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Abstract: 
         The issue of penalized regression model has received considerable critical attention to variable 

selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan 

penalty has been used in both estimation and variable selection as an efficient method recently. However, the 

Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the 

least absolute deviation is a good method to get robustness in regression estimation. The specific objective of 

this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation 

experiments and real data applications show that the proposed LAD-Atan estimator has superior performance 

compared with other estimators. 

  
Key words: Atan penalty, High dimensional data, Least absolute deviation, Robust regression, Variable 

selection.  

 

Introduction:        
Variable selection is one of the issues that 

have been gaining popularity in recent years as 

many studies require dealing with high-dimensional 

data such as sonar, genetics, and others. As known, 

the presence of many covariates will lead to a very 

difficult process of model building, especially, in 

interpretation and with large variance. The variable 

selection is one of the most important problems in 

statistics as stated by Brad Efron and that was a 

single problem, which is merely variable selection 

associated with regression (1). That problem 

consists of choosing variables from a lot of 

candidate variables, estimating parameters for those 

variables, and then make the rest of inferences. The 

ordinary least square method and other traditional 

methods cannot deal with these problems. Penalized 

regression has been widely used with models 

including large explanatory variables that improve 

predictive accuracy as well as the selection of 

important variables in the model. This method is 

based on the minimization of the objective function 

which is formed of two parts: the first is a loss 

function, and the second is a penalty function based 

on the λ penalty parameter.  
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While the penalty function makes a tradeoff 

between bias and variance as ridge regression (2), 

the latest does not exclude undesirable variable 

because its coefficient is not set to zero. 

       Tibshirani (3) proposed the least absolute 

shrinkage and selection operator: LASSO method 

based on the principle of estimation and selection of 

variables in the simultaneous approach. LASSO has 

a fascinating advantage that it makes the value of 

some regression coefficients β which are non-

significant to be zero. Detail discussion interested 

with LASSO and its consequences can be found in 

(4). Some generalizations of LASSO can be found 

in (5). Recent contributions have been made by Kim 

(6) and Uraibi (7).  

        Fan and Li (8) suggest smoothly clipped 

absolute deviation: SCAD penalty function to keep 

the continuity of the penalty function at threshold 

points and to smooth it to be as the effect of 

quadratic splines at node points (λ) and (aλ(. Useful 

medical application has been introduced by Fang et 

al. (9).  However, Fang et al. listed some other 

properties of SCAD penalized regression which can 

be summarized in the target function to be a high-

dimensional non-concave function, singular at the 

origin and does not have continuous second-order 

derivatives.  

         Zhang (10) suggested nearly unbiased variable 

selection under the minimax concave penalty 

(MCP) penalty function.  Wang et al. (11) 
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introduced a wide comparison among LASSO, 

SCAD and MCP methods and then took their 

distribution-transformation under consideration to 

be applied. Wang  and Zhu (12) proposed  an 

arctangent type penalty which very closely 

resembles 𝑙𝑜 penalty call it Atan penalty  

 

Atan Penalized Least Square Method: 

      Suppose the following linear model is 

considered:  

yi = xi
′β + ϵi        ,   i = 1, 2, 3, … , n              … (1) 

Where x𝐢 = (xi1, … , xip)′  is p-dimensional 

covariate, β = (β1, … , βp), is an unknown 

parameter vector, p is the number of covariates, n is 

the size of sample, y = (y1, y2, … , yn)′  is  (n x 1)  

response vector, and ϵi  is random error vector 

where  𝐸(ϵi), 𝑣𝑎𝑟(ϵi) = σ2.  

      Then, the penalized least square method can be 

got from the solution of the following equation: 

min{
1

2n
‖y − Xβ‖ +

∑ Pλ 

p
j=1 (|βj|)}                                … (2)                                                                        

Where X = (x1, … , xn) is (n×p) design matrix.  

 ‖∙‖ represents L2- norm and 𝑃λ 
(∙) is the penalty 

function that based on penalty parameter λ > 0. 

       There are many penalties used in penalized 

least square as SCAD penalty and has three merits 

in  keeping continuity in data, unbiasedness in 

parameter estimator, and sparsity for small 

parameter estimators to put them as zero and 

defined by continuously differentiable function 

described as follow: 

 Pλ
́ (|β|) = λ [ I(|β| ≤ λ) +

(aλ−β)+

(a−1)
 I(|β | >

λ)]                                                       … (3)   

Where assuming the value of (𝑎 = 3.7).  

      Zhang (10) proposed concave penalty function 

called: (MCP) which is defined by: 

Pλ
́ (|β|)

=
(𝛾λ − |𝛽|)+

𝛾
                                                … (4) 

With λ ≥ 0 𝑎𝑛𝑑 𝛾 > 1. 

 

       Wang  and Zhu (12) proposed  an arctangent 

type penalty which very closely resembles 𝑙𝑜 

penalty call it Atan penalty which defined as follow:  
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With λ ≥ 0 𝑎𝑛𝑑 𝛾 > 0. 

        The first derivative of the Atan penalty defined 

as follow:  

Pλ,𝛾
́ (|β|) = λ

𝛾(𝛾+2/𝜋)

𝛾2+𝛽2                              … (6)  

Where the optimal value of (𝛾 = 0.005) 

Robust LAD-Atan Regression: 

        Atan estimator is not robust, which means it is 

very sensitive to the presence of outlying 

observation, to deal with this problem, a robust loss 

function can be used to get the robust Atan method. 

In this research, it will be proposed the combining 

the Arctangent (Atan) penalty function with the 

LAD absolute loss function. 
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                                      … (7) 
       Atan estimator can be improved by combining 

it with a LAD part to get LAD-Atan estimator in a 

similar method to that used in illustrating LAD 

proposed by Wang et al. (13) and as follow: 

Suppose the augment dataset {(𝑦𝑖
∗, 𝑥𝑖

∗)} and 

(𝑦𝑖
∗, 𝑥𝑖

∗)

= {
(𝑦𝑖 , 𝑥𝑖)                 𝑓𝑜𝑟 𝑖 = 1, . . 𝑛              

(0, 𝑛λ𝑗𝑒𝑗)           𝑓𝑜𝑟 𝑖 = 𝑛 + 1, . . , 𝑛 + 𝑝
      … (8) 

      Where is 𝑒𝑗 the unit vector with the j
th
 elements 

equal to one and all other equal to zero. Then the 

LAD-Atan estimator can be obtained by minimizing 

∑|𝑦𝑖
∗ − 𝑥𝑖

∗𝛽|                                     … (9) 

𝑛+𝑝

𝑖=1

 

It can be made the benefit of (rq function in 

quantreg package of R) in (14) to get the LAD-Atan 

estimator by easy. 

Theoretical Properties:

       To identify the regression model correctly, the 

LAD-Atan estimator has to satisfy the following 

properties which are combined from (LAD) part as 

consistency, sparsity properties according to Wang 

et al. (13). Furthermore, (Atan) part satisfied 

regularity and oracle properties according to Wang 

and Zhu (12). 

 n Consistency: 

   Suppose that  𝛽 = (�́�𝑎 , �́�𝑏) and 𝛽𝑎 =

(𝛽1, … , 𝛽𝑝0) and 𝛽𝑏 = (𝛽0+1, … , 𝛽𝑝) 

 
Let us define:  

 01,max pja jn  
 and 

 pjpb jn  0,min 

 where λj is some function in terms (n).  

        n Consistent if: 
 

0nan  which 

requires the following assumptions to be    

            satisfied: 

i. The error term εi behaves as a continuous 

probability distribution at the origin.  

ii. The covariance matrix cov(xi) = Σ   exists and 

positive definite. 
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 Sparsity: 

  According to the previous consistency 

condition, another condition will be satisfied 

which is nbn  then estimator must 

verify
b

̂  to equal zero with probability tends 

to one. 

 

 Regularity Conditions: 

It is important to apply the following 
conditions on the proposed penalty: 

i. n  and 0/2 np , where is n is 

the sample size and p is the number of 

regression parameters. 

ii.   2/  pn  where 
*

min j
Aj




  

iii.  1O  ,    2/  pn   as n  ,    

and      2/332/1  npO   

iv. Identifiability conditions: 

0maxlim
1

2

1

1 





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p

j

ijnin xn  

  ME i 
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2

/  for some  δ and M <   

 Oracle property: 

     If the estimator is consistent for 0nan  

and has sparsity nbn  of, then this 

estimator must verify that:   10ˆPr b   

and  

    0/25.0,0ˆ 21
0 fNn

aa
  ,  

where Σ0 = cov(xia),  and f(t) is the probability 

distribution of εi. 

Selection of Penalty Parameter: 
         The process of selecting the penalty parameter 

is one of the important steps in the penalized 

regression, it controls the amount of transaction 

reduction and the selection of the sub-variables 

included in the final model. Tibshirani (3) and Fan 

and Li (8) used generalized cross validation (GCV) 

to select penalty parameters. In this research the 

suggestion to use generalized cross validation to 

select the penalty parameter is introduced through 

minimizing the following formula: 

GCV(λ) =

∑ |yi − x�́�β|n
i=1

𝑛

(1 −
df(λ)

𝑛 )
2                         … (10)   

Where df(λ) represent the degree of freedom,  

 df(λ) = 𝑡𝑟[𝑋(𝑋′𝑋 + 𝑛𝑄)−1𝑋′]  
It represents the number of non-zero estimated 

parameters.  

𝑄 = 𝑑𝑖𝑎𝑔 (
𝑝

𝜆(|�̂�1|)
′

|�̂�1|
,

𝑝
𝜆(|�̂�2|)
′

|�̂�2|
, … ,

𝑝
𝜆(|�̂�𝑝|)
′

|�̂�𝑝|
  )  

A penalty parameter λ is selected that makes 

minimizing this GCV.  

Simulation Experiments: 

              In this section, simulation experiments 

were used to show the performance of the proposed 

estimator. The proposed LAD-Atan estimator was 

compared with each of the following estimators: 

SCAD and MCP estimators based on (15). While 

the Atan penalty was based on (12).  

Simulation experiments were conducted by R 

program with package simFrame introduced by 

Koenker (16), and 200 replicates. Data generating 

were represented by the following linear regression 

model: 

𝑦 = 𝑥𝑖
′β + ε                                          … (11)  

Where          𝛽 = {3, 1.5, 0, 0, 2, 0, … , 0} 

      Considering error distributions are standard 

normal distribution and t-distribution with three 

degrees of freedom, 𝑥~𝑁𝑝(0, ∑), with covariance 

matrix  ∑ ij = ρ|i−j|,    ρ = 0.5.   

    Taking the contaminated data with vertical 

outliers under consideration with the proportion of 

(0 %, 5%, and 10%) and the experiments as two 

kinds 

First Experiment: Setting number of covariates 

(p=8), sample sizes (n=60 and 100), and standard 

deviations (σ = 1 and  3) respectively.  

Second Experiment: Setting number of covariates 

(p=50), sample sizes (n=60 and 100), and standard 

deviations (σ = 1 and 3) respectively. 

     Measuring of performance to compression 

between the estimators via mean square error 

(MSE) criterion which represented as followed:  

MSE(β̂) =
1

p
∑(β̂j − βj)

2

p

j=1

                           … (12) 

     Also, computing false positive rate (FPR) 

represents the hypothesized (β) equal zero in the 

actual model, while it is estimated one as nonzero. 

Conversely, false-negative rate (FNR) represents 

the hypothesized (β) nonzero in the actual model, 

while it is estimated as zero. This definition 

according to Alfons et al. (17) as the following 

formulas: 

FPR(β̂)

=
|{j ∈ {1, … , p}: β̂j ≠ 0 ∩ βj = 0}|

|{j ∈ {1, … , p}: βj = 0}|
               (13) 

FNR(β̂)

=
|{j ∈ {1, … , p}: β̂j = 0 ∩ βj ≠ 0}|

|{j ∈ {1, … , p}: βj ≠ 0}|
                 (14) 
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Table 1. Simulation results for the first experiment with standard normal error 
n, σ Method No contamination Vertical outliers 5% Vertical outliers 10% 

n=60 

σ = 1 

MSE FPR FNR MSE FPR FNR MSE FPR FNR 

SCAD 1.8735 0.36 0.03 2.5939 0.44 0.15 2.9531 0.52 0.17 

MCP 1.8278 0.37 0.02 2.5155 0.46 0.11 2.8946 0.53 0.14 

Atan 1.7377 0.33 0.00 2.4319 0.38 0.03 2.8548 0.50 0.05 

LAD-Atan 1.6996 0.26 0.00 1.7068 0.27 0.00 1.7048 0.25 0.00 

n=100 

σ=3 

SCAD 0.3094 0.36 0.12 1.0218 0.58 0.26 1.8344 0.65 0.27 

MCP 0.2021 0.39 0.09 0.9943 0.63 0.23 1.8357 0.73 0.23 

Atan 0.1205 0.36 0.02 0.9636 0.59 0.07 1.8394 0.66 0.08 

LAD-Atan 0.0711 0.35 0.01 0.1101 0.31 0.06 0.1357 0.26 0.06 

 

From Table 1,  the results of the simulation 

for standard normal error with no contamination, 

Atan and LAD-Atan estimators are the best because 

of their smallest  MSE, FPR, and FNR respectively 

and for both sample sizes n = 60, 100. For vertical 

outliers, the LAD-Atan estimator shows superiority 

according to its smallest  MSE, FPR, and FNR and 

for both sample sizes n= 60, 100.     

 

Table 2. Simulation results for the first experiment with t-distribution error 
n, σ Method No contamination Vertical outliers 5% Vertical outliers 10% 

n=60 

σ = 1 

 MSE FPR FNR MSE FPR FNR MSE FPR FNR 

SCAD 1.6537 0.23 0.00 2.5794 0.47 0.13 3.0154 0.47 0.17 

MCP 1.6484 0.22 0.00 2.4664 0.53 0.10 2.9488 0.51 0.15 

Atan 1.6338 0.20 0.00 2.3807 0.72 0.03 2.9543 0.78 0.06 

LAD-Atan 1.6550 0.21 0.00 1.6651 0.25 0.00 1.6848 0.28 0.00 

n=100 

σ=3 

SCAD 0.1146 0.32 0.06 0.9726 0.61 0.23 1.7860 0.67 .0.29 

MCP 0.0703 0.33 0.04 0.9194 0.68 0.17 1.8305 0.72 0.19 

Atan 0.0342 0.28 0.00 0.8811 0.55 0.06 1.77329 0.68 0.07 

LAD-Atan 0.0546 0.35 0.00 0.0764 0.33 0.01 0.1190 0.27 0.02 

 

From Table 2,  the results of the simulation 

for t-distribution error with no contamination shows 

that Atan and LAD-Atan estimators are the best 

results because of their smallest  MSE, FPR, and 

FNR respectively. While for vertical outliers, the 

LAD-Atan estimator shows superiority results 

because of its smallest criteria: MSE, FPR, and 

FNR respectively.                                                   

 

Real Data Application:  

         Real data (n = 30) were collected to detect the 

chemical properties of the soil and studying their 

effect on date palm crops in Iraq. The application 

focuses on investigating the effect of 16 variables 

which were: Potential of Hydrogen (pH), Organic 

Matter (OM), Electrical Conductivity (EC), Lime, 

Gypsum, Cation Exchange Capacity (CEC), 

Calcium (Ca), Magnesium (Mg), Potassium (K), 

Sodium (Na), Chlorine (CI), Sulphate (SO4), 

Hydrocarbons (HCo3), Phosphorus  (P), 

Exchangeable Sodium Ratio (ESR), Exchange 

Sodium Percentage (ESP) as covariates. While the 

response variable was represented by the date palm 

crop after taking its logarithmic (log). The results of 

the practical application were as in the following 

table below. 

 

 

Table 3. Nonzero coefficients for the log(palm 

crop)  
LAD-Atan Atan MCP SCAD Predictor 

0.75309 0.72412 0 0 pH 

0 0 0 0 OM 

0 -0.05188 -0.09274 -0.03431 EC 

0 0 0 0 Lime 

0  0 0 Gypsum 

0 0 0 0 CEC 

0 0 0 0 Ca 

0 0 0 0 Mg 

0 0 -0.01470 0 K 

0 0 0 0 Na 

0 0.02862 0.03322 0.01586 Cl 

0 0 0 -0.00053 SO4 

-0.44225 -0.26618 -0.26780 0 HCO3 

0.86162 0.99188 0 0.46026 P 

0 0 0 0 ESR 

0 0 0 0 ESB 

 

From Table 3 above, it shows that SCAD 

method selected 4 variables (EC, CI, SO4, P), MCP 

method selected 4 variables (EC, K, CI, HCO3), 

Atan method selected 4 variables (PH, EC, CI, 

HCO3, P), and the proposed robust method (LAD-

Atan) selected 3 variables (PH, HCO3,P) 

respectively. 

     To compare the estimators, the mean square 

error was used and the results were obtained as 

follow: 
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Table 4. Mean square error for every method 
Variable Selection MSE Method 

4 0.1737 SCAD 

4 0.1688 MCP 

4 0.1315 Atan 

3 0.0198 LAD-Atan 

 

From Table 4 it easy to notice that the 

LAD-Atan is the best estimator which combining 

estimation robustness (indicated by smaller MSE), 

in addition to being minimum selection variables 

(indicated by three variables only). 

 

Conclusions:   
            Despite the fact that the LAD part is used in 

obtaining a robust estimator, it is not suitable to 

select the variable. Therefore, this problem is solved 

by combining the Atan penalty to the objective 

function. It is shown that from the simulation 

experiments, the LAD-Atan estimator gives the best 

performance for both estimation and variable 

selection rather than other methods. It can be 

noticed that LAD-Atan approves its robustness as 

long as increasing the contamination proportions for 

t-distribution, while it has good competition 

sometimes with Atan and MCP for normal 

distribution.  Furthermore, the application results 

coincide with simulation results in showing the 

superiority of the proposed robust LAD-Atan 

estimator where are outliers in real data under 

consideration. The proposed method has more 

reduction in variable selection associated with more 

accuracy than the other three methods.         
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 لنموذج انحدار بيانات عالية البعُدية LAD-Atanاقتراح تقدير الجزاء الحصين 
 

فعلي حميد يوس
1

عمر عبدالمحسن علي           
2 

 
 1

 قسم الاحصاء، كلية الادارة والاقتصاد، جامعة واسط، الكوت، العراق.
2

 قسم الاحصاء، كلية الادارة والاقتصاد، جامعة بغداد، بغداد، العراق. 

 

 :الخلاصة
يؤدي دورًا أساسياً في التعامل مع البيانات ذات  الابعاد لاقت قضية نموذج الانحدار اهتمامًا بالغ الأهمية لاختيار المتغيرات، إذ انه        

في كل من التقدير والاختيار المتغير كطريقة فعالة. ومع ذلك ، فإن دالة  Atan الذي يشير إليه  دالة جزاء معكوس الظل العالية. يتم استخدام

هي وسيلة جيدة  LAD :للأخطاء أو توزيع ذو ذيل ثقيل. بينما   حساسة جدًا للقيم الشاذة لمتغيرات الاستجابة أو توزيع ملتوي Atan الجزاء 

يجمع بين هاتين الفكرتين في آن واحد. لقد  Atan للحصول على حصانة تقدير الانحدار. ان الهدف الاساس من هذا البحث هو اقتراح مُقدّر

 مقارنة بالمقدرات الاخرى. الافضل المقترح هو LAD-Atan اظهرت تجارب المحاكاة وتطبيق البيانات الحقيقية أن مقدّر
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