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Abstract:

In multivariate survival analysis, estimating the multivariate distribution functions and then
measuring the association between survival times are of great interest. Copula functions, such as
Archimedean Copulas, are commonly used to estimate the unknown bivariate distributions based on known
marginal functions. In this paper the feasibility of using the idea of local dependence to identify the most
efficient copula model, which is used to construct a bivariate Weibull distribution for bivariate Survival
times, among some Archimedean copulas is explored. Furthermore, to evaluate the efficiency of the
proposed procedure, a simulation study is implemented. It is shown that this approach is useful for practical
situations and applicable for real datasets. Moreover, when the proposed procedure implemented on Diabetic
Retinopathy Study (DRS) data, it is found that treated eyes have greater chance for non-blindness compared
to untreated eyes.

Keywords: Archimedean copula, Bivariate distribution, Local Dependence, Survival Analysis, Weibull
distribution.

Introduction: data) in the tail of the multivariate distribution.

A copula function is a rule which Actually, it measures only the dependence at the
gathers or couples one-dimensional marginal  extreme data values and ignores the others. To
distribution functions into a form of multivariate ~ overcome the deficiency of the tail dependence, Esa
distribution function. In the last century, copulas and Dimitrov (17) introduced a new technique
had an important role in several areas of statistics. ~ called local dependence in which the dependency is
Fisher (1), discussed the importance of copula  measured at every point on the distribution surface
precisely in his transcripts in the Encyclopedia of  including extreme points.
Statistical Sciences, “Copulas are of interest to In this paper, to drive a bivariate Weibull
statisticians for two main reasons; first, as a way of ~ function, Archimedean copulas are used. By using
studying scale-free measures of dependence; and ~ Weibull marginal distributions three different
secondly, as a starting point for constructing bivariate Weibull functions are constructed. These
families of bivariate distributions”. For more details ~ functions can be wused for analyzing multi-
about copula models see (2). dimensional problems such as survival or reliability

One of the most popular families of copulas  analysis. In order to identify the best copula, a
is the Archimedean Copula, which is an easy  correlate Weibull random variable is generated to
function to handle, simple and closed-form compute the Local Dependence for these copulas.
expression (3, 4, 5, 6). Furthermore, over the years, Hence, the results can provide a clear guideline for
it has been successfully applied in many fields of  selecting the best copula model and then a proper
research studies (7, 8, 9, 10). bivariate Weibull distribution.

In order to identify the most appropriate
copula model, tail dependence coefficient has been  Bivariate Weibull Distribution
applied by many researchers (11, 12, 13, 14, 15 and The Archimedean copula is a convenient
16). It is a simple technique used for measuring the ~ method to model a bivariate distribution due to
dependence between variables (associated pairs of its simple form and a variety of dependence
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structures. Therefore in this section three different
models of Archimedean have been considered to
derive bivariate Weibull distribution (BWD);
Gumbel copula, Clayton copula (aka Cook and
Johnson’s copula) and Independent (or Product)
copula, with association parameter 6 which is
given by Kendal tau (1) (2). These Archimedean
copulas C(u, v;0) are defined as follows:

Gumbel’s copula: C(u, V;19) = exp{-[(-log U)e (-
log V)O ]1/9}

where T =

10
Clayton’s copula: C(u, v;6) = (u 0,0 -1) 1179
where T 10
and Independent copula: C(wv,0) = u.v
Now, to construct bivariate Weibull
functions, let T,, T, be two Weibull random
variables with 41, @1,42,@; scale and shape
parameters respectively. Then the marginal
distribution functions are
t1\ %1
Bty =1-Exp|[~(%) | & R@)=1-
ty az
Exp|~ (=) | o<tt<o
and survival distribution functions are
tl a1
Sit) = Ewp [~ (z) | & Su(t)
tz az
=ep[-(m) | o<t

< o0

Then, the BWFs are derived from:

817

1- Gumbel’s formula, the BWD is definedaas:
t1\ %1
F(t1, t2) = exp{—[(_loag(l —Exp [_ (H) ]))9 +
ty 2
(—log(1 — Exp [— (E) ]))9]; }

and bivariate survival is defined as N

t1 1
S(t,t2) = exp{—[(_log(Exp [_ (Zq)a ]))9
+ (—log(Exp [— (ZZE) ]))9]‘17

2- Clayton’s formula, the BWD and bivariate
survival are defined as:

F(tuty) = (1 —Exp [— (%)al]')—e

+ (@ —Exp [‘ (Tz)az])“’ )7

t1

S(t1'0€2) = ((Exp [_ (H)al])_e +
(Exp [— (127) ])‘9 —1)%1

3- The Independent, BWD and survival
distribution are
t1\ %1
F(tut2) = (1= Exp - (z) U]) (1
t, 2
- exp[~(%) )

S(tyt2) = (Exp [— (%)011]) (Exp [— (%) ])
The following figures (Fig. 1) show Weibull

distributions and their copulas for W (2, 1.5), W
(3,1.7)
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Marainals Weibull distribution
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Figure 1. Marginal Weibull distributions and their bivariate Weibull distributions

Local Dependence

The measure of local dependence can be
derived from the sources of probability theory. Esa
and Dimitrov (17) have developed the idea of how
probability tools can be used to measure strength of
dependence between random events and then
defined regression coefficients for measuring the
magnitude of local dependence between random
variables.
The most informative measures of dependence
between random events are two regression
coefficients defined by:
Definitionl. Regression coefficient rg(A) of the
event A with respect to the event B is the difference
between the conditional probability for the event A
given the event B, and the conditional probability
for the event A given the complementary event B,
namely

r5(A) = Pr(A\B) — P(A\B®)
Pr(A n B) — Pr(4) Pr(B)
Pr(B)(1 — pr(B))
Similarly the regression coefficient r,(B) of the
event B with respect to the event A, given
r4(B) = Pr(B\A) — P(B\A4%)
Pr(A n B) — Pr(A4) Pr(B)

Pr(A)(1 —pr(4))

Definition2. Local Correlation coefficient between
two events A and B is defined by

818

pap = £/15(A).74(B)
Moreover, these measures allow studying the
behavior of interaction between any pair of numeric
random variables (T, T,) throughout the sample

space.
Let the joint distribution function be
F(t,t)=P(T:<t;, T.<t)), and the marginal

distribution function is defined as F,(t;)=P (T; <
t), F2(t2)=P(T<t).

Let introduce the events A= {t; < T; < t; + At}
B={t, <T, <t,+A,t,}, for any t,t, €
(—OO, OO)

Then the measures of dependence between events A
and B turn into a measure of local dependence
between the pair of r.v.’s T; and T, on the rectangle
D=[t,,t; + Ait1]X[ ty, t5 + Ayt,]. Naturally, they
are computed as follows:

rTZ((TlvTZ) S D)

_ ApF(ty, ) — [Fy(ty + Arty) — Fi(t)][Fo(t; + Agtp) — Fa(t)]
- [FiCty + Agty) — Fr(t)]{1 — [F1(ty + Arty) — Fi ()]}
Similarly for

rr,((T,, T,) € D)
_ ApF(ty, tp) — [F1(ty + Arty) — Fi(6)][F2(t; + Apty) — Fa(ty)]
h [Fa(tz + Azty) — Fo(t)]{1 — Fa(tz + Azty) — Fa(t)]}
Where
ApF(ty, tz) = F(t; + Agty, t; + Agty)
—F(ty + A4t t5)
— F(ty,t, + Ayty) + F(ty, ty)
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Hence, from Definition2, the Local Correlation will
be as follow:

pr,t, = *_|rr,((T1, T) € D).r1, ((Ty, To) € D)

Simulation and Results
Generate the correlate bivariate Weibull random
variable

In multivariate analysis, there are always
difficulties in generating the correlated random
variables for most types of distribution functions,
except for normal function. Although the
Exponential and Weibull distributions have
important characteristics in lifetimes (survival or
reliability) analysis, but their multivariate
distribution functions cannot be directly defined.

Therefore, to construct a multivariate
distribution function for Exponential or Weibull
random variables copulas are mostly used. For
testing such functions, Nelsen (2) has discussed
several methods for generating numbers from
copulas. Whilst, these approaches are not the best
methods for testing their performance as the data
obtained from a particular copula will favor that
copula over the others. In this paper, a simple
technique is used to generate a correlated Weibull
random variable via bivariate Normal random
variable. The main procedure is described below:
If X~N(0,1) then X%~y
Now, if X;, X, are two independent Normal
variables then it can be shown that Nelsen (2):

Similarly, T, can be derived from two independent
normal variables Y3,Y, ~N(0,1) Then,

T,~Web(A,, a,). Therefore, if (X1,Y1) and (X,,Y>)
are generated from bivariate Normal distribution
((X1,Y1), (X2,Y2)) ~N(i1, £) where p = (0,0) & £ =

(F1> F{) forany 0 < p < 1, then a bivariate Weibull

random variable (Ty, T,) ,with some kind of
dependence, can be obtained. To generate bivariate
Weibull random variables with A, o; ,A,, o, from
BivN(y, X), different sizes (250,500, 1000) are
considered. By using Matlab 10, the following
results, in Table 1, are obtained.

Table 1. Bivaraite N(u, X) random variables

BivN(y, Z)

Size (n) _ =(L 9
u=(00) 2=(y )

1.000 .919

- -0.0121, 0.0287 919 1.000

1.000 .897

0.0353, 0.0420 897 1.000

-0.0158, 0.0141 1.0% 903

- 903 1.00

1.000 .889

0.0075, -0.0289 889 1.000

-0.0057, -0.0140 507 1006

907 1.000

1000 1.000 .904

Then, the correlate Exponential and Weibull R.V. s
with correlation can be generated. The main results
are shown in Table2.

2 2 1
T =2 ~Exp(1) , Ty = MT@~Web(dy, a;)
Table 2. Exponential and Weibull Random variables
Size (n) Exponential R.V. Weibull R. V.
1= (1,1) z A=2a, =15 1, =3,a, =25 T
1.000 .786 1.000 .794
250 0.9830, 0.9862 786 1.000 2.0027 1.4501 2.9834 2.3492 794 1.000
1.000 .829 1.000 .796
500 0.9911, 1.0345 829 1.000 2.0121 1.5006 29473 2.4413 796 1.000
1.000 .799 1.000 .781
1000 1.0089, 0.9992 299 1.000 2.0046 1.5455 3.0118 2.5567 781 1.000

To show that the generated random samples
are distributed as Weibull, PPplot is applied to test
these samples for different sample sizes (250, 500

819

and 1000), The main outcomes are displayed in
Fig.2.
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Local Dependence for bivariate Weibull
distribution
In this part, when the Weibull R.V.s are

generated, and A, t,, A,t, discussed in section 3, are

Ayt = W, the local p,,(x, y) for each

copula (Gumbel, Clayton and Independent) is
determined, then the range of local correlation
Pxy(x,y) is evaluated. The main results are shown in

computed where A;t; =

range of RV of Ty

10

and  Taple3:

Table 3. Correlate Weibull R.V. with sample Size=250 for different sets of Parameters

Clayton’s
7.2e-6<p<0.5865

1.4e-5<p<0.5995

2.73e-7<p<0.7376

Independence
O0<p<2.3e-13

0<p<2.07e-13

A1, Az, A1, As, T Interval Correlation

y, &, @, & Gumbel’s
ngf 07 é:jggj (2)2;13 0.7135  1.4e-5<p<0.7568
stsjlz éii?ég:ofgée; 0.6997  1.07e-5<p<0.747
i53:,0.7 12225,268.3607 0.6837  4.8e-6<p<0.5667
Yo7 Teeie 06518 66e6<pe0.42es
i i 88?8058(3)8 0.6763  2.01e-5<p<0.6507
if52,'0.7 52471'5,167.'706 0.6526  1.11e-7<p<0.4921
if52,'1_5 i:i‘;?’l_ﬂ'g“& 0.6718  4.7e-7<p<0.5433

0<p<1.064e-12
5.6e-7<p<0.7069 0<p<1.14e-13
6.16e-6<p<0.6953 0<p<1.39e-13
2.24e-6<p<0.5747 0<p<9.41e-14

9.64e-6<p<0.8067 0<p<2.63e-14

Table 3 shows the results for the estimated
value of the parameters, the Kendall tau; Pearson
correlation and the range of local correlation, for
each set of parameters. The results conclude that the
range of local dependence is changing according to
the value of the parameter as well as the copula
methods.

However, to support the results in Table 3, the same
procedures have been repeated 100 times for sample
size 250, with two sets of parameters, the results are
given in Table 4.

Table 4. Correlate Weibull R. V. and same size 250 with replicated it 100 times

Clayton’s copula
4.08e-6< p <0.7051

Independence copula
0< p <9.90e-14

A1, Az, Mean Tau Interval, Correlation

ay, Gumbel’s copula
2,3,15,17 0.6907 6.23e-6<p<0.4891
2,3,05,0.7 0.6875 8.35e-6< p <0.7161

3.9e-6< p <0.5539 0<p <1.44e-13

Finally, for uncorrelated Weibull’s random
variables, when the local correlation is estimated for
the same set of parameters in Table 3, the computed

value of p,,(x,y) are approximately zero for all
cases. These are explained in Table 5.
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Table 5. Uncorrelated Weibull R.V. for sample Size=250 and difference sets of Parameters.

Alt AZ' 21122'

Interval Correlation

aq, a,, a, Tau Gumbel’s Clayton’s Independence
2,3, 2.01, 3.08, 0018  2.3e-8<p<0.0108 1.99¢-8<p<0.0125 0<p<2.956-14
0.5,0.7 0.517,0.726
§j53,*2 3:2‘1‘: i:ggh 0012 6.80-9<p<0.0045 6.560-8<p<0.0051 0<p<1.97¢-13
if53,70.7 i:ig: g:%gb 0.0221 1.83e-8<p<0.0176 1.02e-8<p<0.0237 0<p<1.35e-14
ié’” igi igg’ -0.034 1.87e-7<p<0.0257 2.21e-7<p<0.0275 0<p<4.3le-14
i i 2:82: 1:82’ -0.039 1.17e-7<p<0.0381 2.14e-8<p<0.0243 0<p<1.26e-13
i;’ol? iﬁ (1):326 0.0059 4.33e-8<p<0.0048 1.9e-8<p<0.005 0<p<1.04e-13
§j52”1l5 iég 1:2} 0028 1918e-7<p<0.0158  1.11e-7<p<0.0235 0<p<4.766-14
Application estimated values (especially Scale parameters)

In this section, in order to select the most
efficient bivariate distribution among the three
constructed functions from each copula (Gumbul’s,
Clayton’s and Independent) the Local Dependence
Procedure is applied. To test this procedure, a data
set from the Diabetic Retinopathy Study (DRS) (18)
for pairs of right-censored failure time data is
implemented. DRS were conducted by the National
Eye Institute to measure the effect of laser
photocoagulation in delaying the blindness in the
patients with diabetic retinopathy. The study was
consisted of 197 high risk patients where each
patient had one eye randomized to laser treatment
and the other eye received no treatment. For each
patient, the times to blindness in both eyes were
recorded in months when censoring caused by
withdrawal, death or end of the study.

In this application let T1, T2 denotes the
time to the blindness of the treated and untreated
eye respectively. To estimate the parameters,
suppose that the times are distributed as univariate
Weibull  distribution, the marginal Survival
distribution functions of T1 and T2 can be written
as follows:

S, (t2) = Exp{— () )
S,(t,) = Exp{~ (2 )}

Hence,
log (—1og(S:(t1))) = log(t;) — oy log(y)

log (—log(S5(t,)) ) = o, log(t,) — azlog(2z)
From that if Sy(t;) and Sy(t;) are known then the
linear models given above can easily be fitted to
estimate the Scale and Shape parameters.
Specifically, when S (k=1,2) denote the Kaplan—

Meier (KM) estimate of Sy based on the DRS data.
Table 6 shows the results obtained to the
Scale and shape parameters of T1 and T2. The

and
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indicate that the treatment did seem to significantly
delay the blinded in the patients.

Table 6. Estimated value of Scale and Shape
parameters

Shape Parameter

Times Scale Parameter 1
T, 114.583 0.948
T, 58.596 0.896

To check the compatibility of the above
estimation procedures, the estimated marginal
Weibull Survival functions and K-M Survival
functions of T1 and T2 are plotted. It is shown in
Fig.3.

Weibull distribution vs. KM distribution

Survival distribution

20 50 60

Weibull distribution vs. KM distribution

K
s WYeibull

08}

Survival distribution
o o
o ~

o
o
T

Q
=

30 40 50 60
Time (T2)

Figure 3. K-M Survival distribution and Weibull
Survival distribution of T, and T,.

u] 10 20 70
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In Figure 3 two survival distributions are
displayed; the first curve is for T1 (treated eyes) in
which non-parametric survival distribution (K-M)
and parametric survival distribution (Weibull
distribution) are plotted while the second curve
represents the non-parametric survival distribution
(K-M) and parametric survival distribution (Weibull
distribution) for T2 (untreated eyes). Moreover, it is
shown that there is a significant difference between
the survival distributions for T1 and T2 at any time
scale; it is found that the probability of survival T1
is always higher than the probability of survival T2.
For example, the probability of survival of T1 after
60 month time is between .65 to .7 (Survival Rate
65% to 70%) while for T2 at the same time is
between .35 to .4, in other words, the treated eyes
have greater chance for non-blindness Compared to

Local Dependence of Gumbel Copula

o
= -

Gumbel Local Dependence

untreated eyes.

Finally the Local Dependence technique is
applied to each Copula (Gumbel, Clyton and
Independent) and the results are displayed in Figure
4 and Table 7. This indicated that, at the beginning
of the DRS there exists a high relationship between
the two times T, and T, while the local dependence
gradually decreasing to zero for each of Gumbel’s
and Clyton’s Copula at the end of the study. While
for independent copula the value of local
dependence becomes zero everywhere.
Furthermore, the data explain that Clyton Copula
shows higher value of local dependence, this,
implies that Clyton Copula forms an efficient
bivariate distribution for a bivariate right censored
data T, and T».

Local Dependence Clyton Copula

70

80

= = 50
0%, o =2 30 40

Clayton Local Dependence

Local Dependence of Independent Copula

Independent Local Dependence

Figure 4. Local Dependence function of the copulas

Table 7. shows the range of Local Dependence
for each Copula

Weibull marginal; these bivariate functions are
commonly used in survival and reliability analysis.

The main results concluded that it is possible to
apply Local Dependence to identify the best

estimated bivariate distribution. Moreover, for a
bivariate Weibull distribution, it is shown that the
values of the parameters have great effect on the

Gumbel Independent
Copula Clayton Copula Copula
Local 6.31e-6  9.565e- 0 <prr,<
Dependence <py, r,< 6<pr,7,<0.4033 1.3706e-15
0.1522
Conclusion:

In this paper, the local dependence is used to
identify an efficient bivariate Weibull distribution
among the three Archimedean Copula Models using

strength of dependence for each method.
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