Open Access
Baghdad Science Journal

Vol.16(3)2019

DOI: http://dx.doi.org/10.21123/bsj.2019.16.3.0639

An Analysis of a Partial Temporary Immunity SIR Epidemic Model with
Nonlinear Treatment Rate

Saba Noori Majeed **

Raid Kamel Naji 2

Received 25/3/2018, Accepted 7/3/2019, Published 1/9/2019

- This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

A partial temporary immunity SIR epidemic model involv nonlinear treatment rate is proposed and
studied. The basic reproduction number R, is determined. The local and global stability of all equilibria of
the model are analyzed. The conditions for occurrence of local bifurcation in the proposed epidemic model
are established. Finally, numerical simulation is used to confirm our obtained analytical results and specify
the control set of parameters that affect the dynamics of the model.

Key words: Nonlinear treatment rate, Partial temporary immunity, SIR epidemic model.

Introduction:

In biology, immunity means resistance of
an organism to infection or disease. Many
researchers have studied immunity, in medicine and
biology. Mathematically epidemic models represent
a useful tool to analyze this subject, and reach all
factors affecting it through mathematical equations
to predict their behavior (1). In general, immunity to
the diseases is divided into two types known as
lifelong immunity and temporary immunity. Polio is
one of the diseases that caused lifelong immunity.
In fact Bunimovich-Mendrazitsky and Stone (2)
studied Polio as an epidemic model in order to
explain the disease development. D’Onoftrio in (3)
studied Pulse vaccination strategy in the SIR
epidemic model to verify the use of a pulse
vaccination strategy to eradicate infectious diseases.
However, Dubey et. al (4), investigated an SIR
Model with nonlinear incidence and treatment rates,
they showed that effective treatment and hence
increasing the number of individuals who have
lifelong ammunition, the resource limitation of
treatments should be minimized. On the other hand,
there are diseases cause temporary immunity, the
subject that our research deals with for instance
bacteria that causes Pertussis. Many researchers
studied temporary immunity such as Taylor and
Carr (5), who studied temporary immunity in an
SIR-based model with delayed coupling between
the susceptible and removed classes. Sahu and Dhar
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(6), studied in their paper an SVEIS epidemic
model for an infectious disease spreads in the host
population through horizontal transmission and the
role that temporary immunity plays in the spread of
disease. Accordingly, in this paper an SIR epidemic
model with temporary immunity and gathering it to
nonlinear treatment rate is proposed and studied.
The treatment function is taken as a modified
Holling type Il. Recently Naji and Hussien (7) have
proposed and investigated a mathematical model
that involves two different types of infectious
diseases that spread in the host population
horizontally as well as vertically. Keeping the above
review in view, in this paper the objective is to
understand the effects of treatment rate on the
spread of disease. This paper is organized as
following. Section 2, deals with the formulation of
the model and discusses the existence, uniqueness,
and boundedness of their solution. In section 3, the
existence of the equilibrium points and their
stability analyses are carried out. The local
bifurcation analysis is studied in section 4. While
the numerical simulation and the discussion is
presented in section 5.

Mathematical Model:

It is well known that the study of the epidemic
systems is very important subject for the human and
all other species due to the impact of the infectious
diseases on their existence in the environment.
Accordingly, in this section an epidemic system of
SIR type of disease with partial temporary
immunity and saturated treatment function are
proposed and studied. This type of disease divides
the population to three mutual compartments
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namely S(t), I(t) and R(t), where S(t) represents
the number of individuals in the susceptible
compartment at time t, I(t) represents the number
of individuals in the infected compartment at time ¢,
while R(t) is dented to the number of individuals in
the removal compartment at time t. Consequently in
order to formulate the dynamical system that
simulates the dynamics of such an epidemic system
the following hypotheses are adopted:

1. All the new born individuals are susceptible
and the system supplied by a constant number
of susceptible individuals with recruitment rate
A > 0.

The disease is transmitted from infected
individuals to susceptible individuals by direct
contact between them according to mass action
law or indirect way due to contaminated water

or air or others with direct infection rate « > 0
and indirect infection rate a; > 0 respectively.
Further, the disease may causes death for the
infected individuals with disease death rate
6, > 0.

The infected individuals recover from the
disease and are transferred to the removal
compartment depending on the individual
natural immunity with natural recovery rate
6, >0 or due to treatment procedure with

nonlinear treatment rate given by 2L see (8),

1+bI’
where a >0 represents the maximum
treatment rate while b >0 represents the
resource limitation.
The immunity gained by recovered individuals
is temporary and hence portion of the
recovered individuals will be transferred again
to the susceptible individuals with partial
temporary immunity rate §3 > 0.
Finally, each individuals in the population
faces a natural death with death rate given by
§p > 0.
Therefore, the dynamics of above described
epidemic system can be described by the following
set of differential equations:

2 = 4- 6,5 —aSl - a,S + 6;R
dl al
E —_ (ZSI - 501 - 61] - 621 - 1+b1 + (115
dR al
E —_ 62[ - 50R - 63R + 1+bI
1

with an initial condition in the region R3
{(S,,R) €R3;S>0,1=0,R=>0}; clearly the
interaction functions given on the right hand side of
system (1) are continuously differentiable.
Therefore, the solution of system (1) with non-
negative initial condition exists and is unique.
Moreover the solution is uniformly bounded as
shown in the following theorem.
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Theorem 1. All the solutions of system (1), which
are initiate in the region R3 are uniformly bounded.
Proof. Let N(t) = S(t) +1(t) + R(t) represents
the population size, then

dN _dS , dl | dR
Now by solving the above linear differential

inequality we obtain that
N(t) < N(0)e %t + 2 (1 — e=5ot),
8o

Thus, for t — oo it is obtained N(t) < 61, hence, all
0

the solutions of system (1) initiate in R3 are
uniformly bounded.
|

Note that theorem (1) shows that all solutions of the
model are non-negative and bounded, thus the
model is well behaved biologically.
Existence of Equilibrium Points and Their
Stability

It is easy to verify that system (1) has at most
two biologically feasible equilibrium points, namely
E, and E;, which are known as the free disease
equilibrium point and the endemic equilibrium point
respectively. The existence conditions and their
stability conditions are established below. In case of
the disappearance of the disease from the
environment then the population will contains only
susceptible individuals and hence the so called

disease free equilibrium point E, = (S,,0,0) =
G- 0.0)

exists provided that the indirect infection rate is
zeroaq = 0.

However, in case of the existence of disease in the
environment then all the compartments re exist and
hence the so called endemic equilibrium point
E; = (51,11, Ry), which given by

S = [(80+61+62)(1+b11)+a]
1= (1+bly) (e, +aly) 1
(3a)
[ a+6,(14bly)
Ry = [(50+63)(1+b11)] L

(3b)
while I; is a positive root to the following cubic
equation

D13 + Dyl? +D3l; +D, =0

(3¢)
here  D; = —ab[6y(6y + 6; + 6,) +
83(8 + 61)]

aA — (8 + 61 +6,)(8p +ay) —
=(60+ 6, + 8, +a)
+83[a(6, + a) + ba,5,]
D3 = (60 + 63)[A(0(1b + 0() -
(6o + 61+ 8, +a)(6g + a)] + a165(5, + a)
D4_ = aA(60 + 53)

Dy = b(6p + 63)
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exists uniquely in the interior of positive octant
provided that the following condition, which is
obtained using Discard’s rule (9), is satisfied:

D, <0 OR D3 >0 (4)
Now before we start our study the stability of the
above equilibrium points, the basic reproduction
number R,, which represents the number of new
infected people caused by a single infected patient
when introduced into a completely susceptible
population, is computed. It is well known that the
value of this number plays a vital role in the
stability of the system (1). According to definition
of basic reproduction number which is given in
(10), rewrite system (1) in the form:
x'=H(x)—M(x) (5)
where x = (I,S,R)T, #(x) is the matrix of new
infection individuals and M (x) is the matrix of

transferred individuals between the infected
compartments and out of the infected
compartments. Therefore
aSl + a, S
H(x) = 0 ;
0
Sol + 6,1 + 8,1 +

M(x) =|60S +aSI +a;S—63R—A

al
SoR + 83R — = 8,1

So the derivative of H (x) and M (x), with respect
to vector x, at the disease free equilibrium point E,

are computed as follow:
aA

— 0 0
_ |9 _[H 0. _
DH® =g o o|=lg of PM®=
0 0 O
Sop+8,+6,+a O 0
aA M 0
8o % b = [i1 fz]'
—a— 0, 0 dp+83
where H = [‘;—A]; and M = [6y+ 6, + 6, + al.
0
Consequently, R, is equal to spectral radius of new
generation matrix HM ™.  Therefore, the
reproduction number of system (1) is given by
_ -1\ _ aA
RO - p(}[‘M ) - 60(60+61+62+a)
(6)

Theorem 2: The disease free equilibrium point of
system (1) is locally asymptotically stable provided
that condition (7a) holds, while its unstable under
condition (7b). Ry <1 (7a)

Ry>1 (7b)

Proof. The Jacobian matrix of system (1) at E, can
be written as:
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J(Eo) = [by], ., =
—aA

[_60 6_ 63 —|
0

| 0 2—:—(60+61+62+a) 0

| o 5, +a — (8o + 83

(8a)

Then the characteristic equation of J(E,) is given

by:

(=8 —NDA%2+A2+A,)=0 (8b)

where A = — [52 — (8 + 61 + 8, +a) — (8 +
0

53)]

AZ = —(a1 + 60) <%_ (60 + 61 + 62 +a)>

Obviously, it is easy to verify that condition (7a)
guarantees that A; >0 and A, > 0. Therefore
according to Routh-Hurwitz criterion (11), the
second order polynomial in Eq. (8b) has two roots
(eigenvalues for E,) with negative real parts.
Further, since the third eigenvalue is given by
A= -6, <0, hence the disease free equilibrium
point E, is locally asymptotically stable. On the
other hand condition (7b) leads to A, < 0, and then
the second order polynomial in Eg. (8b) has two
roots with opposite signs. Hence, E, is an unstable
saddle point, which completes the proof. m
Theorem 3: The endemic equilibrium point
E; = (S,,11,Ry) of system (1) is locally
asymptotically stable, provided that

((60(1353)) [52((11121111);”] <a$ <

((8+61+82)(1+b1)2+a)
(1+b14)?

(9)
Proof. The Jacobian matrix of system (1) at E; can
be written as

](E1) =
—(6p +al, + ay) —asS; O3
[ al; + a; aSl—(60+61+52)—ﬁ 0
a
[ 0 8, + rerTR —(6o + 83) |
(10a)

Then the characteristic equation of E; is given by:
/‘{3 + Qllz + Qzl + 93 = 0 (10b)

here  Qy = —(c11+C2 +¢33),  Qp =€q1655 —
C12€21 + €11€33 + Co2033 and Q3 = ¢31(€12633 —
C32C13) — C11C22C33, Where represent the
coefficients of the Jacobian matrix given by (10a).
Furthermore

Cij
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A= Q,Q, — Q3 = (12621 — €11C22) (€11 + €22) — €11€33(c11 + C33)
—C22€33(Ca2 + €33) — 2€11C22C33 + C21C13Ca2

According to Routh-Hurwitz criterion, E; is locally ~ here g1 = 6y + @4 + al, G2 = a1 +al —
asymptotically stable provided that Q; > 0, Q3 > 0 aSy, q13 = 03, Q33 = 0y + 03
and _A_> 0. Now _it _is easy to verify that gl_l these Gop = 6o + 81 + 8, + T aS;,
conditions are satisfied provided that condition (9) a 1
holds, and hence the proof is complete. G23 =0, + (+bD)(1+bly)"

m Thus according to the given conditions it’s easy to verify that

Theorem 4: Assume that the disease free
equilibrium point of system (1) is locally 4, o .
asymptotically stable then it is globally @ = |2 &SV T U-h)
asymptotically stable provided that: )

aA

55 < (60 +61) —( L2(1-1) - %(R—RQ)

S (11) )

Proof.Let W, = (S — 5, — Solng) +1+R, _( wis_sy- [B® _R1)>
clearly W;:R3 - R is continuously differential aw
function such that W,(S,,0,00=0, and Clearly, dtz < 0 and hence due to the second
Wi (S,I,R) > 0; V(S,1,R) # (S, 0,0). Lyapunov theorem the endemic equilibrium

Differentiating W, with respect to time and then  noint js globally asymptotically stable and the
after doing some algebraic computation, we have: proof is complete  m

aw. 1)
S5 (=850 = ((8 +8:) —aSe) —8R 1. Local Bifurcation Analysis
Clearly condition (11) agree with Ry <1 and In this section, the local bifurcation (such as

guarantee that %<0. Hence according to

Laypunov second method of stability the free
disease equilibrium point E, is locally

Next theorem establishes the global stability
conditions for the endemic equilibrium point of
system (1).

Theorem 5: Assume that the endemic equilibrium
point E;, of system (1) is locally asymptotically
stable, then its globally asymptotically stable in sub-
region that satisfies the following conditions:

saddle-node , transcritical and pitchfork) is studied
to find out the influence of changing one of the
parameters value, on the dynamical behavior of
system (1) around the disease free equilibrium point
Ey. An application of the Sotomayor’s theorem of
local bifurcation (11) is carried out in order to
specify the type of bifurcation near the equilibrium
point as shown in the following theorem.

Theorem 6: Assume that R, = 1, then system (1)
undergoes a transcrtical bifurcation near the disease
(5046, +6,)(1+b1,)(1+b1)+a) fr_ee quilibrium p_oint Ey, bgt neither saddle-node
as; <= 1(1;1 )(1;}1) bifurcation nor pitchfork bifurcation can occur,
(12a) b provided that

2 . a*z+abq # 0 (13)
(12b) Bz < G122 where z and q are given in the proof.
2 Proof. It is easy to verify that R, =1 is an
q13” < 411433 . 80(80+61+8,+a)
(12c) equivalentto a* = — (other parameter
023> < G22033
(12d) could be chosen too). Now by substituting the value
where g;; is given in the proof. of a* in the Jacobian matrix given by (8a) we obtain
Proof. Consider the following function W, = that:
_c )2 132 _ 2
© 251) +4 211) + &R Clearly we  have J = Df(Ey.a®) =
W, = R} - Ris continuously differential function —a*A o
with W,(S, I, R) =0, while W,(S,LR)> |~ % 5 03
0; V(S,I,R) # (51,11, Ry). Moreover, 0 0 0
straightforward computation gives that: 0 &,+a —(6,+63)
dw, 2 2 2
dr = —q11(S = $1)° — q22(I — I1)* — q33(R — Ry)

+q12(S = S)U — 1) + q13(5 = S))(R —R) + q3(I — I,)(R — Ry)
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Clearly the second eigenvalue of J, A; in the I-
direction is zero (A4; = 0) , while A, = —§, and

Ar = —(8y + 63). Hence the disease free
equilibrium point is a non-hyperbolic point for
Ry =1. Further the eigenvector, say K =
(ky, k5, k3)T, that corresponds A, = 0 is determined

as: K = (zks3, qks, k3)"

Where 7= — (50+51+62+a)60+(80+61)83 ) — 60+63
8o(62+a) S,+a

and k5 is a non-zero real number.

Similarly the eigenvector W = (Wi w, w3)T

that corresponds A; = 0 of JT is determined as:
W = (0,w,,0)T

where w, is a non-zero real number. Now, rewrite
system (1) as vector form Z—f= f(x), where
X=,LRT and f=(fLfofs)T be the
interaction functions vector given in system (1).
Then by determining % = f,, We get that:

=51 0
fo = SI |, then we get f, (Ey,a”) = [0]
0 0

Therefore: wT. f,(E,, a*) = 0, consequently, by
using Sotomayor theorem, system (1) has no saddle-
node bifurcation near E, and @ = a*. Now in order
to investigate the other types of bifurcation, the
derivative of f, with respect to vector X say
Df,(Ey, ™) is computed:

0 —S, 0
Dfa(Eo,a*) = [0 50 0],
0 0 O

So this gives that WT[Df,(Ey a*),K]=
w,qk3S, # 0. Again, in view of Sotomayor
theorem, if in addition to the above the following
holds WT[D?f(E,, a*),(K,K)] # 0 , then system
(1) possesses a transcritical bifurcation but no
pitchfork bifurcation appears. Now since we get
that:

—2a*zqk3
D2f(Ey, a®),(K,K) = |2a*zqk? + 2abq?k? |,thus
—2abq?k?
it followes that
WT[DZf(EO'a*)J (K, K)] = ZQ((X*Z +
abq)k3w, # 0. Therefore system (1) has a
transcritical bifurcation at E, with « = a* provided
that condition (13) holds. m
Now it is well known that, the three dimensional
dynamical system undergoes a Hopf bifurcation if
and only if there is a complex conjugate eigenvalue,
say A; = p; + p,, with third eigenvalue is real and
negative (12), so that

p1(£) =0 (142)
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da
pep # 0 (14b)

where £ = £ is a specific general parameter. This
is an equivalent to that system (1) undergoes a Hopf
bifurcation around the endemic equilibrium point if
and only if the coefficient’s of the characteristic
polynomial given by (10b) satisfy that Q; >
0; Vi=123with Q;(#)Q#) =Q;(¢") (e
A(£*) =0) such that Z—? |p=¢+ # 0. Since the

condition (9) that guarantees Q; > 0; Vi = 1,2,3 is
the same condition which guarantees A> 0,
therefore there is no possibility to have a Hopf
bifurcation for system (1).
2. Numerical Analysis and Discussion

In this section, the global dynamics of system (1)
is investigated numerically for different sets of
initial values and different sets of parameters
values. The objectives of such investigation are to
determine the effect of varying the parameters
values and confirm our obtained results. It is
observed that, for the following biologically
feasible set of hypothetical parameters values:

A=50,6,=09,a; = 0,a = 0.0001,5, = 0.2,
8, =02,6;=04,a=4b=0.2

(15)
The basic reproduction number is Ry = 1.25 and
both the equilibrium points are exist. However the
trajectories starting from different initial points
approach asymptotically to the unique endemic
equilibrium point E; = (113.74,31.36,42.14) as
shown in the phase portrait given in Fig. (1) and
their time series given in Fig. (2).

60—
Stable point
(113.74,31.36,42.14)

7

initial point
50 (70.40,50)

40+
initial point
(60.30,40)
304

initial point

20 (50,20,30)

40 200
150
20 100

0 50

I S

Figure 1. Globally asymptotically stable endemic
equilibrium point of system (1) for the data in
(15).
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Clearly these figures confirm the analytical
results given by theorem (2) and theorem (5).
However in case of losing the existence of disease
free equilibrium point and the system has only

endemic equilibrium point that will occur for

@
180

—— Started at 50
—— Startedat 60 | |
—— Started at 70

160

140

1201

w
100

80

60

40 . , , ,
0 1000 2000 3000 4000 5000
Time

(b

—— Started at 20
—— Started at 30 ||
— Started at 40

. , , ,
0 1000 2000 3000 4000 5000
Time

()

—— Started at 30
—— Started at 40 ||
—— Started at 50

1} 1000 2000 3000 4000 5000
Time

Figure 2. Time series of the trajectories given in
Figure (1). (a) The trajectories of S as a function
of time. (b) The trajectories of I as a function of

a; > 0, It is observed that the system has only point
attractor and approaches asymptotically to endemic
equilibrium point as shown in Fig. (3) for the data
(15) with a; = 0.1.

time. (c) The trajectories of R as a function of
time.

100 T
S0 \_,_
SO — Irgisctory af' S
—— Trapectory of T

TJORH —— Trajectory of B
o
2 60
E
2 sof
oW

40+

30

201

10 L L L L

0 1000 2000 3000 4000 5000
Time

Figure 3. The trajectory of system (1) that
approaches asymptotically to
E, = (88.28,37.67,48.7) for the data (15) with
a, = 0.1.

Now the effect of varying each parameter on
the dynamical behavior of system (1) is investigated
numerically for the data (15) in two cases: where
there is no indirect incidence rate (a; = 0), and
where there is an indirect incidence rate (say at
a; = 0.01). It is observed that as recruitment rate is
< 40 , then Ry <1 and hence the trajectory of
system (1) approaches asymptotically to the disease
free equilibrium point as shown in the typical figure
given by Fig. (4a) for the data (15) with A = 35.
However for the data given by (15) with A = 35
and a; = 0.01 the trajectory of system (1) still
approaches asymptotically to endemic equilibrium
point as shown in Fig. (4b)
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(a)
180 " w 140 ' ‘ ®

160

—— Trajectory of I 120

140

— TIrgjectory of S
100} — Trgjectory of I
—— Trgjectory of R

1201

80+

Populations
% 2
s 3

Populations

60

[+
<

40¢

SN | =

L 0 L . . 1
0 5000 10000 15000 o] 2000 4000 6000 8000 10000

Time Time
Figure 4. The trajectory of system (1). (a) System approaches to E, = (175,0,0) for data (15) with
A = 35. (b) System approaches to E; = (119.77,11.62,20.36) for data (15) A = 35 and a; = 0.01.

-
=]

[
=

0

Obviously, for the data used in Fig. (4a) the  approaches to the endemic equilibrium point in both
basic reproduction number has the value R, =  the cases. Moreover its observed that as the direct
0.875 and hence the solution approaches incidence rate a < 0.008, then Ry < 1 and hence
asymptotically to disease free equilibrium point as  the trajectory of system (1) approaches
proved in theorem (2). However the solution of  asymptotically to the disease free equilibrium point
system (1) approaches asymptotically to the unique as shown in the typical figure given by Fig. (5a) for
endemic equilibrium point as shown in Fig. (4b)  the data (15) with « = 0.007. However for the data
even when R, = 0.875 due to the disappearances  given by (15) with « = 0.007 and a; = 0.01 the
of the disease free equilibrium point, a; > 0, and  trajectory of system (1) still approaches
the bounded system (1) has no periodic dynamics. asymptotically to endemic equilibrium point as
On the other hand, for all A > 40 the value of  shown in Fig.(5b).

Ry >1 and the solution of system (1) still

@ ®
250 : ' 200 ' ,

— Trajectory of — Trgjectory of §
— TIrgiestory of I — Trgjectory of I
—— Trgjectory of R —— Irgfectory of R

200+

—-
L
=

Populations
=
h
S
Populations
=
2
S

—
(=1
=

50~

A

. . 0 . . . ,
] 5000 10000 15000 0 2000 4000 6000 8000 10000
Time Time

50+

0

Figure 5. The trajectory of system (1). (a) System approaches to E, = (250, 0,0) for data (15) with
a = 0.007. (b) System approaches to E; = (160,20, 30) for data (15) ¢ = 0.007and a; = 0.01.

Clearly, for the data used in Fig. (5a), again the  disease free equilibrium point, a; > 0, and the
basic reproduction number has the value R, = bounded system (1) has no periodic dynamics.
0.875 and hence the solution approaches Further for all @ > 0.008 the value of R, > 1 and
asymptotically to disease free equilibrium point as  thus the solution of system (1) still approaches to
proved in theorem (2). However the solution of  the endemic equilibrium point in both the cases.
system (1) approaches asymptotically to the unique Further, investigation of the effect of varying other
endemic equilibrium point as shown in Fig. (5b) parameter have been done and the observed results
even when R, < 1 due to the disappearance of the  are shown in the following table.
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Table 1. The dynamical behavior of system (1) as varying of one variable with the other parameters as

in (15)

Dynamical behavior of
system (1) where @y = 0

Dynamical behavior of system (1)

where a; = 0.01

The range of The range
varying parameter of Ry
8y < 0.2445 Ry >1
&y > 0.25 Ry <1
6, <09 Ry >1
6, >0.9 Ry <1
6, <09 Ry>1
6, >09 Ry <1
63>0 Ry>1
a<15 Ry >1
a>15 Ry <1
b>0 Ry>1

E; is asymptotically stable
E, is asymptotically stable
E; is asymptotically stable
E, is asymptotically stable
E; is asymptotically stable
E, is asymptotically stable
E; is asymptotically stable
E; is asymptotically stable
E, is asymptotically stable
E; is asymptotically stable

E; is asymptotically stable
E; is asymptotically stable
E, is asymptotically stable

E; is asymptotically stable
E; is asymptotically stable

E, is asymptotically stable

According to the above table, it is observed that
varying the parameters that stand for partial
temporary immunity rate 83 and the resource
limitation b don’t change the value of R, as they do
not appear in the form of it, and hence they do not
have a qualitative change on the dynamical
behavior of the system rather than that they have
guantitative change on the population size of each
compartments of the system. All other parameters
have a bifurcation point at R, = 1 and hence they
confirm our analytical results regarding the stability
and bifurcation analysis in case of there is no
indirect incidence rate. However adding indirect
incidence rate to the system will causes the
disappearance of the disease free equilibrium point
from the system and hence the system will always
approach to the endemic equilibrium point.
Finally, the system has only one type of attractor
that is a stable point and there is no periodic
dynamics. Finally in order to control the disease the
value of natural death rate 6,, disease death rate ¢;,
natural recovery rate &, and maximum treatment
rate a should be kept large enough.

Conflicts of Interest: None.
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