < FZ(p,0)
, SO that,

loll+ S0l + Kllwoy ]| < [l - kev. Vo +
E(p2), + kb, [+ (9,0),

Il + llowell + H @,y || < [l — kev. vy +
kg +5@2), || +F2 W, 0),

SO,

ol + 5l (@2)ll + K[y || < 272(0,0),

Il + Kllgwll + | @2, || < 272ap, 0),
thus,
F1(0,0) = Colllol + 19117} .0

F,(,0) = CudllollE + IylIF} ...10

Where, C,C;,C,,C; and C, are positive
constants. The necessary condition so that the exact
solutions u,v € H! (Q) of problem 3-4 be the zero
minimizer of the functional F; and F, respectively
are,

Fi@™, f) = 0=min{F (o,f): ¢ € H (W)},

F,(v", g) =0 =min{F,(¥,9) : Y € H* (V)}.

Since F,(u"+ 6,9,f) and F,(v" + 8,9, 9)
are nonnegative guadratic functional in the variables
51, 8, € R forany given ¢, ¥ € H! (Q), then,

d
d_alg'"1(un,f)|51:0 =0,

d
d_azj:'z(vnrg)bzzo =0,

which are equivalent to,

P, @) = £1(@), L1
B (V") = £,(), .12
where,

B = Iy (e 5
k
kvnu;) . ((p — keV.Vo + > (0?), + klP(ﬂy) Q.

B (v, ) = fﬂ (v" — keV. Vo™ + kuv} +
%((Un)z)y) : (1/1 — keV. VY + ko, +
2W?),)da,

21(9) = [ f-(@ — keV.Vp +5 (9?), +
by ) d

£,0) = [ 9.(¥ — keV.V9 + kg,
k 2
+5 0 )y) aq.
Note the following identities,

B1(9,0) = Fi(9,0) = || — keV. Vo +
£ (02 + Iy |

B2, ) = Fy(,0) = || — keV. Y + ko, +
g(lpz)ynz , Vo, Y € H (Q) .

Now, the finite dimensional space V,, ¢ H! (Q)
is defined, such that the following inequalities will
be held, for some integer s> 2 and small h
(where h denotes the grid size of our triangulations
of the domain Q) and for any ¢, 1 € H" (Q) there
exist on, Y €V,

llo — @rllo + hllg — @rlly < CA |0l ...13
1Y —Yrllo + hllY — PYrllL < CRT(IYIl,,
1<r<s ...l14
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The LSGrFEM for 3- 4 is defined as: find uy,
v, €V}, the approximation solution of u and v
respectively such that,

B1(uk, @) = £1(@n), ...15
B2 (v, ) = £2(Yp). ...16

Stability and error estimate. Let u",v™ € H! (Q)
and uy , vl €V, denote the solutions of problems
3 -4 and 15 - 16, respectively. Since V, ¢ H! (Q),
by using the equations in 11 - 12 and 15 — 16 , the
following orthogonality relations are obtained :

lgl(un - uﬁl ¢h) = Ol ...17
Lo —vp, ) =0, YV @, Yr €V ...18

From 17 — 18 and by using Cauchy Schwarz’s
inequality then,

k
H(u” — keV.Vu™ + > (W™, + kvnu;l)

Kk
- (ug — eV, Vut + > ()
2

+ kv{f(uﬁ)y)
= B —up,u™ —up)
= p(u"™ —up ,u™ — @p)

k
< ”(u" — keV.Vu™ + > (U™, + kv”uﬁ)

k
- (uﬂ — keV.Vup + > (UM,
2

+ kvy (uﬁ)y) (u” — keV.Vu™

k
45 (@) + kv uy)

k
= (o0 = keV. V05 + 2 (@)

2
+kipn(on)y)

)

k
H(vn — keV.Vv™ + ku™v + > ((vn)z)y)

- (v,’} — keV.Vop + kup (V)
2

k
+5 (D))
Bao™ = v, v — o)
= B (v" — vy, v —p)

k
< ||(v" — keV.Vv™ + ku™ v} + E((v")z)y>
- (v,’l‘ — keV. Vv + kup (vy),
K 2
+2@0,)| (
— keV.Vv™ + ku™vl}
k ny2
+2 (@™
- (l/Jh — keV. Vi + kon(Pr)x

2

)

k
+5 ()
which implies,

”(u" — keV.Vu™ + g((u")z)x +
kv"u;‘) - (uﬁ — keV.Vujl + S (UM, +
kv,’l‘(uﬁ)y) ” < ” (u” — keV.Vu™ +
g((u")z)x + kvnuﬁ) - (goh — keV. Vo, +
(@)D + ko )| .19

”(v" — keV.Vv™ + ku™v} +
g((vn)Z)y) _ (v;g — keV.VUl 4+

ki o) +5 (@D )] < | (o -
keV.Vv™ + ku™w} + S ((U")Z)y) B

(n — keV.Vipy + kepp () +
£y 20

Theorem 1. The method described by 15 — 16 s
stable over finite time, specifically, forany N > 0,
gl < [zl

EAEED
Proof. Note that,
Br(up,up) = £1(up),
B2(vi,vp) = £, (vp),

k
ull — keV.Vull + > W)Hy + kv (up)y
={1(up),

k
v — keV.VUl + kup (Vi) + E(Vﬁ)z)y
= fz(v,rll) )

by Cauchy Schwartz’s inequality then,
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k
— keV.Vup + = (uﬁ)z)x + kv}?(uirll)y”
< Al I

k
+ 5 DD+ kR R)y)

— keV.Vuy

k
— keV.Vup + > W)y + kvi (up)y

— keV. Vv

k
U +5 DD |

from the V-elliptic of the bilinear form of Lemma 2
then,

lurll < lfull,

lvell < llgnll,

summing both sides from n = 1 to
get the following,

n =N to

(A A
oAl < vzl

Theorem 2. Let C, and Cg are positive constants
independent of h  then the following error
estimates are hold :

— < r n
max lu™ —up|l < C;h max 1™,

max v — v < Cgh"™ max ||[v™], .
max [[v" = vt]| < Coh” max [[v"]l,

Proof. From 9 - 10, 19 - 20 and 7 — 8 then,

T [ A AT (O DA
kv"u;l) — (ul} — keV.Vul! + g (W« +
ko iy )| = || (w = kev.vun + 5 (@) +
keV. Vo, +5 (@0n) D) +

Csllu™ — @pll

kv”u;‘) - ((ph -

kpn(ony )| <

lv™ — v < || (v" — keV.Vv™ + kuvg +
2(@™)y) = (v — keV. V0] + ki (vl +
g((v,’;)z)y)” < ||( — keV.Vu™ + kutvl +
2(@™2)y) — (wn — keV.Vapy + ke hp)x +
2@y < csnv — Pl

where  C; and  Cg are positive constants

independent of h . For any ¢, , ¥, € V,, choosing
them such that the approximation properties 13 — 14

are satisfied, when ¢ and iy are replaced by u™and
v™ then,

lu™ —upll < C7 A" |lu"ll;
lv" —vpll < Cg A7 IIV" ]
which imply,

— < r
max [[u” — uft|l < Coh7 max [lu™]l,

max |[|[v™ — v| < Cgh"” max [|[v"]|, .
max [[v" = vRl| < Coh” max [lv"l,

The formulation of LSGrFEM

In this section, the formulation of LSGrFEM 15
— 16 is considered , for the convection terms
1 1
(@D + VR WDy and uR Ry +5 (),
one can linearize them by using the simple
substitution **,

1 1 -
(@D + R @)y = 5 (up uf), +

— 1 — —
vR )y = 2 (), + v ),

1 -
ug(virll)x + +E((virll)2)y = ug 1(17;11))6 +

1 _ _ 1 _
LRt oR), = up T R+ 2R ),

where u}~! and vj}~* are stem from the previous
time step, provided up, (up)x, (Un)y » Vhy (Vh)x
and (vy), are continuous on [0, T] forall x,y € Q
, and k is small enough, the approximate solutions
up and wvj in 15 — 16 might be written in the
form,

up = X1 4] (0)¢;(x, ) ,

and
vy = X @t (O (xy) -

From 15 - 16, the residues R; and R, can be
defined as follow:

R, =
)10l (O y) -

ke Z?Ll aj'(t) V.V (x,y) +

up B 0] (O 00 y))x +

Ko L@ (ey) —fi 2

R, =
L @O (xy) —

ke ¥y a‘'(®) v.ve;(x,y) +

kup ™t 3 at () (06 3)x +

ko @@ (#500) = gn- 22
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In this method the ith weight function can be
expressed as,

IR

Qi(y) = 5= ...23
R

itey) =57 .24

substituting 21 - 22 and 23 - 24 in 15 - 16 the
following weighted integral is yielded,

fo (S @5y -
ke )., al'(t) V.Vo;(x,y) +

Lup YN at (O (¢ (6 y)x +

ey FLACICHCO) N CHCROE
KeV. Vi (x, y) + Eup 2 (y(x, 1)) +

ko (¢iGoy), Ao = fy fu(eiCey) -
keV.Ve;(x, ) + X up (¢; (x, ¥))x +

ko (¢ ), ) do .25

o (a6 -

ke XN_, al'(t) V.Vo;(x,y) +

keup B0 @0 (¢; (0 ) +

b BFLACICHEO) B HCHCHOR
keV.Ve;(x,y) + ke up ™ (¢ (x, ¥))x +

kop ($ix0),) 9 = [y gn (¢iGey) -
keV. Ve (x,y) + kup™ (9 (x, ¥)x +

k vﬁ“l(¢i(x,y))y) aQ, .26

fori = 1,2,.....,N.

Discretisation of the domain @ . A bounded
polygonal domain Q is considered, the
discretization is applied as biquadratic quadrangular
elements with nine nodes for each element as shown
in Fig. 1, in the numerical integration, the
integration rule with 3 x 3 Gaussian integration
resulting nine integration points for each element is
adopted .

nJL
n=1
4 7 3
8 9 6 > £
F=—1 EF=1
¥ 1 5 2
L» n=-1
X

Figure 1. Nine-node isoparametric element.

The numerical results

It is well known that for € << h the Burgers'
equation become convection dominated case, such
case makes the standard finite elements method lose
stability and produce an oscillating solutions. In this
section three test examples are considered to
illustrate a LSGrFEM 25- 26 with ¢ << h and
compare our results of the proposed method with
the exact solutions and some other literature to
show the accuracy and computational efficiency of
our method (LSGrFEM).

Example 1. In this example, a LSGrFEM 25 — 26
over the domain Q = [0,1] x [0,1] is constructed.
This example has been considered in literature ™.
In Tab.1l the maximum errors of u and v for
different grid of size at T = 0.4, T = 0.8 and
e =2 with those obtained in literature ** are
compared. From tabular illustrations, note that, our
results are better than that obtained in literature **,
also numerical solution at h = =, T = 0.2 and
k = 0.01 for grid of size 15 x 15 have been
shown in Fig. 2, which illustrates a better agreement
than that obtained in literature ** (Figs. 2-3). In
Tab.2 for various nodes of the grid the numerical
solutions at e=~ , h = -, T =2 and k =
0.01 are computed for grid of size 21 x 21, in
tabular illustrations, our numerical results with the
exact solutions and the solutions available in
literature *° are compared. It can be seen that the
LSGrFEM performed better results and agreed with
exact solutions than that suggested by literature *°,
for which the exact solution is given as,

— 3 1
u(x, Y, t) = 2T —dxtdy—=t]’
4|1+e  32€ ]
— 3 1
v(x,y,t) = +——awm=r
4|1+e 32¢

Numerical results are shown in Figs. 3-4. In Fig.
5, a numerical results ate = — , h = ., T =
0.5 and k = 0.01 for grid of size 21 x 21 are
represented, note that, our method illustrate better
results and agree with exact solutions than that
obtained in literature *° (Figs.1-2). From tabular
illustrations and numerical results, our method gives
better results and produces stable solutions than

those suggested in literature - *°.
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Table 1. The errors ||lu — upll, and |[v — vyl for example 1at € = - and k = 0.01.

T=0.4
LSGrFEM Literature *

Node 9%x9 15 x 15 19 x 19 10 x 10 15 x 15 20 x 20
size

u 0.004265 0.002040 0.001360 0.050232 0.006986 0.002136

v 0.004265 0.002040 0.001360 0.022614 0.005418 0.002554

T=0.8
u 0.005140 0.002387 0.001584 0.041652 0.003643 0.002136
v 0.005140 0.002387 0.001584 0.017284 0.004472 0.002554

s 3
-
d

. 5es

2 Be iz

5 e Ee k.
S s ¥z & -

Figure 2. Numerical solutions of LSGrFEM and exact solutions of u and v respectively at e=_,
h =21 T=0.2 k= 0.01andgridsize 15 x 15.

ﬁl

Table 2. u and v forexample late=-~-,h = =, T = 2,k = 0.01 and grid size 21 x 21

500’ 20’

u v
Mesh Literature  LSGrFEM Exact Pointwise Literature = LSGrFEM Exact Pointwise
point 1 solution errors of 15 solution errors of
LSGrFEM LSGrFEM
lu — uy| [v— vl

(0.1,0.1) 0.49729 0.50009 0.50000 9950705 1.00271 0.99990 0.99999 9950795
(0.5,0.1) 0.50024 0.50000 0.50000 3.474¢797 0.99976 0.99999 1 3.474e797
(0.9,0.1) 0.49934 0.49999 0.50000 3.388¢7°8 1.00066 1 1 3.388¢ 708
(0.3,0.3) 0.50690 0.50007 0.50000 7.508e7°° 0.99310 0.99992 0.99999 7.508¢7°°
(0.7,0.3) 0.49928 0.49999 0.50000 3.388¢7°8 1.00072 1 1 3.388¢ 708

(0.1,0.5) 0.43939 0.50850 0.50048 8.0¢ 793 1.06061 0.99150 0.99952 8.0e793

(0.5,0.5) 0.49951 0.50010 0.50000 1.078e7%* 1.00049 0.99989  0.99999 1.078e~%*
(0.9,0.5) 0.51355 0.49999 0.50000 1.250e7% 0.98646 1 1 1.250¢70¢
(0.3,0.7) 0.41647 0.51229 0.50048  1.18¢7°2 1.08353 0.98770  0.99952 1.18e7°2
(0.7,0.7) 0.51008 0.49984  0.50000 1.604e~%* 0.98992 1.00016  0.99999 1.604e~%*
(0.1,0.9) 0.75004 0.74988 0.74999 1.161e7%* 0.74996 0.75011  0.75000 1.161e7%*
(0.5,0.9) 0.42909 0.49532 0.50048 5.0e793 1.07091 1.00468  0.99952 5.0e793

(0.9,0.9) 0.56275 0.49999 0.50000 7.116e7%¢ 0.93725 1 0.99999 7.116e7°¢
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=
8

2 &5 8 g

S e Eed .

d-v

Figure 3. Numerical solutions of LSGrFEM and exact solutions of u and v respectively at e=_~-

500 '

h =21 T =2 k = 0.01andgridsize 21 x 21.

0.01

0.008
— 0.006
= 0.004

0.002

-

1
08

05

06

0.4
0.2
0 o -a- 0 o -b-

Figure 4. Pointwise errors of LSGrFEM for a.|u — uy| and b.|v — v, | respectively at e=$ yh =
T = 2, kK = 0.01 and grid size 21 x 21.

S[»

C- v d-v

Figure 5. Numerical solutions of LSGrFEM and exact solutions of u and v respectively at e:ﬁ :
h=21 T=0.5, k =0.01and grid size 21 x 21.

% ’
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Example 2. In this example, a LSGrFEM 25 - 26
over the domain Q= [0,0.5] x[0,0.5] is
constructed . This example has been considered in
literature '®. In Tabs. 3-4, the numerical solutions
for various nodes of the grid at e=ﬁ L h = % ,
T =0.4, k = 0.0001 and grid size 21 x 21 are
computed, in tabular illustrations, the exact
solutions and the solutions available in literature '
are mentioned to compare with our numerical

results. It can be seen that the LSGrFEM performed

better results and agree with exact solutions than
that obtained by literature *°, for which the exact
solution is given as,

x + y—2xt x—y—-2yt
uley,t) = —=755—, vixy ) ==—5"

The numerical results have been depicted in Figs.
6-7. From tabular illustrations and numerical
results, note that, our method gives better results
and produces stable solutions than those suggested
in literature *°.

Table 3. u forexample2at e=. ,h = %>, T = 0.4, k = 0.0001 and grid size 21 x 21
u
Mesh point Literature ©° LSGrFEM Exact solution Pointwise
errors of
LSGrFEM
[u—uyl
(0.1,0.1) 0.1764702762 0.17647058824 0.17647058823 5.6662e~12
(0.3,0.1) 0.2352911765 0.23529411764 0.23529411764 1.8318¢ 12
(0.2,0.2) 0.3529400063 0.35294117647 0.35294117647 5.9327e712
(0.4,0.4) 0.4117610685 0.41176470588 0.41176470588 4416413
(0.1,0.3) 0.4705813725 0.47058823529 0.47058823529 3.1618e712
(0.3,0.3) 0.5294129028 0.52941176470 0.52941176470 4.8350e"13
(0.2,0.4) 0.6470514764 0.64705882353 0.64705882352 1.2215e 12
(0.3,0.4) 0.6764723529 0.67647058823 0.67647058823 9.8587¢ 14
(0.5,0.5) 0.8823524117 0.88235294117 0.88235294117 0
Table 4. v forexample2at e=- ,h = 22, T = 0.4, k = 0.0001 and grid size 21 x 21
v
Mesh point Literature *° LSGrFEM Exact solution Pointwise errors of
LSGIFEM |v — vy |
(0.1,0.1) —0.1176411207 —0.11764705882 —0.11764705882 1.5403¢ 12
(0.3,0.1) 0.1764703671 0.17647058823 0.17647058823 4895513
(0.2,0.2) —0.2352935294 —0.23529411765 —0.23529411764 5.8641e~12
(0.4,0.4) 0.0588233151 0.058823529410 0.058823529411 5.7026e713
(0.1,0.3) —0.6470530484 —0.64705882353 —0.64705882352 4,0228e71?
(0.3,0.3) —0.3529405402 —0.35294117647 —0.35294117647 1.9322¢ 712
(0.2,0.4) —0.7647033151 —0.76470588235 —0.76470588235 2.1446e712
(0.3,0.4) —0.6176410485 —0.61764705882 —0.61764705882 1.2788e 12
(0.5,0.5) —0.5882311745 —0.58823529411 —0.58823529411 0

1529



Open Access
2021, 18(4) Supplement: 1521-1535

Baghdad Science Journal

P-1SSN: 2078-8665
E-ISSN: 2411-7986

Uh

0 o ’ -b-

d-v

Figure 6. Numerical solutions of LSGrFEM and exact solutions of u and v respectively at e=—-
=% T =0.4, k= 0.0001 and grid size 21 x 21..

20’

100 '’

Figure 7. Pointwise errors of LSGrFEM for a. [u — u;,| and b |[v — v}, respectively at e=-~- |, h = 22
T =0.4, k= 0.0001 and grid size 21 x 21 .

Example 3. In this example the computational
domain has been taken as Q= [0,1] x [0,1], a
LSGrFEM 25 — 26 is constructed. This example
has been considered in literature *’. In Tabs 5-6 the
numerical solutions at e=— ,h = -, T =0.5,

500 '’ 20 '

100 '’ 20’

k = 0.001 and grid size 21 x 21 are computed, in
tabular illustrations, our numerical results with the
exact solutions and the solutions available in
literature ” are compared for various nodes of the
grid. The tabulated results show that LSGrFEM

1530



Open Access

Baghdad Science Journal

2021, 18(4) Supplement: 1521-1535

P-1SSN: 2078-8665
E-ISSN: 2411-7986

produces better result than literature 7" where the
exact solution are given as,

2
—4mee 5Tt cos(2mx)sin(my)

u(x,y,t) =

2 + e~5€m’tgin(2mx) sin(my)
2
—2mee 5S¢t sn(2mx)cos(my)

v(x,y,t) =

2 + e~S€m*tsin(2mx) sin(my)

Numerical results have been depicted in Figs. 8-
9, moreover, at at e=— , h

— 1

1000 20’

those suggested in literature *'.

Table 5. uand v forexample 3at e=_.- ,h = ., T = 0.5 and k = 0.001 and grid size 21 x 21
u
Literature * LSGrFEM Exact Pointwise errors of
Mesh solution LSGrFEM |u — uy|
point
(0.1,0.1) -0.0025582 —0.0027507 —0.0027523 1.5955¢ %6
(0.5,0.1) 0.0031558 0.0037214 0.0036962 2.5183¢ 795
(0.9,0.1) —-0.0045862 —0.0033040 —0.0032732 3.0812¢795
(0.3,0.3) 0.0025505 0.0021680 0.0021888 2.0724¢795
(0.7,0.3) 0.0048155 0.0050170 0.0047179 2.9905¢ 04
(0.1,0.5) -0.0079932 -—0.0075033 —0.0075615 5.8239¢ 705
(0.5,0.5) 0.0111522 0.0118783 0.0119612 8.2936¢ 705
(0.3,0.7) 0.0025201 0.0021680 0.0021888 2.0724¢795
(0.7,0.7) 0.0046522 0.0050170 0.0047179 2.9904¢ %4
(0.1,0.9) -0.0028582 —0.0027507 —0.0027523 1.5955e79%6
(0.5,0.9) 0.0032560 0.0037214 0.0036962 2.5183¢795
(0.9,0.9) —-0.0038475 —0.0033040 —0.0032732 3.0812¢795
Table 6. v for example 3at e=.;; ,h = .., T = 0.5 and k = 0.001 and grid size 21 x 21
v
Literature * LSGrFEM Exact solution Pointwise errors of
Mesh LSGIFEM |v — vy |
point
(0.1,0.1) —-0.0032295 —0.0030892 —0.0030772 1.5955¢ %6
(0.5,0.1) 0.0002448 —3.703889¢71® —6.965711e"1° 2.5183¢705
(0.9,0.1) 0.0038201 0.0036669 0.0036596 3.0812¢ 795
(0.3,0.3) —0.0025507 —0.0024402 —0.0024471 6.8874¢70°
(0.7,0.3) 0.0052798 0.0054104 0.0054748 1.3559¢7%4
(0.1,0.5) 0.0001158 4.256802¢~ 7 —1.681998e°1° 5.8239¢ 705
(0.5,0.5) 0.0002052 —2.029357e73%  —4.484768¢73° 8.2936e79°
(0.3,0.7) 0.0022758 0.0024402 0.0024471 6.8874¢706
(0.7,0.7) —-0.0054471 —0.0054104 —0.0052748 2.9904¢ 04
(0.1,0.9) 0.0035521 0.0030892 0.0030772 1.5955e706
(0.5,0.9) 0.0004122 3.7038892¢716  6.9657113e~1° 2.5183e¢79°
(0.9,0.9) —-0.0035518 —0.0036669 —0.0036596 3.0812¢ 795
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T =1 and
k = 0.01, the numerical solutions are calculated
and compared with the exact solution as illustrated
in Figs. 10-11. From tabular illustrations and
numerical results, again note that, our method gives
better results and produces stable solutions than
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Figure 8. Numerical solutions of LSGrFEM and exact solutions of u and v respectively at e=_i |,
h=2L T =0.5and k = 0.001 and grid size 21 x 21.
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T =0.5 andk = 0.001 and grid size 21 x 21.
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Figure 10. Numerical solutions of LSGrFEM and exact solutions ofu and v respectively at e=—-
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Figure 11. Pointwise errors of LSGrFEM for a.|lu — uy| and b. |v — v;,| respectively at e=T100 yh =
T =1 andk = 0.001 and grid size 21 x 21.

Conclusions: The continuity and ellipticity of the least-squares

In this work, the LSGrFEM for 2-D coupled functional F, (¢, 0)and F, (1, 0) are satisfied. The
Burgers' problem in the fully discrete case using the  stability condition of LSGrFEM is satisfied.
backward-Euler scheme for the time variable is Theoretical analysis show that the error estimate of
considered. From the theoretical analysis and the LSGrFEM is O(h™). The numerical solution has
numerical results, the following conclusions are  been compared with the exact solution and other
found: available solutions when the convection-dominated
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case. The LSGrFEM is concluded that it provides
convergent and consistency approximations in
different cases. The results obtained are satisfactory
and competent more than the results available in the
literature. The LSGrFEM successfully provides
accurate solutions and removed all oscillations that
occur when (e << h), moreover, the LSGrFEM is
suitable to deal with other nonlinear partial
differential equations at high Reynolds number.
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