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Abstract: 
      In this paper fractional Maxwell fluid equation has been solved. The solution is in the Mettag-Leffler 

form. For 1  the corresponding solutions for ordinary Maxwell fluid are obtained as limiting case of 

general solutions. Finally, the effects of different parameters on the velocity and shear stress profile are 

analyzed through plotting the velocity and shear stress profile. 
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Introduction: 
Fluids are classified into Newtonian and 

non-Newtonian where in the second case the 

relation between the rate of strain and shear stress is 

nonlinear. Newtonian fluids can be describe by 

Navier-Stokes equations, for more detail see(1,2). A 

thermodynamic framework has been put into place 

to develop a rate type model known as Maxwell 

which is non-Newtonian model, in which the 

ordinary Maxwell model has been replaced by the 

Maxwell model with fractional calculus such that 

the time derivative of an integer order replacing by 

the so-called Riemann-Liouville fractional 

differential operator (3,4,5,6).  

            Recently, Hyder (7) in his paper solved the 

Fractional Burgers’ model for the flow of fluid with 

viscoelastic property.  Zheng (8) discussed the slip 

effects on MHD flow of a generalized Oldroyd- B 

fluid with fractional derivative. Exact analytical 

solutions for a longitudinal flow of a fractional 

Maxwell fluid between two coaxial cylinders are 

investigated by Awan (9).   Ghada (10) considered 

the  MHD flow of a Fractional Burgers’ Model in 

an Annular Pipe. The unsteady flow of a Maxwell 

fluid with fractional derivatives in a circular 

cylinder moving with a nonlinear velocity is 

discussed by Athar (11).  Khan (12) discussed the 

electroosmotic flow for generalized Burgers fluid in 

cylindrical domain. Some interesting and recent 

results for the solution of viscoelastic fluids with 

fractional derivatives have been presented in (13-

15). 
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      In this paper, we are interested into the effect of 

MHD on a longitudinal motion of a fractional 

Maxwell fluid between two infinite coaxial circular 

cylinders,. The velocity field and associated 

tangential shear stress are determined by means of 

Laplace and finite Hankel transforms. The paper 

ends with drawing the figures of velocity and shear 

stress profile in the plane.  

 

Governing Equations: 

      The equations governing the flow of an 

incompressible fluid include continuity equation 

and the motion of equations, in the absence of body 

forces, they are (16) 

       )1(...,0V


 

       

)2(...,





dt

Vd                  

where ρ is the density, V is the velocity and t is the 

time . 

      The Cauchy stress   of an incompressible 

fractional Maxwell fluid is given by (16) 
  )3(...,SPI   

and S determined by the fractional equation  

      )4...()
~

1( BSD      

where  

      

)5(...,
~ T

tt SLLSSvSDSD  

   

Remember that the Riemann- Liouville 

fractional derivative of order   for a function )(tf  

is (17) 
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      Where the fluid flows in z-direction then we 

suppose that   
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where )1,0,0(ze . Using Eq. (7) in Eqs. (2) - (4) 

and with the initial condition 
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      The term (- wEo

2  ) has been added to the 

right hand side of Eq. (8) to study the effect of 

MHD on the flow, then 
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From  Eqs. (9) and (10), we get 
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where 



    is the kinematics’ viscosity of the 

fluid and 


 2

E
M 

 is the magnetic number. 

 

Statement of the Problem 

      Referring to Eq. (11), the corresponding 

fractional partial differential equation that describe 

such flow takes the form  
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where 
z

P
A







1   is the gradient of the pressure 

which is constant. 

 The initial and boundary conditions on Eq. (12) are  
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Calculation of the Velocity Field  

     Since the equation (12) is linear with constant 

coefficients, one can solve it by Laplace transform 

approach as follows       
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      To apply finite Hankel transform 

],)([,)( 1 wwHwHw HH  
 (18), which is   
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And let (.)oJ and (.)oY  are the Bessel functions of 

the 1
st
 and 2

nd  
kinds of order zero, then the inverse 

of finite Hankel is  
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      Multiplying both sides of Eq. (15) by )( io rkrB  

and then integrating it with respect to r from  Ro to 

R1 and using initial and boundary conditions, Eq. 

(16) , then 
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where )1(1   qf  

Taking 1L  to both sides of  Eq.(20) we get 
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In obtaining Eq. (21) the generalized Mittag-Leffler 

function is used which is (17) 

).)((Re

,)(}
)(

!
{

1

)(

,

1

1

1












ls

ltEt
ls

sk
L kk

k



 






    

  

Finally, taking )(1

HwH 
 to get   

 

)22(...]))(
1

(

))(
1

([

)!(!

1
)1(

)()(

)()(

2
),(

12

1,1

1)1()1(

12

1,1

1)1()1(

)1(

01 1

22

1

222



































 





 
























tMkEt

tMkEt

M
qfqkRJkRJ

kRJrkBkA
trw

i

ff

i

ff

qqf

f

f

oq

f

i ioioo

ioioi

 

 

Calculation of the Shear Stress 

     On taking  Laplace transform to both sides of 

Eq. (9) with 0,0)0,()0,(  rrSrS t
 , we 

find that 
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where  p . 

 

The Special Case ( 1 ) 

       Put 1  in Eqs. (22) and (24), to give the 

velocity field and the shear stress corresponding to 

an ordinary Maxwell fluid performing the same 

motion. 
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Results and Discussion: 
      The main results of this work are the effect of 

the MHD on the flow described by Eqs. (12)-(14). 

The exact solution for the velocity field and shear 

stress is evaluated by using the two transforms 

Laplace and finite Hankel. The solution of ordinary 

Maxwell fluid is a special case (   → 1) of our 

model. All figures are plotted by using Mathematica 

to illustrate the effect of the parameters in our 

solutions. 

       Figure (1) is plotted to illustrate the effect of 

the relaxation time . It is observed that ),,( trw   

decreases with increasing  .  In Fig. (2), showns 

the influence of the fractional parameter  .  It is 

clearly seen that the velocity is decreasing with 

increasing  . 

     Figures (3 , 4) are depicted to show the behavior 

of the magnetic parameter M for small as well as for 

long time. It is observed that for short time t = 0.1 

the increase in magnetic field M will decrease the 

velocity profile, while quite the opposite effect is 

observed for long time t = 0.4 , i.e., the increase in 

magnetic field M will strongly increase the velocity 

profile. 

      Figure (5) illustrates the variation of the velocity 

profiles for different values of time t , in which as t 

increases there is a strong increasing in velocity. 
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Figure 1. Velocity profile for A=1, =0.3, 

=0.004, M=3, t = 0.1 and different values of . 
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Figure 2. Velocity profile for A=1, =2, 

=0.004, M=3, t = 0.1 and different values of 

. 

     

     

      

w 

1.2 1.4 1.6 1.8 2.0
r

0.5

1.0

1.5

2.0

u

Figure 3. Velocity profile for A=1, =2, 

=0.004, =0.1, t = 0.1 and different values of M. 
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Figure 4. Velocity profile for A=1, =2,

=0.004, =0.1, t=0.4 and different values of 

M. 
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      Figures (6 to10) show the effect of different 

parameters upon the shear stress. The parameters   

and  as they increase they have the same effect 

upon the shear stress. It is clear that they have the 

opposite influence to that on velocity, see (Figures 6 

and 7). Finally, the effect of the magnetic parameter 

M and the time t on shear stress have the behavior 

similar with velocity. Of course, these results 

entirely agree with those resulting from Figures (8 

to 10).   
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في جريان طولي لمائع ماكسويل الكسري بين اسطوانتين  (MHD)لحقل المغناطيسي الهيدروديناميكي تأثير ا
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 :الخلاصة
في  . (Mettag-Lefflerلفلر ) -كان الحل بصيغة دالة ميتاج. ةالكسريالتفاضلية ذات الرتبة مائع ماكسويل  معادلة حلبفي هذا البحث  قمنا     

اخيراً ، تاثير المعلمات المختلفة في حقل من الحل العام.  غير الكسرية حصلنا عليها كحالة محددة مائع ماكسويل فان حلول  1 حالة

 السرعة واجهاد القص تم تحليلها من خلال رسم السرعة واجهاد القص.
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