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Abstract: 
  In multivariate survival analysis, estimating the multivariate distribution functions and then 

measuring the association between survival times are of great interest. Copula functions, such as 

Archimedean Copulas, are commonly used to estimate the unknown bivariate distributions based on known 

marginal functions. In this paper the feasibility of using the idea of local dependence to identify the most 

efficient copula model, which is used to construct a bivariate Weibull distribution for bivariate Survival 

times, among some Archimedean copulas is explored. Furthermore, to evaluate the efficiency of the 

proposed procedure, a simulation study is implemented. It is shown that this approach is useful for practical 

situations and applicable for real datasets. Moreover, when the proposed procedure implemented on Diabetic 

Retinopathy Study (DRS) data, it is found that treated eyes have greater chance for non-blindness compared 

to untreated eyes. 

 

Keywords: Archimedean copula, Bivariate distribution, Local Dependence, Survival Analysis, Weibull 

distribution. 

 

Introduction: 
A  copula  function  is  a  rule  which  

gathers  or  couples  one-dimensional  marginal  

distribution functions into a form of multivariate 

distribution function. In the last century, copulas 

had an important role in several areas of statistics.  

Fisher (1), discussed the importance of copula 

precisely in his transcripts in the Encyclopedia of 

Statistical Sciences, “Copulas are of interest to 

statisticians for two main reasons; first, as a way of 

studying scale-free measures of dependence; and 

secondly, as a starting point for constructing 

families of bivariate distributions”. For more details 

about copula models see (2). 

  One of the most popular families of copulas 

is the Archimedean Copula, which is an easy 

function to handle, simple and closed-form 

expression (3, 4, 5, 6). Furthermore, over the years, 

it has been successfully applied in many fields of 

research studies (7, 8, 9, 10). 

In order to identify the most appropriate 

copula model, tail dependence coefficient has been 

applied by many researchers (11, 12, 13, 14, 15 and 

16). It is a simple technique used for measuring the 

dependence between variables (associated pairs of 

data) in the tail of the multivariate distribution. 

Actually, it measures only the dependence at the 

extreme data values and ignores the others. To 

overcome the deficiency of the tail dependence, Esa 

and Dimitrov (17) introduced a new technique 

called local dependence in which the dependency is 

measured at every point on the distribution surface 

including extreme points.  

In this paper, to drive a bivariate Weibull 

function, Archimedean copulas are used. By using 

Weibull marginal distributions three different 

bivariate Weibull functions are constructed. These 

functions can be used for analyzing multi-

dimensional problems such as survival or reliability 

analysis. In order to identify the best copula, a 

correlate Weibull random variable is generated to 

compute the Local Dependence for these copulas. 

Hence, the results can provide a clear guideline for 

selecting the best copula model and then a proper 

bivariate Weibull distribution. 

 

Bivariate Weibull Distribution 
The Archimedean copula is a convenient 

method to model a bivariate distribution due to 

its simple form and a variety of dependence 
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structures. Therefore in this section three different 

models of Archimedean have been considered to 

derive bivariate Weibull distribution (BWD); 

Gumbel copula, Clayton copula (aka Cook and 

Johnson’s copula) and Independent (or Product) 

copula, with association parameter θ which is 

given by Kendal tau (τ) (2). These Archimedean 

copulas C(u, v;θ) are defined as follows: 

Gumbel’s copula:  C (u, v;θ ) = exp{−[(− log u)
θ 

+ (− 

log v)
θ 

]
1/ θ 

}  where  𝜏 =
1

1_𝜃 

Clayton’s copula:  C (u, v;θ ) = (u 
–θ 

+ v 
–θ 

− 1) 
−1 / θ 

 

where  
𝜏 =

𝜃

1_𝜃 

 

and    Independent copula:  𝐶(𝑢, 𝑣, 𝜃) = 𝑢. 𝑣 

 

Now, to construct bivariate Weibull 

functions, let T1, T2 be two Weibull random 

variables with 𝜆1, 𝛼1, 𝜆2, 𝛼2 scale and shape 

parameters respectively. Then the marginal 

distribution functions are 

𝐹1(𝑡1) = 1 − 𝐸𝑥𝑝 [− (
𝑡1
𝜆1)

𝛼1

]    &   𝐹2(𝑡2) = 1 −

𝐸𝑥𝑝 [− (
𝑡2
𝜆2)

𝛼2

]     0 < 𝑡1, 𝑡2 < ∞ 

and survival distribution functions are  

𝑆1(𝑡1) = 𝐸𝑥𝑝 [− (
𝑡1

𝜆1)
𝛼1

]    &   𝑆2(𝑡2)

= 𝐸𝑥𝑝 [− (
𝑡2

𝜆2)
𝛼2

]           0 < 𝑡1, 𝑡2

< ∞ 

Then, the BWFs are derived from:  

 

1- Gumbel’s formula, the BWD is defined as: 

𝐹(𝑡1, 𝑡2) = exp {−[(−log(1 − 𝐸𝑥𝑝 [− (
𝑡1
𝜆1)

𝛼1

]))𝜃 +

(−log(1 − 𝐸𝑥𝑝 [− (
𝑡2
𝜆2)

𝛼2

]))𝜃]
1
𝜃
 } 

and bivariate survival is defined as 

𝑆(𝑡1, 𝑡2) = exp {−[(−log(𝐸𝑥𝑝 [− (
𝑡1

𝜆1)
𝛼1

]))𝜃

+ (−log(𝐸𝑥𝑝 [− (
𝑡2

𝜆2)
𝛼2

]))𝜃]
1
𝜃
 

 

2- Clayton’s formula, the BWD and bivariate 

survival are defined as: 

𝐹(𝑡1, 𝑡2) = ((1 − 𝐸𝑥𝑝 [− (
𝑡1

𝜆1)
𝛼1

])−𝜃

+ (1 − 𝐸𝑥𝑝 [− (
𝑡2

𝜆2)
𝛼2

])−𝜃 −1)
−1
𝜃

 

 𝑆(𝑡1, 𝑡2) = ((𝐸𝑥𝑝 [− (
𝑡1
𝜆1)

𝛼1

])−𝜃 +

(𝐸𝑥𝑝 [− (
𝑡2
𝜆2)

𝛼2

])−𝜃 −1)
−1
𝜃

 

 

3- The Independent, BWD and survival 

distribution are  

𝐹(𝑡1, 𝑡2) = (1 − 𝐸𝑥𝑝 [− (
𝑡1

𝜆1)
𝛼1

]) (1

− 𝐸𝑥𝑝 [− (
𝑡2

𝜆2)
𝛼2

]) 

𝑆(𝑡1, 𝑡2) = (𝐸𝑥𝑝 [− (
𝑡1
𝜆1)

𝛼1

]) (𝐸𝑥𝑝 [− (
𝑡2
𝜆2)

𝛼2

]). 

The following figures (Fig. 1) show Weibull 

distributions and their copulas for W (2, 1.5), W 

(3,1.7) 
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Figure 1. Marginal Weibull distributions and their bivariate Weibull distributions 

 

Local Dependence  
The measure of local dependence can be 

derived from the sources of probability theory. Esa 

and Dimitrov (17) have developed the idea of how 

probability tools can be used to measure strength of 

dependence between random events and then 

defined regression coefficients for measuring the 

magnitude of local dependence between random 

variables.  

The most informative measures of dependence 

between random events are two regression 

coefficients defined by: 

Definition1.  Regression coefficient rB(A)  of the 

event А with respect to the event В is the difference 

between the conditional probability for the event А 

given the event В, and the conditional probability 

for the event А given the complementary event B, 

namely  

𝑟𝐵(𝐴) = 𝑃𝑟(𝐴\𝐵) − 𝑃(𝐴\𝐵𝐶) 

=
Pr(𝐴 ∩ 𝐵) − Pr(𝐴) Pr (𝐵)

Pr (𝐵)(1 − 𝑝𝑟(𝐵))
 

Similarly the regression coefficient rA(B) of the 

event B with respect to the event A, given 

𝑟𝐴(𝐵) = 𝑃𝑟(𝐵\𝐴) − 𝑃(𝐵\𝐴𝐶)

=
Pr(𝐴 ∩ 𝐵) − Pr(𝐴) Pr (𝐵)

Pr (𝐴)(1 − 𝑝𝑟(𝐴))
 

 

Definition2.  Local Correlation coefficient between 

two events A and B is defined by   

𝜌𝐴𝐵 = ±√𝑟𝐵(𝐴). 𝑟𝐴(𝐵) 

Moreover, these measures allow studying the 

behavior of interaction between any pair of numeric 

random variables (T1, T2) throughout the sample 

space. 

 Let the joint distribution function be 

F(t1,t2)=P(T1<t1, T2<t2), and the marginal 

distribution function is defined as  F1(t1)=P (T1 < 

t1), F2(t2)=P(T2<t2).  

Let introduce the events A= {t1 ≤ T1 ≤ t1 + ∆1t1}, 

B= {t2 ≤ T2 ≤ t2 + ∆2t2}, for any t1, t2 ∈ 

(−∞, ∞). 

Then the measures of dependence between events A 

and B turn into a measure of local dependence 

between the pair of r.v.’s T1 and T2 on the rectangle 

D=[t1, t1 + ∆1t1]×[ t2, t2 + ∆2t2]. Naturally, they 

are computed as follows:  

 
rT2

((T1, T2) ∈ D)

=
∆DF(t1, t2) − [F1(t1 + ∆1t1) − F1(t1)][F2(t2 + ∆2t2) − F2(t2)]

[F1(t1 + ∆1t1) − F1(t1)]{1 − [F1(t1 + ∆1t1) − F1(t1)]}
 

Similarly for   
rT2

((T1, T2) ∈ D)

=
∆DF(t1, t2) − [F1(t1 + ∆1t1) − F1(t1)][F2(t2 + ∆2t2) − F2(t2)]

[F2(t2 + ∆2t2) − F2(t2)]{1 − F2(t2 + ∆2t2) − F2(t2)]}
 

Where  

∆DF(t1, t2) = F(t1 + ∆1t1, t2 + ∆2t2)
− F(t1 + ∆1t1, t2)
− F(t1, t2 + ∆2t2) + F(t1, t2) 

Marginals Weibull distribution Gumbel’s copula 

Clayton’s copula Independent copula 
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Hence, from Definition2, the Local Correlation will 

be as follow: 

ρT1T2
= ±√rT2

((T1, T2) ∈ D). rT1
((T1, T2) ∈ D) 

 

 

Simulation and Results 
Generate the correlate bivariate Weibull random 

variable 

In multivariate analysis, there are always 

difficulties in generating the correlated random 

variables for most types of distribution functions, 

except for normal function. Although the 

Exponential and Weibull distributions have 

important characteristics in lifetimes (survival or 

reliability) analysis, but their multivariate 

distribution functions cannot be directly defined. 

Therefore, to construct a multivariate 

distribution function for Exponential or Weibull 

random variables copulas are mostly used. For 

testing such functions, Nelsen (2) has discussed 

several methods for generating numbers from 

copulas. Whilst, these approaches are not the best 

methods for testing their performance as the data 

obtained from a particular copula will favor that 

copula over the others. In this paper, a simple 

technique is used to generate a correlated Weibull 

random variable via bivariate Normal random 

variable. The main procedure is described below:  

If 𝑋~𝑁(0,1) then 𝑋2~𝜒(1)
2  

Now, if X1, X2 are two independent Normal 

variables then it can be shown that Nelsen (2): 

𝑇 =
𝑋1

2+𝑋2
2

2
~𝐸𝑥𝑝(1)  ,  𝑇1 = 𝜆1𝑇

1
𝛼1~𝑊𝑒𝑏(𝜆1, 𝛼1) 

Similarly, 𝑇2 can be derived from two independent 

normal variables 𝑌1,𝑌2 ~𝑁(0,1)  Then,  

  𝑇2~Web(λ2, α2). Therefore, if (X1,Y1) and (X2,Y2) 

are generated from bivariate Normal distribution 

((X1,Y1), (X2,Y2)) ~N(μ, Σ) where μ = (0,0) & 𝛴 =

(
1 ρ
ρ 1

) for any 0 < 𝜌 < 1, then a bivariate Weibull 

random variable (T1, T2) ,with some kind of 

dependence, can be obtained. To generate bivariate 

Weibull random variables with λ1, α1 , λ2, α2   from 

BivN(μ, Σ),  different sizes (250,500, 1000) are 

considered.  By using Matlab 10, the following 

results, in Table 1, are obtained.   

 

Table 1. Bivaraite N(𝝁, 𝚺) random variables 

Size (n) 
BivN(𝜇, Σ) 

𝜇 = (0,0) Σ = (
1 . 9
. 9 1

) 

250 

-0.0121,  0.0287 
1.000    .919 

.919    1.000 

0.0353, 0.0420 
1.000    .897 

.897   1.000 

500 

-0.0158, 0.0141 
1.000    .903 

.903    1.00 

0.0075,  -0.0289 
1.000    .889 

.889    1.000 

1000 

-0.0057,  -0.0140 
1.000    .907 

.907    1.000 

-0.0480,  -0.0344 
1.000    .904 

.904    1.000 

 

Then, the correlate Exponential and Weibull R.V. s 

with correlation can be generated. The main results 

are shown in Table2. 

 

Table 2. Exponential and Weibull Random variables 

Size (n) 
Exponential R.V. Weibull R. V. 

𝜆 = (1,1) Σ 𝜆1 = 2, 𝛼1 = 1.5 𝜆1 = 3, 𝛼1 = 2.5 Σ 

250 0.9830, 0.9862 
1.000    .786 

.786    1.000 
2.0027    1.4501 2.9834    2.3492 

1.000    .794 

.794    1.000 

500 0.9911, 1.0345 
1.000    .829 

.829    1.000 
2.0121    1.5006 2.9473    2.4413 

1.000    .796 

.796    1.000 

1000 1.0089, 0.9992 
1.000     .799 

.799    1.000 
2.0046    1.5455 3.0118    2.5567 

1.000    .781 

.781    1.000 

 

To show that the generated random samples 

are distributed as Weibull, PPplot is applied to test 

these samples for different sample sizes (250, 500 

and 1000), The main outcomes are displayed in 

Fig.2. 
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Figure 2. PPplot for W1 and W2 R.Vs for size 250, 500, 1000 

  

Local Dependence for bivariate Weibull 

distribution 

In this part, when the Weibull R.V.s are 

generated, and ∆1𝑡1, ∆2𝑡2 discussed in section 3, are 

computed where ∆1𝑡1 =
𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑅.𝑉 𝑜𝑓 𝑇1

10
  and 

∆2𝑡2 =
𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑅.𝑉 𝑜𝑓 𝑇2

10
, the local 𝜌𝑥𝑦(𝑥, 𝑦) for each 

copula (Gumbel, Clayton and Independent) is 

determined, then the range of local correlation 

𝜌𝑥𝑦(𝑥, 𝑦) is evaluated. The main results are shown in 

Table3: 

 

Table 3. Correlate Weibull R.V. with sample Size=250 for different sets of Parameters 

 

Table 3 shows the results for the estimated 

value of the parameters, the Kendall tau; Pearson 

correlation and the range of local correlation, for 

each set of parameters. The results conclude that the 

range of local dependence is changing according to 

the value of the parameter as well as the copula 

methods.  

However, to support the results in Table 3, the same 

procedures have been repeated 100 times for sample 

size 250, with two sets of parameters, the results are 

given in Table 4.  

 

 

Table 4. Correlate Weibull R. V. and same size 250 with replicated it 100 times 

𝜆1, 𝜆2, 
𝛼1, 𝛼2 

Mean Tau 
Interval  Correlation 

Gumbel’s copula Clayton’s copula Independence copula 
2, 3 , 1.5, 1.7 0.6907 6.23e-6<𝜌<0.4891 4.08e-6< 𝜌 <0.7051 0< 𝜌 <9.90e-14 

2, 3, 0.5, 0.7 0.6875 8.35e-6< 𝜌 <0.7161 3.9e-6< 𝜌 <0.5539 0< 𝜌 <1.44e-13 

 

Finally, for uncorrelated Weibull’s random 

variables, when the local correlation is estimated for 

the same set of parameters in Table 3, the computed 

value of 𝜌𝑥𝑦(𝑥, 𝑦) are approximately zero for all 

cases. These are explained in Table 5. 

 

 

𝜆1, 𝜆2, 
𝛼1, 𝛼2 

�̂�1, �̂�2, 
�̂�1, �̂�2 

Tau 
Interval  Correlation 

Gumbel’s Clayton’s  Independence  

2, 3 , 

0.5, 0.7 

1.963, 2.971, 

0.463, 0.656 
0.7135 1.4e-5<p<0.7568 7.2e-6<p<0.5865 0<p<2.3e-13 

2, 3, 

0.5, 2 

1.99, 3.005, 

0.4736, 1.896 
0.6997 1.07e-5<p<0.747 1.4e-5<p<0.5995 0<p<2.07e-13 

2, 3, 

1.5, 0.7 

1.95, 2.89, 

1.539, 0.7007 
0.6837 4.8e-6<p<0.5667 2.73e-7<p<0.7376 0<p<1.064e-12 

2, 3, 

1.5, 1.7 

1.89, 2.85, 

1.65, 1.81 
0.6518 6.6e-6<p<0.4288 5.6e-7<p<0.7069 0<p<1.14e-13 

1, 1, 

1, 1 

0.85, 0.903, 

0.918, 0.908 
0.6763 2.01e-5<p<0.6507 6.16e-6<p<0.6953 0<p<1.39e-13 

3, 2, 

1.5, 0.7 

2.7, 1.7, 

1.45, 0.706 
0.6526 1.11e-7<p<0.4921 2.24e-6<p<0.5747 0<p<9.41e-14 

2, 2, 

1.5, 1.5 

1.949, 1.948, 

1.47, 1.49 
0.6718 4.7e-7<p<0.5433 9.64e-6<p<0.8067 0<p<2.63e-14 
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Table 5. Uncorrelated Weibull R.V. for sample Size=250 and difference sets of Parameters. 

𝜆1, 𝜆2, 
𝛼1, 𝛼2 

�̂�1, �̂�2, 
�̂�1, �̂�2 

Tau 
Interval  Correlation 

Gumbel’s Clayton’s Independence 
2, 3, 

0.5, 0.7 

2.01, 3.08, 

0.517,0.726 
-0.018 2.3e-8<p<0.0108 1.99e-8<p<0.0125 0<p<2.95e-14 

2, 3, 

0.5, 2 

2.04, 2.83, 

0.51, 1.954 
-0.012 6.8e-9<p<0.0045 6.56e-8<p<0.0051 0<p<1.97e-13 

2, 3, 

1.5, 0.7 

1.95, 3.13, 

1.45, 0.700 
0.0221 1.83e-8<p<0.0176 1.02e-8<p<0.0237 0<p<1.35e-14 

2, 3, 

1.5, 1.7 

2.05, 3.28, 

1.51, 1.80 
-0.034 1.87e-7<p<0.0257 2.21e-7<p<0.0275 0<p<4.31e-14 

1, 1, 

1, 1 

0.96, 1.08, 

1.03, 1.04 
-0.039 1.17e-7<p<0.0381 2.14e-8<p<0.0243 0<p<1.26e-13 

3, 2, 

1.5, 0.7 

2.73, 1.89, 

1.41, 0.710 
0.0059 4.33e-8<p<0.0048 1.9e-8<p<0.005 0<p<1.04e-13 

2, 2, 

1.5, 1.5 

2.26, 1.87, 

1.51, 1.44 
-0.028 1.918e-7<p<0.0158 1.11e-7<p<0.0235 0<p<4.76e-14 

  

Application  
In this section, in order to select the most 

efficient bivariate distribution among the three 

constructed functions from each copula (Gumbul’s, 

Clayton’s and Independent) the Local Dependence 

Procedure is applied. To test this procedure, a data 

set from the Diabetic Retinopathy Study (DRS) (18) 

for pairs of right-censored failure time data is 

implemented. DRS were conducted by the National 

Eye Institute to measure the effect of laser 

photocoagulation in delaying the blindness in the 

patients with diabetic retinopathy. The study was 

consisted of 197 high risk patients where each 

patient had one eye randomized to laser treatment 

and the other eye received no treatment. For each 

patient, the times to blindness in both eyes were 

recorded in months when censoring caused by 

withdrawal, death or end of the study. 

In this application let T1, T2 denotes the 

time to the blindness of the treated and untreated 

eye respectively. To estimate the parameters, 

suppose that the times are distributed as univariate 

Weibull distribution, the marginal Survival 

distribution functions of T1 and T2 can be written 

as follows: 

 S1(t1) = Exp{− (t1
λ1

 )
α1

} and              

S2(t2) = Exp{− (t2
λ2

 )
α2

} 

Hence, 

log (−log(S1(t1))) = α1 log(t1) − α1log (λ1)  

log (−log(S2(t2))) = α2 log(t2) − α2log (λ2) 

From that if S1(t1) and S2(t2) are known then the 

linear models given above can easily be fitted to 

estimate the Scale and Shape parameters. 

Specifically, when Ŝk (k=1,2) denote the Kaplan–

Meier (KM) estimate of Sk based on the DRS data. 

Table 6 shows the results obtained to the 

Scale and shape parameters of T1 and T2. The 

estimated values (especially Scale parameters) 

indicate that the treatment did seem to significantly 

delay the blinded in the patients.  

 

Table 6. Estimated value of Scale and Shape 

parameters 

Times Scale Parameter 𝜆 
Shape Parameter 

𝛼 

T1 114.583 0.948 

T2 58.596 0.896 

 

To check the compatibility of the above 

estimation procedures, the estimated marginal 

Weibull Survival functions and K-M Survival 

functions of T1 and T2 are plotted. It is shown in 

Fig.3. 

   
Figure 3. K-M Survival distribution and Weibull 

Survival distribution of T1 and T2. 
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In Figure 3 two survival distributions are 

displayed; the first curve is for T1 (treated eyes) in 

which non-parametric survival distribution (K-M) 

and parametric survival distribution (Weibull 

distribution) are plotted while the second curve 

represents the non-parametric survival distribution 

(K-M) and parametric survival distribution (Weibull 

distribution) for T2 (untreated eyes). Moreover, it is 

shown that there is a significant difference between 

the survival distributions for T1 and T2 at any time 

scale; it is found that the probability of survival T1 

is always higher than the probability of survival T2.  

For example, the probability of survival of T1 after 

60 month time is between .65 to .7 (Survival Rate 

65% to 70%) while for T2 at the same time is 

between .35 to .4, in other words, the treated eyes 

have greater chance for non-blindness Compared to 

untreated eyes. 

Finally the Local Dependence technique is 

applied to each Copula (Gumbel, Clyton and 

Independent) and the results are displayed in Figure 

4 and Table 7. This indicated that, at the beginning 

of the DRS there exists a high relationship between 

the two times T1 and T2 while the local dependence 

gradually decreasing to zero for each of Gumbel’s 

and Clyton’s Copula at the end of the study. While 

for independent copula the value of local 

dependence becomes zero everywhere. 

Furthermore, the data explain that Clyton Copula 

shows higher value of local dependence, this, 

implies that Clyton Copula forms an efficient 

bivariate distribution for a bivariate right censored 

data T1 and T2. 

 

 

 
Figure 4. Local Dependence function of the copulas 

 

Table 7. shows the range of Local Dependence 

for each Copula 
 Gumbel 

Copula 
Clayton Copula 

Independent 

Copula 

Local 

Dependence 

6.31e-6 

<𝜌𝑇1,𝑇2
< 

0.1522 

9.565e-

6<𝜌𝑇1,𝑇2
<0.4033 

0 <𝜌𝑇1,𝑇2
< 

1.3706e-15 

 

Conclusion:  
In this paper, the local dependence is used to 

identify an efficient bivariate Weibull distribution 

among the three Archimedean Copula Models using 

Weibull marginal; these bivariate functions are 

commonly used in survival and reliability analysis. 

The main results concluded that it is possible to 

apply Local Dependence to identify the best 

estimated bivariate distribution. Moreover, for a 

bivariate Weibull distribution, it is shown that the 

values of the parameters have great effect on the 

strength of dependence for each method. 
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 الموضعي على توزيعات ويبل ثنائية المتغيرات التي بنيت باستخدام ارخميديان كوبيلا ارتباط
 

سوار احمد
1
خوازبين فتاح         

1
عبدالصاحب عيسى       

2
 

 
 اربيل، اربيل، العراق.-جامعة صلاح الدينقسم الرياضيات، كلية العلوم،  1
2

 العراق.، اربيل-معهد الدراسات الوطنية 

 

 :الخلاصة

علاقة و ارتباط بين أوقات  في تحليل البقاء على قيد الحياة متعدد المتغيرات ، يعد تقدير دالة التوزيع متعدد المتغيرات و من ثم قياس

ارخميديان كوبيلا، بشكل شائع لتقدير توزيعات المتغيرات غير المعروفة بناءً على الدوال  ، مثل البقاء ذات أهمية كبيرة. تسُتخدم دالات الكوبيلا

و الأكثر كفاءة ، والذي  الكوبيلا نموذجافضل الموضعي لتحديد  ارتباطالهامشية المعروفة. في هذا البحث تم استكشاف جدوى استخدام فكرة 

ثنائي المتغير كدالة وقت البقاء ثنائي المتغير، من بين بعض انواع الآرخميديان كوبيلا. لتقييم كفاءة طريقة المقترحة ، تم  ويبل يستخدم لبناء دالة

ات البيانات الحقيقية. و عند تنفيذ الإجراء تنفيذ دراسة محاكاة، وقد ثبت أن هذا طريقة مفيد للحالات العملية وقابل للتطبيق على مجموع

وجد أن العيون المعالجة لديها فرصة أكبر لعدم فقدان البصر مقارنة  المقترحة، على بيانات فعلية، على بيانات دراسة اعتلال الشبكية السكري

 .بالعين غير المعالجة
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