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Abstract: 
     A partial temporary immunity SIR epidemic model involv nonlinear treatment rate is proposed and 

studied. The basic reproduction number 𝑅0 is determined. The local and global stability of all equilibria of 

the model are analyzed. The conditions for occurrence of local bifurcation in the proposed epidemic model 

are established. Finally, numerical simulation is used to confirm our obtained analytical results and specify 

the control set of parameters that affect the dynamics of the model.  
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Introduction: 
In biology, immunity means resistance of 

an organism to infection or disease. Many 

researchers have studied immunity, in medicine and 

biology. Mathematically epidemic models represent 

a useful tool to analyze this subject, and reach all 

factors affecting it through mathematical equations 

to predict their behavior (1). In general, immunity to 

the diseases is divided into two types known as 

lifelong immunity and temporary immunity. Polio is 

one of the diseases that caused lifelong immunity. 

In fact Bunimovich-Mendrazitsky and Stone (2) 

studied Polio as an epidemic model in order to 

explain the disease development. D’Onofrio in (3) 

studied Pulse vaccination strategy in the SIR 

epidemic model to verify the use of a pulse 

vaccination strategy to eradicate infectious diseases. 

However, Dubey et. al (4), investigated an SIR 

Model with nonlinear incidence and treatment rates, 

they showed that effective treatment and hence 

increasing the number of individuals who have 

lifelong ammunition, the resource limitation of 

treatments should be minimized. On the other hand, 

there are diseases cause temporary immunity, the 

subject that our research deals with for instance 

bacteria that causes Pertussis. Many researchers 

studied temporary immunity such as Taylor and 

Carr (5), who studied temporary immunity in an 

SIR-based model with delayed coupling between 

the susceptible and removed classes. Sahu and Dhar  
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 (6), studied in their paper an SVEIS epidemic 

model for an infectious disease spreads in the host 

population through horizontal transmission and the 

role that temporary immunity plays in the spread of 

disease. Accordingly, in this paper an SIR epidemic 

model with temporary immunity and gathering it to 

nonlinear treatment rate is proposed and studied. 

The treatment function is taken as a modified 

Holling type II. Recently Naji and Hussien (7) have  

proposed and investigated a mathematical model 

that involves two different types of infectious 

diseases that spread in the host population 

horizontally as well as vertically. Keeping the above 

review in view, in this paper the objective is to 

understand the effects of treatment rate on the 

spread of disease. This paper is organized as 

following. Section 2, deals with the formulation of 

the model and discusses the existence, uniqueness, 

and boundedness of their solution. In section 3, the 

existence of the equilibrium points and their 

stability analyses are carried out. The local 

bifurcation analysis is studied in section 4. While 

the numerical simulation and the discussion is 

presented in section 5. 

 

 Mathematical Model: 
It is well known that the study of the epidemic 

systems is very important subject for the human and 

all other species due to the impact of the infectious 

diseases on their existence in the environment. 

Accordingly, in this section an epidemic system of 

SIR type of disease with partial temporary 

immunity and saturated treatment function are 

proposed and studied.  This type of disease divides 

the population to three mutual compartments 
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namely 𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡), where 𝑆(𝑡) represents 

the number of individuals in the susceptible 

compartment at time 𝑡, 𝐼(𝑡)  represents the number 

of individuals in the infected compartment at time 𝑡, 

while 𝑅(𝑡) is dented to the number of individuals in 

the removal compartment at time 𝑡. Consequently in 

order to formulate the dynamical system that 

simulates the dynamics of such an epidemic system 

the following hypotheses are adopted: 

1. All the new born individuals are susceptible 

and the system supplied by a constant number 

of susceptible individuals with recruitment rate 

𝐴 > 0. 

2. The disease is transmitted from infected 

individuals to susceptible individuals by direct 

contact between them according to mass action 

law or indirect way due to contaminated water 

or air or others with direct infection rate 𝛼 > 0 

and indirect infection rate 𝛼1 ≥ 0 respectively. 

Further, the disease may causes death for the 

infected individuals with disease death rate 

𝛿1 > 0. 

3. The infected individuals recover from the 

disease and are transferred to the removal 

compartment depending on the individual 

natural immunity with natural recovery rate 

𝛿2 > 0 or due to treatment procedure with 

nonlinear treatment rate  given by 
𝑎𝐼

1+𝑏𝐼
, see (8), 

where 𝑎 > 0 represents the maximum 

treatment rate while 𝑏 > 0  represents the 

resource limitation. 

4. The immunity gained by recovered individuals 

is temporary and hence portion of the 

recovered individuals will be transferred again 

to the susceptible individuals with partial 

temporary immunity rate 𝛿3 > 0. 

5. Finally, each individuals in the population 

faces a natural death with death rate given by 

𝛿0 > 0.   

Therefore, the dynamics of above described 

epidemic system can be described by the following 

set of differential equations: 

 

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝛿0𝑆 − 𝛼𝑆𝐼 − 𝛼1𝑆 + 𝛿3𝑅               

𝑑𝐼

𝑑𝑡
= 𝛼𝑆𝐼 − 𝛿0𝐼 − 𝛿1𝐼 − 𝛿2𝐼 −

𝑎𝐼

1+𝑏𝐼
+ 𝛼1𝑆

𝑑𝑅

𝑑𝑡
= 𝛿2𝐼 − 𝛿0𝑅 − 𝛿3𝑅 +

𝑎𝐼

1+𝑏𝐼
                      

  

            (1) 

with an initial condition in the region ℝ+
𝟑 =

{(𝑆, 𝐼, 𝑅) ∈ ℝ+
𝟑 ; 𝑆 > 0, 𝐼 ≥ 0, 𝑅 ≥ 0}; clearly the 

interaction functions given on the right hand side of 

system (1) are continuously differentiable. 

Therefore, the solution of system (1) with non-

negative initial condition exists and is unique. 

Moreover the solution is uniformly bounded as 

shown in the following theorem.    

Theorem 1.  All the solutions of system (1), which 

are initiate in the region ℝ+ 
𝟑  are uniformly bounded. 

Proof.  Let  𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) represents 

the population size, then  

  
𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
≤ 𝐴 − 𝛿0𝑁    

Now by solving the above linear differential 

inequality we obtain that 

 𝑁(𝑡) ≤ 𝑁(0)𝑒−𝛿0𝑡 +
𝐴

𝛿0
(1 − 𝑒−𝛿0𝑡),   

Thus, for 𝑡 → ∞ it is obtained 𝑁(𝑡) ≤
𝐴

𝛿0
, hence, all 

the solutions of system (1) initiate in ℝ+
𝟑  are 

uniformly bounded.      

               ■ 

Note that theorem (1) shows that all solutions of the 

model are non-negative and bounded, thus the 

model is well behaved biologically. 

Existence of Equilibrium Points and Their 

Stability  

 It is easy to verify that system (1) has at most 

two biologically feasible equilibrium points, namely 

𝐸0  and 𝐸1, which are known as the free disease 

equilibrium point and the endemic equilibrium point 

respectively. The existence conditions and their 

stability conditions are established below. In case of 

the disappearance of the disease from the 

environment then the population will contains only 

susceptible individuals and hence the so called 

disease free equilibrium point  𝐸0 = (𝑆0, 0,0) =

(
𝐴

𝛿0
, 0,0) 

exists provided that the indirect infection rate is 

zero 𝛼1 = 0.  

However, in case of the existence of disease in the 

environment then all the compartments re exist and 

hence the so called endemic equilibrium point 

𝐸1 = (𝑆1, 𝐼1, 𝑅1), which given by  

              𝑆1 = [
(𝛿0+𝛿1+𝛿2)(1+𝑏𝐼1)+𝑎

(1+𝑏𝐼1)(𝛼1+𝛼𝐼1)
] 𝐼1                                        

                                              (3a) 

 𝑅1 = [
𝑎+𝛿2(1+𝑏𝐼1)

(𝛿0+𝛿3)(1+𝑏𝐼1)
] 𝐼1    

                       (3b) 

while 𝐼1 is a positive root to the following cubic 

equation 

 𝐷1𝐼1
3 + 𝐷2𝐼1

2 + 𝐷3𝐼1 + 𝐷4 = 0  

                       (3c) 

here  𝐷1 = −𝛼𝑏[𝛿0(𝛿0 + 𝛿1 + 𝛿2) +
𝛿3(𝛿0 + 𝛿1)]  
 

𝐷2 = 𝑏(𝛿0 + 𝛿3) [
𝛼𝐴 − (𝛿0 + 𝛿1 + 𝛿2)(𝛿0 + 𝛼1) −

𝛼

𝑏
(𝛿0 + 𝛿1 + 𝛿2 + 𝑎)

]

+𝛿3[𝛼(𝛿2 + 𝑎) + 𝑏𝛼1𝛿2]

  

 𝐷3 = (𝛿0 + 𝛿3)[𝐴(𝛼1𝑏 + 𝛼) −
(𝛿0 + 𝛿1 + 𝛿2 + 𝑎)(𝛿0 + 𝛼1)] + 𝛼1𝛿3(𝛿2 + 𝑎)  

 𝐷4 = 𝛼𝐴(𝛿0 + 𝛿3)  
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exists uniquely in the interior of positive octant 

provided that the following condition, which is 

obtained using Discard’s rule (9), is satisfied:    

𝐷2 < 0  OR  𝐷3 > 0              (4) 

Now before we start our study the stability of the 

above equilibrium points, the basic reproduction 

number 𝑅0, which represents the number of new 

infected people caused by a single infected patient 

when introduced into a completely susceptible 

population, is computed. It is well known that the 

value of this number plays a vital role in the 

stability of the system (1). According to definition 

of basic reproduction number which is given in 

(10), rewrite system (1) in the form:   

𝑥′ = ℋ(𝑥) − ℳ(𝑥)           (5) 

where 𝑥 = (𝐼, 𝑆, 𝑅)𝑇, ℋ(𝑥) is the matrix of new 

infection individuals and ℳ(𝑥) is the matrix of 

transferred individuals between the infected 

compartments and out of the infected 

compartments. Therefore 

 ℋ(𝑥) = [
𝛼𝑆𝐼 + 𝛼1𝑆

0
0

] ; 

 ℳ(𝑥) = [

𝛿0𝐼 + 𝛿1𝐼 + 𝛿2𝐼 +
𝑎𝐼

1+𝑏𝐼

𝛿0𝑆 + 𝛼𝑆𝐼 + 𝛼1𝑆 − 𝛿3𝑅 − 𝐴

𝛿0𝑅 + 𝛿3𝑅 −
𝑎𝐼

1+𝑏𝐼
− 𝛿2𝐼

] 

So the derivative of ℋ(𝑥) and ℳ(𝑥), with respect 

to vector 𝑥, at the disease free equilibrium point 𝐸0 

are computed as follow:   

𝐷ℋ(x)  = [

𝛼𝐴

𝛿0
0 0

0 0 0
0 0 0

] = [
𝐻 𝟎
𝟎 𝟎

]; 𝐷ℳ(𝑥) =

[

𝛿0 + 𝛿1 + 𝛿2 + 𝑎 0 0
𝛼𝐴

𝛿0
𝛿0 −𝛿3

−𝑎 − 𝛿2 0 𝛿0 + 𝛿3

] = [
𝑀 𝟎
𝒋𝟏 𝒋𝟐

],   

where 𝐻 = [
𝛼𝐴

𝛿0
]; and 𝑀 = [𝛿0 + 𝛿1 + 𝛿2 + 𝑎]. 

Consequently, 𝑅0 is equal to spectral radius of new 

generation matrix ℋℳ−1. Therefore, the 

reproduction number of system (1) is given by 

 𝑅0 = 𝜌(ℋℳ−1) =
𝛼𝐴

𝛿0(𝛿0+𝛿1+𝛿2+𝑎)
   

            (6) 

Theorem 2: The disease free equilibrium point of 

system (1) is locally asymptotically stable provided  

that condition (7a) holds, while its unstable under 

condition (7b).   𝑅0 < 1               (7a)                                      

                             𝑅0 > 1                  (7b) 

 

Proof. The Jacobian matrix of system (1) at 𝐸0 can 

be written as: 

 𝐽(𝐸0) = [𝑏𝑖𝑗]3×3
=

[
 
 
 −𝛿0

−𝛼𝐴

𝛿0
𝛿3

0
𝛼𝐴

𝛿0
− (𝛿0 + 𝛿1 + 𝛿2 + 𝑎) 0

0 𝛿2 + 𝑎 −(𝛿0 + 𝛿3)]
 
 
 

                     

(8a) 

Then the characteristic equation of 𝐽(𝐸0) is given 

by: 

(−𝛿0 − 𝜆)(𝜆2 + A1𝜆 + A2) = 0                   (8b) 

where  A1 = −[
𝛼𝐴

𝛿0
− (𝛿0 + 𝛿1 + 𝛿2 + 𝑎) − (𝛿0 +

𝛿3)] 

A2 = −(𝛼1 + 𝛿0) (
𝛼𝐴

𝛿0
− (𝛿0 + 𝛿1 + 𝛿2 + 𝑎))  

Obviously, it is easy to verify that condition (7a) 

guarantees that 𝐴1 > 0 and 𝐴2 > 0. Therefore 

according to Routh-Hurwitz criterion (11), the 

second order polynomial in Eq. (8b) has two roots 

(eigenvalues for 𝐸0) with negative real parts. 

Further, since the third eigenvalue is given by 

𝜆 = −𝛿0 < 0, hence the disease free equilibrium 

point 𝐸0 is locally asymptotically stable. On the 

other hand condition (7b) leads to 𝐴2 < 0, and then 

the second order polynomial in Eq. (8b) has two 

roots with opposite signs. Hence, 𝐸0 is an unstable 

saddle point, which completes the proof. ■  

Theorem 3: The endemic equilibrium point 

𝐸1 = (𝑆1, 𝐼1, 𝑅1) of system (1) is locally 

asymptotically stable, provided that 

 (
𝛿3

(𝛿0+𝛿3)
) [

𝛿2(1+𝑏𝐼1)2+𝑎

(1+𝑏𝐼1)2
] < 𝛼𝑆1 <

((𝛿0+𝛿1+𝛿2)(1+𝑏𝐼1)2+𝑎)

(1+𝑏𝐼1)2
                  

(9) 

Proof. The Jacobian matrix of system (1) at 𝐸1 can 

be written as  
 𝐽(𝐸1) =

[
 
 
 
−(𝛿0 + 𝛼𝐼1 + 𝛼1) −𝛼𝑆1 𝛿3

𝛼𝐼1 + 𝛼1 𝛼𝑆1 − (𝛿0 + 𝛿1 + 𝛿2) −
𝑎

(1+𝑏𝐼1)2
0

0 𝛿2 +
𝑎

(1+𝑏𝐼1)2
−(𝛿0 + 𝛿3)]

 
 
 
          

(10a) 
 

Then the characteristic equation of 𝐸1 is given by:  

 𝜆3 + Ω1𝜆
2 + Ω2𝜆 + Ω3 = 0         (10b) 

 

here Ω1 = −(𝑐11 + 𝑐22 + 𝑐33), Ω2 = 𝑐11𝑐22 −
𝑐12𝑐21 + 𝑐11𝑐33 + 𝑐22𝑐33 and Ω3 = 𝑐21(𝑐12𝑐33 −
𝑐32𝑐13) − 𝑐11𝑐22𝑐33, where 𝑐𝑖𝑗 represent the 

coefficients of the Jacobian matrix given by (10a). 

Furthermore  
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∆= Ω1Ω2 − Ω3 = (𝑐12𝑐21 − 𝑐11𝑐22)(𝑐11 + 𝑐22) − 𝑐11𝑐33(𝑐11 + 𝑐33)

−𝑐22𝑐33(𝑐22 + 𝑐33) − 2𝑐11𝑐22𝑐33 + 𝑐21𝑐13𝑐32
                                                                                                                 

 

According to Routh-Hurwitz criterion, 𝐸1 is locally 

asymptotically stable provided that Ω1 > 0, Ω3 > 0 

and Δ > 0. Now it is easy to verify that all these 

conditions are satisfied provided that condition (9) 

holds, and hence the proof is complete.     

              ■ 

Theorem 4: Assume that the disease free 

equilibrium point of system (1) is locally 

asymptotically stable then it is globally 

asymptotically stable provided that:  

 
𝛼𝐴

𝛿0
< (𝛿0 + 𝛿1)     

                       (11) 

Proof.Let  𝒲1 = (𝑆 − 𝑆0 − 𝑆0𝑙𝑛
𝑆

𝑆0
) + 𝐼 + 𝑅 , 

clearly 𝒲1: ℝ+
3 → ℝ is continuously differential 

function such that 𝒲1(𝑆0, 0,0) = 0, and 

𝒲1(𝑆, 𝐼, 𝑅) > 0; ∀(𝑆, 𝐼, 𝑅) ≠ (𝑆0, 0,0). 
Differentiating  𝒲1 with respect to time and then 

after doing some algebraic computation, we have:

  
𝑑𝒲1

𝑑𝑡
≤ −

𝛿0

𝑆
(𝑆 − 𝑆0)

2 − ((𝛿0 + 𝛿1) − 𝛼𝑆0)𝐼 − 𝛿0𝑅  

Clearly condition (11) agree with 𝑅0 < 1 and 

guarantee that 
𝑑𝒲1

𝑑𝑡
< 0. Hence according to 

Laypunov second method of stability the free 

disease equilibrium point 𝐸0 is locally  

Next theorem establishes the global stability 

conditions for the endemic equilibrium point of 

system (1).  

Theorem 5: Assume that the endemic equilibrium 

point 𝐸1, of system (1) is locally asymptotically 

stable, then its globally asymptotically stable in sub-

region that satisfies the following conditions:  

            𝛼𝑆1 <
((𝛿0+𝛿1+𝛿2)(1+𝑏𝐼1)(1+𝑏𝐼)+𝑎)

(1+𝑏𝐼1)(1+𝑏𝐼)
   

(12a) 

 𝑞12
2 < 𝑞11𝑞22     

(12b) 

 𝑞13
2 < 𝑞11𝑞33     

(12c) 

 𝑞23
2 < 𝑞22𝑞33      

(12d) 

where 𝑞𝑖𝑗 is given in the proof. 

Proof. Consider the following function  𝒲2 =
(𝑆−𝑆1)2

2
+

(𝐼−𝐼1)2

2
+

(𝑅−𝑅1)2

2
. Clearly we have  

𝒲2 = ℝ+
3 → ℝ is continuously differential function 

with 𝒲2(𝑆1, 𝐼1, 𝑅1) = 0, while 𝒲2(𝑆, 𝐼, 𝑅) >
0; ∀(𝑆, 𝐼, 𝑅) ≠ (𝑆1, 𝐼1, 𝑅1). Moreover, 

straightforward computation gives that: 

  
𝑑𝒲2

𝑑𝑡
= −𝑞11(𝑆 − 𝑆1)

2 − 𝑞22(𝐼 − 𝐼1)
2 − 𝑞33(𝑅 − 𝑅1)

2                            

+𝑞12(𝑆 − 𝑆1)(𝐼 − 𝐼1) + 𝑞13(𝑆 − 𝑆1)(𝑅 − 𝑅) + 𝑞23(𝐼 − 𝐼1)(𝑅 − 𝑅1)
 

here   𝑞11 = 𝛿0 + 𝛼1 + 𝛼𝐼,         𝑞12 = 𝛼1 + 𝛼𝐼 −
𝛼𝑆1,         𝑞13 = 𝛿3, 𝑞33 = 𝛿0 + 𝛿3 

 𝑞22 = 𝛿0 + 𝛿1 + 𝛿2 +
𝑎

(1+𝑏𝐼)(1+𝑏𝐼1)
− 𝛼𝑆1,        

  𝑞23 = 𝛿2 +
𝑎

(1+𝑏𝐼)(1+𝑏𝐼1)
. 

Thus according to the given conditions it’s easy to verify that  

    

𝑑𝒲2

𝑑𝑡
≤ −(√

𝑞11

2
(𝑆 − 𝑆1) − √

𝑞22

2
(𝐼 − 𝐼1))

2

                             

− (√
𝑞22

2
(𝐼 − 𝐼1) − √

𝑞33

2
(𝑅 − 𝑅1))

2

  

                 − (√
𝑞11

2
(𝑆 − 𝑆1) − √

𝑞33

2
(𝑅 − 𝑅1))

2

 

Clearly, 
𝑑𝒲2

𝑑𝑡
< 0 and hence due to the second 

Lyapunov theorem the endemic equilibrium 

point is globally asymptotically stable and the 

proof is complete     ■  

   
1. Local Bifurcation Analysis 

  In this section, the local bifurcation (such as 

saddle-node , transcritical and pitchfork) is studied 

to find out the influence of changing one of the 

parameters value, on the dynamical behavior of 

system (1) around the disease free equilibrium point 

𝐸0. An application of the Sotomayor’s theorem of 

local bifurcation (11) is carried out in order to 

specify the type of bifurcation near the equilibrium 

point as shown in the following theorem.   

Theorem 6: Assume that 𝑅0 = 1, then system (1) 

undergoes a transcrtical bifurcation near the disease 

free equilibrium point 𝐸0, but neither saddle-node 

bifurcation nor pitchfork bifurcation can occur, 

provided that  

𝛼∗𝑧 + 𝑎𝑏𝑞 ≠ 0         (13) 

  where 𝑧 and 𝑞 are given in the proof. 

Proof. It is easy to verify that 𝑅0 = 1 is an 

equivalent to  𝛼∗ =
𝛿0(𝛿0+𝛿1+𝛿2+𝑎)

𝐴
 (other parameter  

 

could be chosen too). Now by substituting the value 

of 𝛼∗ in the Jacobian matrix given by (8a) we obtain 

that: 

 

 𝐽 = 𝐷𝑓(𝐸0. 𝛼
∗) = 

[
−𝛿0

−𝛼∗𝐴

𝛿0
𝛿3

0 0 0
0 𝛿2 + 𝑎 −(𝛿0 + 𝛿3)

]  
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Clearly the second eigenvalue of J, 𝜆𝐼 in the I- 

direction is zero (𝜆𝐼 = 0) , while  𝜆𝑠 = −𝛿0 and  

 

                                                                    
  𝜆𝑅 = −(𝛿0 + 𝛿3). Hence the disease free 

equilibrium point is a non-hyperbolic point for 

𝑅0 = 1. Further the eigenvector, say 𝐾 =
(𝑘1, 𝑘2, 𝑘3)

𝑇, that corresponds 𝜆𝐼 = 0 is determined 

as:  𝐾 = (𝑧𝑘3, 𝑞𝑘3, 𝑘3)
𝑇    

          

where 𝑧 = −
(𝛿0+𝛿1+𝛿2+𝑎)𝛿0+(𝛿0+𝛿1)𝛿3

𝛿0(𝛿2+𝑎)
 , 𝑞 =

𝛿0+𝛿3

𝛿2+𝑎
  

and 𝑘3 is a non-zero real number. 

Similarly the eigenvector 𝑊 = (𝑤1 𝑤2 𝑤3)𝑇 

that corresponds 𝜆𝐼 = 0 of 𝐽𝑇 is determined as: 

  𝑊 = (0,𝑤2, 0)𝑇   
        

where 𝑤2 is a non-zero real number. Now, rewrite 

system (1) as vector form 
𝑑𝑋

𝑑𝑡
= 𝑓(𝑥), where 

𝑋 = (𝑆, 𝐼, 𝑅)𝑇 and 𝑓 = (𝑓1, 𝑓2, 𝑓3)
𝑇 be the 

interaction functions vector given in system (1). 

Then by determining  
𝑑𝑓

𝑑𝛼
= 𝑓𝛼, we get that: 

 𝑓𝛼 = [
−𝑆𝐼
𝑆𝐼
0

], then we get 𝑓𝛼(𝐸0, 𝛼
∗) = [

0
0
0
]  

Therefore: 𝑤𝑇 . 𝑓𝛼(𝐸0, 𝛼
∗) = 0, consequently, by 

using Sotomayor theorem, system (1) has no saddle-

node bifurcation near  𝐸0  and 𝛼 = 𝛼∗. Now in order 

to investigate the other types of bifurcation, the 

derivative of 𝑓𝛼 with respect to vector  X  say  

𝐷𝑓𝛼(𝐸0, 𝛼
∗) is computed: 

𝐷𝑓𝛼(𝐸0, 𝛼
∗) = [

0 −𝑆0 0
0 𝑆0 0
0 0 0

],   

So this gives that 𝑊𝑇[𝐷𝑓𝛼(𝐸0, 𝛼
∗), 𝐾] =

𝑤2𝑞𝑘3𝑆0 ≠ 0. Again, in view of Sotomayor 

theorem, if in addition to the above the following 

holds 𝑊𝑇[𝐷2𝑓(𝐸0, 𝛼
∗), (𝐾, 𝐾)] ≠ 0 , then system 

(1) possesses a transcritical bifurcation but no 

pitchfork bifurcation appears. Now since we get 

that:  

 

𝐷2𝑓(𝐸0, 𝛼
∗), (𝐾, 𝐾) = [

−2𝛼∗𝑧𝑞𝑘3
2

2𝛼∗𝑧𝑞𝑘3
2 + 2𝑎𝑏𝑞2𝑘3

2

−2𝑎𝑏𝑞2𝑘3
2

],thus 

it followes that  

 𝑊𝑇[𝐷2𝑓(𝐸0, 𝛼
∗), (𝐾, 𝐾)] = 2𝑞(𝛼∗𝑧 +

𝑎𝑏𝑞)𝑘3
2𝑤2 ≠ 0. Therefore system (1) has a 

transcritical bifurcation at 𝐸0 with 𝛼 = 𝛼∗ provided 

that condition (13) holds.      ∎ 

Now it is well known that, the three dimensional 

dynamical system undergoes a Hopf bifurcation if 

and only if there is a complex conjugate eigenvalue, 

say 𝜆𝑖 = 𝜌1 ∓ 𝜌2, with third eigenvalue is real and 

negative (12), so that  

 𝜌1(ℓ
∗) = 0       (14a)   

 
𝑑𝜌1

𝑑ℓ
|ℓ=ℓ∗ ≠ 0      (14b) 

where ℓ = ℓ∗ is a specific general  parameter. This 

is an equivalent to that system (1) undergoes a Hopf 

bifurcation around the endemic equilibrium point if 

and only if the coefficient’s of the characteristic 

polynomial given by (10b) satisfy that Ω𝑖 >
0; ∀𝑖 = 1,2,3 with Ω1(ℓ

∗)Ω2(ℓ
∗) = Ω3(ℓ

∗) (i.e. 

∆(ℓ∗ ) = 0) such that 
𝑑∆

𝑑ℓ
|ℓ=ℓ∗ ≠ 0. Since the 

condition (9) that guarantees Ω𝑖 > 0; ∀𝑖 = 1,2,3  is 

the same condition which guarantees ∆> 0, 

therefore there is no possibility to have a Hopf 

bifurcation for system (1).  

2. Numerical Analysis and Discussion 
     In this section, the global dynamics of system (1) 

is investigated numerically for different sets of 

initial values and different sets of parameters 

values. The objectives of such investigation are to 

determine the effect of varying the parameters 

values and confirm our obtained results. It is 

observed that, for the following biologically 

feasible set of hypothetical parameters values:  

  
𝐴 = 50, 𝛿0 = 0.9, 𝛼1 = 0, 𝛼 = 0.0001, 𝛿1 = 0.2,
𝛿2 = 0.2, 𝛿3 = 0.4, 𝑎 = 4, 𝑏 = 0.2                             

  

      (15) 

The basic reproduction number is 𝑅0 = 1.25 and 

both the equilibrium points are exist. However the 

trajectories starting from different initial points 

approach asymptotically to the unique endemic 

equilibrium point 𝐸1 = (113.74,31.36,42.14) as 

shown in the phase portrait given in Fig. (1) and 

their time series given in Fig. (2). 

 

                                   

 
Figure 1. Globally asymptotically stable endemic 

equilibrium point of system (1) for the data in 

(15). 
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 Clearly these figures confirm the analytical 

results given by theorem (2) and theorem (5). 

However in case of losing the existence of disease 

free equilibrium point and the system has only 

endemic equilibrium point that will occur for 

𝛼1 > 0, It is observed that the system has only point 

attractor and approaches asymptotically to endemic 

equilibrium point as shown in Fig. (3) for the data 

(15) with  𝛼1 = 0.1. 

 

 

 
Figure 2. Time series of the trajectories given in 

Figure (1). (a) The trajectories of S as a function 

of time. (b) The trajectories of I as a function of 

time. (c) The trajectories of R as a function of 

time. 

 
 

 

Figure 3. The trajectory of system (1) that 

approaches asymptotically to 

𝑬𝟏 = (𝟖𝟖. 𝟐𝟖, 𝟑𝟕. 𝟔𝟕, 𝟒𝟖. 𝟕) for the data (15) with 

𝜶𝟏 = 𝟎. 𝟏. 

 

 Now the effect of varying each parameter on 

the dynamical behavior of system (1) is investigated 

numerically for the data (15) in two cases: where 

there is no indirect incidence rate (𝛼1 = 0), and 

where there is an indirect incidence rate (say at 

𝛼1 = 0.01). It is observed that as recruitment rate is 

< 40 , then  𝑅0 < 1 and hence the trajectory of 

system (1) approaches asymptotically to the disease 

free equilibrium point as shown in the typical figure 

given by Fig. (4a) for the data (15) with 𝐴 = 35. 

However for the data given by (15) with 𝐴 = 35 

and 𝛼1 = 0.01 the trajectory of system (1) still 

approaches asymptotically to endemic equilibrium 

point as shown in Fig. (4b) 
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Figure 4. The trajectory of system (1). (a) System approaches to 𝑬𝟎 = (𝟏𝟕𝟓, 𝟎, 𝟎) for data (15) with 

𝑨 = 𝟑𝟓. (b) System approaches to 𝑬𝟏 = (𝟏𝟏𝟗. 𝟕𝟕, 𝟏𝟏. 𝟔𝟐, 𝟐𝟎. 𝟑𝟔) for data (15) 𝑨 = 𝟑𝟓 and 𝜶𝟏 = 𝟎. 𝟎𝟏.  

 

 Obviously, for the data used in Fig. (4a) the 

basic reproduction number has the value 𝑅0 =
0.875 and hence the solution approaches 

asymptotically to disease free equilibrium point as 

proved in theorem (2). However the solution of 

system (1) approaches asymptotically to the unique 

endemic equilibrium point as shown in Fig. (4b) 

even when 𝑅0 = 0.875 due to the disappearances  

of the disease free equilibrium point, 𝛼1 > 0, and 

the bounded system (1) has no periodic dynamics. 

On the other hand, for all 𝐴 > 40 the value of 

𝑅0 > 1 and the solution of system (1) still 

approaches to the endemic equilibrium point in both 

the cases. Moreover its observed that as the direct 

incidence rate 𝛼 < 0.008, then 𝑅0 < 1 and hence 

the trajectory of system (1) approaches 

asymptotically to the disease free equilibrium point 

as shown in the typical figure given by Fig. (5a) for 

the data (15) with 𝛼 = 0.007. However for the data 

given by (15) with 𝛼 = 0.007 and 𝛼1 = 0.01 the 

trajectory of system (1) still approaches 

asymptotically to endemic equilibrium point as 

shown in Fig.(5b). 

 

  
Figure 5. The trajectory of system (1). (a) System approaches to 𝑬𝟎 = (𝟐𝟓𝟎, 𝟎, 𝟎) for data (15) with 

𝜶 = 𝟎. 𝟎𝟎𝟕. (b) System approaches to 𝑬𝟏 = (𝟏𝟔𝟎, 𝟐𝟎, 𝟑𝟎) for data (15) 𝜶 = 𝟎. 𝟎𝟎𝟕and 𝜶𝟏 = 𝟎. 𝟎𝟏. 

 

 Clearly, for the data used in Fig. (5a), again the 

basic reproduction number has the value 𝑅0 =
0.875 and hence the solution approaches 

asymptotically to disease free equilibrium point as 

proved in theorem (2). However the solution of 

system (1) approaches asymptotically to the unique 

endemic equilibrium point as shown in Fig. (5b) 

even when 𝑅0 < 1 due to the disappearance of the 

disease free equilibrium point, 𝛼1 > 0, and the 

bounded system (1) has no periodic dynamics. 

Further for all 𝛼 > 0.008 the value of 𝑅0 > 1 and 

thus the solution of system (1) still approaches to 

the endemic equilibrium point in both the cases. 

Further, investigation of the effect of varying other 

parameter have been done and the observed results 

are shown in the following table. 
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Table 1. The dynamical behavior of system (1) as varying of one variable with the other parameters as 

in (15) 
The range of 

varying parameter 

The range 

of 𝑹𝟎 

Dynamical behavior of 

system (1) where 𝜶𝟏 = 𝟎 

Dynamical behavior of system (1) 

where 𝜶𝟏 = 𝟎. 𝟎𝟏 

𝛿0 < 0.2445 

𝛿0 > 0.25 

𝑅0 > 1 

𝑅0 < 1 

𝐸1 is asymptotically stable 

𝐸0 is asymptotically stable 

𝐸1 is asymptotically stable 

𝛿1 < 0.9 

𝛿1 > 0.9 

𝑅0 > 1 

𝑅0 < 1 

𝐸1 is asymptotically stable 

𝐸0 is asymptotically stable 

𝐸1 is asymptotically stable 

𝛿2 < 0.9 

𝛿2 > 0.9 

𝑅0 > 1 

𝑅0 < 1 

𝐸1 is asymptotically stable 

𝐸0 is asymptotically stable 

𝐸1 is asymptotically stable 

𝛿3 > 0 𝑅0 > 1 𝐸1 is asymptotically stable 𝐸1 is asymptotically stable 

𝑎 < 1.5 

𝑎 > 1.5 

𝑅0 > 1 

𝑅0 < 1 

𝐸1 is asymptotically stable 

𝐸0 is asymptotically stable 

𝐸1 is asymptotically stable 

𝑏 > 0 𝑅0 > 1 𝐸1 is asymptotically stable 𝐸1 is asymptotically stable 

 

 

According to the above table, it is observed that 

varying the parameters that stand for partial 

temporary immunity rate 𝛿3 and the resource 

limitation 𝑏 don’t change the value of 𝑅0, as they do 

not appear in the form of it, and hence they do not  

have a qualitative change on the dynamical 

behavior of the system rather than that they have 

quantitative change on the population size of each 

compartments of the system. All other parameters 

have a bifurcation point at 𝑅0 = 1 and hence they 

confirm our analytical results regarding the stability 

and bifurcation analysis in case of there is no 

indirect incidence rate. However adding indirect 

incidence rate to the system will causes the 

disappearance of the disease free equilibrium point 

from the system and hence the system will always 

approach to the endemic equilibrium point.   

Finally, the system has only one type of attractor 

that is a stable point and there is no periodic 

dynamics. Finally in order to control the disease the 

value of natural death rate 𝛿0,  disease death rate 𝛿1, 

natural recovery rate 𝛿2 and maximum treatment 

rate 𝑎 should be kept large enough. 
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 للأمراض الوبائية بمعامل علاج غير خطي  SIRحليل المناعة المؤقته الجزئية لنموذج ت

 
دصبا نوري مجي

1
رائد كامل ناجي            

2 

 

1
 بغداد, العراق. ,جامعة بغداد قسم الحاسبات, كلية التربية للبنات, 
2

 جامعة بغداد, بغداد, العراق. ,, كلية العلومسم الرياضياتق 

 

  :الخلاصة
, تم تحليل   R0تمت دراسته في هذا البحث, تم اعتماد قيمة العتبة   SIRمراض وبائية من النوع أالمناعة المؤقته الجزئية لنموذج 

ومن ثم مناقشة الشروط الازمة لظهور تفرع محلي للنموذج قيد الدراسة, أخيرا قدمت  الاستقرارية المحلية والغير محلية لنقاط التوازن للنموذج

يكية النتائج العددية والتي تدعم الدراسة التحليلة والنظرية المتظمنة بالبحث مع الاهتمام بأستعراض المعلمات التي تتحكم وتؤثر على دينام

 النظام المدروس .

 

 الوبائي.  SIRنموذج  ,مناعة مؤقته جزئية, معامل علاج غير خطي الكلمات المفتاحية :

 

 
 


