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Abstract:

In this paper fractional Maxwell fluid equation has been solved. The solution is in the Mettag-Leffler
form. For £ =1 the corresponding solutions for ordinary Maxwell fluid are obtained as limiting case of
general solutions. Finally, the effects of different parameters on the velocity and shear stress profile are
analyzed through plotting the velocity and shear stress profile.
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Introduction:

Fluids are classified into Newtonian and
non-Newtonian where in the second case the
relation between the rate of strain and shear stress is
nonlinear. Newtonian fluids can be describe by
Navier-Stokes equations, for more detail see(1,2). A
thermodynamic framework has been put into place
to develop a rate type model known as Maxwell
which is non-Newtonian model, in which the
ordinary Maxwell model has been replaced by the
Maxwell model with fractional calculus such that
the time derivative of an integer order replacing by
the so-called Riemann-Liouville  fractional
differential operator (3,4,5,6).

Recently, Hyder (7) in his paper solved the
Fractional Burgers’ model for the flow of fluid with
viscoelastic property. Zheng (8) discussed the slip
effects on MHD flow of a generalized Oldroyd- B
fluid with fractional derivative. Exact analytical
solutions for a longitudinal flow of a fractional
Maxwell fluid between two coaxial cylinders are
investigated by Awan (9). Ghada (10) considered
the MHD flow of a Fractional Burgers’ Model in
an Annular Pipe. The unsteady flow of a Maxwell
fluid with fractional derivatives in a circular
cylinder moving with a nonlinear velocity is
discussed by Athar (11). Khan (12) discussed the
electroosmotic flow for generalized Burgers fluid in
cylindrical domain. Some interesting and recent
results for the solution of viscoelastic fluids with
fractional derivatives have been presented in (13-
15).
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In this paper, we are interested into the effect of
MHD on a longitudinal motion of a fractional
Maxwell fluid between two infinite coaxial circular
cylinders,. The wvelocity field and associated
tangential shear stress are determined by means of
Laplace and finite Hankel transforms. The paper
ends with drawing the figures of velocity and shear
stress profile in the plane.

Governing Equations:

The equations governing the flow of an
incompressible fluid include continuity equation
and the motion of equations, in the absence of body
forces, they are (16)

vV =0, ..

dv

- =V -7, .2
e T )

where p is the density, V is the velocity and t is the
time .

The Cauchy stress 7 of an incompressible
fractional Maxwell fluid is given by (16)

r=—Pl +S, .3
and S determined by the fractional equation
(1+A°D%)S = uB ..(4)
where
DS = DS +Vv-VS — LS —SLT, ..(5)
Remember that the Riemann- Liouville

fractional derivative of order & for a function f (t)
is (17)
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= __ 1 df f@
DT 1= r@Q—e) dty @Q—7)°

O<e<1 ...(6)
Where the fluid flows in z-direction then we
suppose that

V =w(r,t)e, , S=S(r,t) (7)
wheree, =(0,0,1) Using Eq. (7) in Egs. (2) - (4)
and with the initial condition
S(r,0)=0,5(r,00=0 ,r>0
S, =S, =S,,=S,,=0ands_ —s,, this
yields

w__op, 10(rS:) .(®

ot oz r or

A+ 2 DF)S,, = u (9
or

The term (- & Eg2w ) has been added to the

right hand side of Eq. (8) to study the effect of

MHD on the flow, then
ow __op _, 10(@S,)

el 2
P > T ar o E2w  ...(10)
From Egs. (9) and (10), we get
ey OW 1 ey OP
1+ A°Df)— = —— A+ ADf) —
@a—+ ) =t p( + :) 2 F
o> 10 g
where ,, _ # is the kinematics’ viscosity of the
£
fluidand , _ @ EZ is the magnetic number.

Yo,

Statement of the Problem

Referring to Eg. (11), the corresponding
fractional partial differential equation that describe
such flow takes the form

ow t°
1+ A°DF) S = —AQ+ A ———) +
( R ( r(1—g))
o7 10
—+—=——)W—-—MA+ AD)w ... A2
U(arz rar) ( ") 12)
where 5 _ 1 9P s the gradient of the pressure
Yo lor4

which is constant.
The initial and boundary conditions on Eq. (12) are

ow(r,0)  o°w(r,0)
or  orz
W(R,, 1) = W(R,t1) =0 , t>0 ... (14)

Where [ROJ is the radius of[i”t ernal
Rl

w(r,0) = 0

j cylinders.

outer

, Ry <r<R, ..(13)
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Calculation of the Velocity Field

Since the equation (12) is linear with constant
coefficients, one can solve it by Laplace transform
approach as follows

SA+ A°S°)W = —§(1+ A°S®) +

o? 10

O(=5 +=—)W — M@+ S )W  ...(15)
or r or
W(r.0) _ow(r,0) _ azv_v(;’,O) _o
or or
R, <r<R, ...(16)
W(R,,s)=wW(R,,s)=0 , s>0
where W(r,s) = L(w(r,t)).
To apply finite Hankel transform

W, = H(W),[H (W, ) = W], (18), which is

Ry
W, = [rWB,(rk)dr ,i=1,23.. ..(@7)
RO

And let 5_(yand y_(.) are the Bessel functions of

the 1% and 2™ kinds of order zero, then the inverse
of finite Hankel is

2
T

W= o kW, By (rki) I g (Riki)
2 5 I(RK)—IS(RK)
where k. are the positive roots of equation
B, (R,k;) =0and
B, (rk;) = J, (rk; )Y, (Rok;) =Y, (rk;) 3, (R,k;)
Multiplying both sides of Eq. (15) by rB, (rk;)
and then integrating it with respect to r from R, to
R; and using initial and boundary conditions, Eq.
(16) , then

.. (18)

H

A @A+ A°S7)

=—— ...(19
S (S+AS™™+ M + MAS® +k?) (19

Now, writing EQ.(19) in series form as (using

o f
1 :Z(_l)f Zf+1
z+a = a and
u f1b4
A+b)y => 2
- f . 1 @a+f+q)
W, =—AQ+ 2SI (-D'>S — = g pa
) fZ:;J =a(f —q)!
f1se
...(20)
2
(S£+1+ M +l)ki )f+1
A A

where o =—1+ f +q(e—1)
Taking L to both sides of Eq.(20) we get
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1
— —A ( ) —g(1+f+q) M q [t(a —1) f +(e+1l—¢)-1 Eéf+ L (_‘g (Ukiz + M )tg+l) +
fzé qz q'(f q)' b
te Vet gt . ( z (0k? + MOt ] ..(21
In which _< z" is _ kis*# .
Bau(2) = ; C(Am+ )’ st = 0 - l{w} tHt B (),
the generalized Mittag-Leffler function (17) with 11
(Re(s) > I]").
ds (m+k)tz™
E® (7) = _
2 (2) dzr o «(2)= ng mIT(Am+ Ak + 4 Finally, taking H™(w,) to get
In obtaining Eq. (21) the generalized Mittag-Leffler
function is used which is (17)
2 o« 2 2
w(r ) — - A 3 K2 By (k) 35 (Riks) fz( 1 e pga
2 FIZRK)-IZ(RK)| = al(f —a)!
[t(g+1)f+(g+1 s)1 6+1 e ( :I; (l)kiz + M )tg+1)
F AT DO gL L~ (% (K +M )t'”l)]} ..(22)

Calculation of the Shear Stress
On taking Laplace transform to both sides of

Eq. (9) with s(r,00=6,5(r,00=0 ,r>0 , We
find that
1  ow(r,s)
1+ A°s® or

kB ki) Jo (RK;
Z L (k) I2( )FZ

S IZ(RK)—IZ(R k.)L

T (r,s)=u .. (23)
Arx?

z(r,t) =— 5

ﬂ—g(1+f+q p) M q [t(6‘+1)f+(€+l 0)-1 E

+ﬂ/8 t(a+1)f+(l 7)—1 Ef

e+1,1-¢

The Special Case (& —1)
Put £ —1 in Egs. (22) and (24), to give the

2
w(r,t) = — 2%

e+l, e+1-¢

(% (0kZ + M)t ] }

k? B, (rk)Jz(Rik)

where z(r,s)=S,,(r,s). The image function
w(r,s)of w(r,t)can immediately be obtained

through  Eq.(22).  Consequently,  evaluating
OwW(r.s)  from the mentioned equation and
or

introducing it into Eq. (23), results in

o0

Sy

f=0 qoq

I(f —Q)'

(? (UK + ML)

..(24)

velocity field and the shear stress corresponding to
an ordinary Maxwell fluid performing the same
motion.

2 ;Jf(R k) — J2(RK,

—(A+f+q) q 2f+(2—¢)—1 f
A M9 [t DTE), —

2f+QA—-¢g)-1 f
+4 t E,. .

(% (k2 + M )tZ)]]

Z()Z

qoq

B

a)!

) '(f

(7 (0K + M)Ht?)

..(25)
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A 2 o
D

i=1

z(r,t) = —

IZ(Rk) — I (RK;)

k? Bo(rki)JZ(Rk)[

o0

>

p=0

@+ f+gq—p) q 2f+(2—0)—1
A M [t E2 2y

2f+(1—0)—1 f
+A4 t E,. .,

Results and Discussion:

The main results of this work are the effect of
the MHD on the flow described by Egs. (12)-(14).
The exact solution for the velocity field and shear
stress is evaluated by using the two transforms
Laplace and finite Hankel. The solution of ordinary
Maxwell fluid is a special case (¢ — 1) of our
model. All figures are plotted by using Mathematica
to illustrate the effect of the parameters in our
solutions.

Figure (1) is plotted to illustrate the effect of

the relaxation time A . It is observed that w(r,d,t)

decreases with increasing A. In Fig. (2), showns
the influence of the fractional parameter ¢ . It is
clearly seen that the velocity is decreasing with
increasing ¢ .

Figures (3, 4) are depicted to show the behavior
of the magnetic parameter M for small as well as for
long time. It is observed that for short time t = 0.1
the increase in magnetic field M will decrease the
velocity profile, while quite the opposite effect is
observed for long time t = 0.4 , i.e., the increase in
magnetic field M will strongly increase the velocity
profile.

Figure (5) illustrates the variation of the velocity
profiles for different values of time t , in which as t
increases there is a strong increasing in velocity.
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Figure 1. Velocity profile for A=1, ¢ =0.3, v
=0.004, M=3, t=0.1 and different values of A.
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(ﬂi (k2 + M)HE?)

..(26)
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Figure 2. Velocity profile for A=1, /1:2, v
=0.004, M=3, t = 0.1 and different values of
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Figure 3. Velocity profile for A=1, i=2, A
=0.004, Y =0.1, t = 0.1 and different values of M.
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Figure 4. Velocity profile for A=1,;L=2,/jL
=0.004, ¢ =0.1, t=0.4 and different values of
M.
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2 z 15 18 2 Figure 8. Shear stress for A=1, 4=2 1 =0.004,
Figure 5. Velocity profile for A=1, A=2, 1 t=0.1, ¢ =2 and different values of M.
=0.004, v 0.1, M=3 and different values of ¢
8 I M =3
Figures (6 tol0) show the effect of different . : M =4
parameters upon the shear stress. The parameters A M =3
and U as they increase they have the same effect ‘
upon the shear stress. It is clear that they have the )
opposite influence to that on velocity, see (Figures 6
and 7). Finally, the effect of the magnetic parameter - - _ _ \
M and the time t on shear stress have the behavior _
similar with wvelocity. Of course, these results Figure 9. Shear stress for A=1, A=2 2
entirely agree with those resulting from Figures (8 =0 0n4 t=04 ¢ =2 and different
to 10). )
— t=0.1
3 —  1=02
\ —_ A=1 — =03
— ;L = 2 2
6 — ;L =
1
) 12 14 16 18 20 !
Figure 10. Shear stress for A=1, A=2,1 =0.004,
) M=3, ¢ =2 and different values of ¢
Figure 6. Shear stress for A=1, ¥'=0.1, 4 =0.004, flicts of _
t=0.1, M=3 and different values of A. Conflicts of Interest: None.
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Equations.

o) gl (g Sl guaSla pilal (A sk s (B (MHD) (Sabid guaugd) (prnlalinal) JBal) 50
Oty gaa

2iual =y Jal

13 e Ao tana

Rl e a6 b Aaals ¥ A il IS (lpualy Hl) and !

B1oad) (Al ¢ s Aaala ca slall 440 cilpaly Hll and?

<Al

& . (Mettag-Leffler) i -gbise 213 ks Jal S, 2 ) 35 ol Tl Jy gl o Asas oy ol 134 3 Lk
ds;‘_g«'ul:;.d\ Gilaleall 0 « \ﬁ;\ .al.d\ dall e Baase AaS Lgale Ulias 45 5usl e dgjusuc;u Jsla old g=1 A

o=l dgal s de jull au ) A (e Lebdald &5 Gaill dlgal 5 de sl
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