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Abstract: 
A mathematical model constructed to study the combined effects of the concentration and the 

thermodiffusion on the nanoparticles of a Jeffrey fluid with a magnetic field effect the process of containing 

waves in a three-dimensional rectangular porous medium canal. Using the HPM to solve the nonlinear and 

coupled partial differential equations. Numerical results were obtained for temperature distribution, 

nanoparticles concentration, velocity, pressure rise, pressure gradient, friction force and stream function. 

Through the graphs, it was found that the velocity of fluid rises with the increase of a mean rate of volume 

flow and a magnetic parameter, while the velocity goes down with the increasing a Darcy number and lateral 

walls. Also, the velocity behaves strangely under the influence of the Brownian motion parameter and local 

nanoparticle Grashof number effect. 

 

Key words: Homotopy perturbation method (HPM), Jeffrey fluid, Magnetohydrodynamics )MHD(, 

Nanoparticles, Peristaltic flow. 

 

Introduction: 
The Peristaltic flow is a mechanics for 

pumped fluids into tubes when the wave-out of the 

contraction zone or expansion spreads along an 

expandable and shrinking tube containing fluid. The 

peristalses have very important applications in 

many industries and physiological systems. They 

include the transfer of urine and food through the 

urinary tract and digestive system respectively, 

blood circulation through blood movement, the 

menstrual movement for the egg in the fallopian 

tube. The major industrial application for this 

phenomenon is the design of rotary pumps used in 

pumping fluids without contamination due to 

contact with pumping munitions (1). Furthermore, 

the peristaltic movement study has acquired many 

applications, for example, ship movements, mud 

transport, sensitive or corrosive liquids, healthy 

fluids, and harmful fluids in the nuclear industry. In 

(2) Kothandapani and Srinivas analyzed the effect 

of a magnetic field in the peristaltic transport for a 

Jeffrey fluid in an asymmetric canal and discussed 

the problem in wave frame moved at a stable axial 

velocity under the approximations of low Reynolds 

number and long wavelength. The influence of wall 

properties and heat transfer on the peristaltic 

transport of a Jeffrey fluid through a porous 

medium in the magnetic field has been investigated 

by Al-Khafajy and Abdulhadi in (3). The effect of 

lateral walls on peristaltic flow in a rectangular duct 

has been investigated by (4). They noted that the 

uterine cross-section of the uterus may be 

preferably approximated by a tube than a 

rectangular section of a two-dimensional canal. 

Nadeem et al. (5) analyzed a "mathematical model 

for the peristaltic flow of Jeffrey fluid with 

nanoparticles phenomenon through a rectangular 

duct". 

Nanotechnology has basic and important 

applications in the modern industry in nano-size 

exhibit unmatched physical and chemical 

properties. Gasoline, oil, ethylene glycol and water 

are common examples of essential fluids used for 

liquid nanoparticles. Nano-fluids make a huge 

contribution to heat transfer such as fuel cells, 

microelectronics, hybrid engines, refrigerators, 

nuclear reactor radiators, space technology and 

many other cases. Suitable to the spacious thermal 

properties, nanofluid has attracted the consideration 
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of researchers to the fabrication of heat transfer 

fluids in hotness exchangers, in plants and in auto 

cooling chillers. In literature, many researchers and 

industrialists are studied nanofluid and their 

applications, (6-11). Nadeem and Maraj (6) 

described the mathematical analysis for peristaltic 

flow of a nanofluid in a curved channel with 

compliant walls. Hayat et al. (7) investigated the 

flow of MHD from a saturated porous space of 

Williamson fluid. The effect of thermal radiation on 

unstable free heat flow (MHD) for the rotation of 

Jeffrey nanofluid that passes through the porous 

medium was studied in (8). In (9) Latha and Kumar 

described the mathematical analysis to study the 

effects of Joule heating and Hall current by heat 

radiation on the peristaltic flow of a nanofluid in a 

channel with flexible walls. In (10) Hayat et al. 

investigated the magneto peristalsis of Jeffrey 

nanomaterial in vertical asymmetric compliant 

channel walls with considering nonlinear thermal 

radiation. In (11) Ansari et al. analyzed the problem 

of unstable laminar boundary layer flow, caused by 

propellant expansion sheet and thermal transfer to 

Jeffrey nanofluid. 

Stimulated by this, assume a mathematical 

model for analyzing the combined effects of 

concentration and heat diffusion on nanoparticles 

with the influence of the magnetic field on the 

process of containing waves in a rectangular porous 

medium channel in 3D. This paper consists of five 

sections, the first section includes formulating the 

governing equations with the boundary conditions 

in addition to displaying the dimensionless 

transformations for facilitation the governing 

equations with assuming a very small Reynolds 

number or a very large wavelength to solve the 

problem. In the second section, the dimensionless 

equations are analytically solved by the HPM, the 

expressions are obtained for velocity profile, 

temperature distribution, pressure rise, pressure 

gradient, nanoparticles concentration and friction 

force. The third section includes the effects of 

various emerging parameters that are discussed 

through graphs in detail. The fourth section 

discusses the trapping phenomenon and the 

parameters that affect the increase and decrease, 

appear or disappear of the trapping bolus. The last 

section briefly reviews the most important 

parameters (Schmidt number, Grashof number, 

Prandtl number, Darcy number, magnetic 

parameter) that affect the movement of the fluid.  

 

Mathematical formulation: 

    Considered the peristaltic flow of a non-

Newtonian (Jeffrey) incompressible fluid with the 

concentration of nanoparticles in a cross-section of 

a normal rectangular three-dimensional canal (4). 

The flow is generated by the propagation of 

sinusoidal waves along the axial direction of the 

canal with c (constant velocity), Fig.1. 

                   
Figure 1. Schematic diagram for peristaltic flow in a rectangular duct 

 

The peristaltic waves on the walls as represented 

(4): 

𝑍 = ∓𝐻(𝑋, 𝑡) = ∓𝑎 ∓ 𝑏 𝑐𝑜𝑠 [
2𝜋

𝜆
(𝑋 − 𝑐𝑡)]  …  (1)

 whereas a and b are wave amplitudes, t is time and 

X is the wave propagation direction. 
     The walls are still parallel to XZ-plane that is 

unobstructed and not subject to any wave 

movement. Assuming that the side speed is zero as 

there is no change in the lateral direction of the 

transverse channel, that is ),0,( WUV  . The 

governing equations in three-dimensional for flow 

velocity of the nanofluid problem has the following 

form: 
𝜕𝑈

𝜕𝑋
+
𝜕𝑊

𝜕𝑍
= 0                            …  (2) 

𝜌𝑓 (
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+𝑊

𝜕𝑈

𝜕𝑍
) = −

𝜕𝑃

𝜕𝑋
+
𝜕𝑆𝑋𝑋

𝜕𝑋
+

𝜕𝑆𝑋𝑌

𝜕𝑌
+
𝜕𝑆𝑋𝑍

𝜕𝑍
+ 𝜌𝑓𝑔𝛼𝑓(𝑇̅ − 𝑇0) + 𝜌𝑓𝑔𝛼𝑓(𝐶̅ −

𝐶0) −
𝜇

𝑘
𝑈 − 𝜎𝐵0

2𝑈 … (3) 

0 = −
𝜕𝑃

𝜕𝑌
+
𝜕𝑆𝑌𝑋

𝜕𝑋
+
𝜕𝑆𝑌𝑌

𝜕𝑌
+
𝜕𝑆𝑌𝑍

𝜕𝑍
       …  (4) 

𝑇, 𝐶, 𝐵0 
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𝜌𝑓 (
𝜕𝑊

𝜕𝑡
+ 𝑈

𝜕𝑊

𝜕𝑋
+𝑊

𝜕𝑊

𝜕𝑍
) = −

𝜕𝑃

𝜕𝑍
+
𝜕𝑆𝑍𝑋

𝜕𝑋
+

𝜕𝑆𝑍𝑌

𝜕𝑌
+
𝜕𝑆𝑍𝑍

𝜕𝑍
−
𝜇

𝑘
𝑊 − 𝜎𝐵0

2𝑊       …  (5) 

𝜕𝑇̅

𝜕𝑡̅
+ 𝑈

𝜕𝑇̅

𝜕𝑋
+𝑊

𝜕𝑇̅

𝜕𝑍
=∝ (

𝜕2𝑇̅

𝜕𝑋2
+
𝜕2𝑇̅

𝜕𝑌2
+
𝜕2𝑇̅

𝜕𝑍2
) +

𝜏 {𝐷𝐵 (
𝜕𝐶̅

𝜕𝑋

𝜕𝑇̅

𝜕𝑋
+
𝜕𝐶̅

𝜕𝑌

𝜕𝑇̅

𝜕𝑌
+
𝜕𝐶̅

𝜕𝑍

𝜕𝑇̅

𝜕𝑍
) +

𝐷𝑇

𝑇𝑚
((
𝜕𝑇̅

𝜕𝑋
)
2

+

(
𝜕𝑇̅

𝜕𝑌
)
2

+ (
𝜕𝑇̅

𝜕𝑍
)
2

)}… (6) 
𝜕𝐶̅

𝜕𝑡̅
+ 𝑈

𝜕𝐶̅

𝜕𝑋
+𝑊

𝜕𝐶̅

𝜕𝑍
=

𝐷𝐵 (
𝜕2𝐶̅

𝜕𝑋2
+
𝜕2𝐶̅

𝜕𝑌2
+
𝜕2𝐶̅

𝜕𝑍2
) +

𝐷𝑇

𝑇0
(
𝜕2𝑇̅

𝜕𝑋2
+
𝜕2𝑇̅

𝜕𝑌2
+
𝜕2𝑇̅

𝜕𝑍2
)                                                          

…  (7) 

where 𝑈 is the component of the velocity in X-

direction, 𝑊 is the component of the velocity in Z-

direction, T is the temperature, C is the 

concentration of the fluid, 𝜇 is the dynamic 

viscosity, 𝑘 is the permeability, 𝐵0 is the magnetic 

field, 𝜎 is the electrical conductivity, 𝐾 is the 

thermal conductivity, 𝑐𝑝 is the specific heat capacity 

at constant pressure, 𝐷𝑇 is the coefficient of mass 

diffusivity, 𝑇𝑚 is the mean fluid temperature and 

𝜏 =
(𝜌𝑐)𝑝

(𝜌𝑐)𝑓 
is the ratio of the active thermal capacity 

of the nanoparticle to the thermal capacity of the 

base fluid. Also S represents the structural relations 

for Jeffrey fluid (12):  

𝑆 =
𝜇

1+𝜆1
(𝛾̇ + 𝜆2𝛾̈),                               …  (8) 

where 𝜆1the ratio of relaxation to retardation times, 

𝛾̇ is the shear rate, 𝜆2 is the retardation time and 𝜇 is 

the viscosity of the fluid. 

    To analyze the flow of the ),,( zyx current wave 

frame with the constant velocity c away from the 

),,( ZYX fixed frame by the transference 

𝑥 = 𝑋 − 𝑐𝑡, 𝑦 = 𝑌, 𝑧 = 𝑍, 𝑢 = 𝑈 − 𝑐, 𝑤 =
𝑊, 𝑝(𝑥, 𝑧) = 𝑃(𝑋, 𝑍, 𝑇), 𝑇 = 𝑇̅, 𝐶 = 𝐶̅…  (9)        

    Introducing the following dimensionless 

transformations for facilitating the governing 

equations of the motion, as follows: 

𝑥̅ =
𝑥

𝜆
, 𝑦̅ =

𝑦

𝑑
, 𝑧̅ =

𝑧

𝑎
, 𝑡̅ =

𝑐𝑡

𝜆
, 𝑢̅ =

𝑢

𝑐
, 𝑤̅ =

𝑤

𝑐𝛿
, 𝛿 =

𝑎

𝜆
, 𝑝̅ =

𝑎2𝑝

𝜇𝜆𝑐
, 𝑆̅ =

𝑎𝑆

𝜇𝑐
, ∝=

𝐾

(𝜌𝑐)𝑓
, 𝐷𝑎 =

𝐾

𝑎2

𝑆𝑐 = 
𝜇

𝜌𝐷𝐵
, 𝑅𝑒  =  

𝜌𝑐𝑎

𝜇
, ∅ =

𝑏

𝑎
, 𝜃 =

𝑇−𝑇0

𝑇1−𝑇0
, Ω =

𝐶−𝐶0

𝐶1−𝐶0
, ℎ̅ =

𝐻

𝑐
, 𝛽 =

𝑎

𝑑
, 𝐵𝑟 =

𝜌𝑓𝑔𝛼𝑓𝑎
2(𝐶1−𝐶0)

𝜇𝑐
,

𝑃𝑟 = 
𝜇

𝜌∝
, 𝑁𝑏 = 

𝜏𝐷𝐵(𝐶1−𝐶0)

∝
, 𝑁𝑡 = 

𝐷𝑇(𝑇1−𝑇0)

𝑇0∝
, 𝐺𝑟 =

𝜌𝑓𝑔𝛼𝑓𝑎
2(𝑇1−𝑇0)

𝜇𝑐
, 𝑀2 =

𝜎𝑎2𝐵0  
2

𝜇 }
 
 

 
 

          …  (10) 

 

where 𝑅𝑒, 𝑆𝑐, 𝑁𝑏, 𝑁𝑡, 𝐵𝑟, 𝐺𝑟, 𝑃𝑟, 𝐷𝑎 and 𝑀 

represent the Reynolds number, the Schmidt 

number, the Brownian motion parameter, the 

thermophoresis parameter, local nanoparticle 

Grashof number, local temperature Grashof 

number, Prandtl number, Darcy number and the 

magnetic parameter. 

    Compensate equations (10) into equations (1)-(9), 

and using the assumption of long-wavelength 𝛿 ≪1 

and low Reynolds number, lead to simplifying the 

equations to the following form: 
𝜕𝑢

𝜕𝑥
+
𝜕𝑤

𝜕𝑧
= 0                               …  (11) 

𝛽2
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
− (1 + 𝜆1) (

1

𝐷𝑎
+𝑀2) 𝑢 =

(1 + 𝜆1) (
1

𝐷𝑎
+𝑀2 +

𝜕𝑝

𝜕𝑥
− 𝐺𝑟𝜃 − 𝐵𝑟Ω) …  (12) 

𝜕𝑝

𝜕𝑦
= 0 ,  

𝜕𝑝

𝜕𝑧
= 0                           …  (13) 

𝛽2
𝜕2𝜃

𝜕𝑦2
+
𝜕2𝜃

𝜕𝑧2
+𝑁𝑏 (𝛽

2 𝜕Ω

𝜕𝑦

𝜕𝜃

𝜕𝑦
+
𝜕Ω

𝜕𝑧

𝜕𝜃

𝜕𝑧
) +

𝑁𝑡 (𝛽
2 (

𝜕𝜃

𝜕𝑦
)
2
+ (

𝜕𝜃

𝜕𝑧
)
2
) = 0                …  (14) 

 𝛽2
𝜕2Ω

𝜕𝑦2
+
𝜕2Ω

𝜕𝑧2
+

𝑁𝑡

𝑁𝑏
(𝛽2

𝜕2𝜃

𝜕𝑦2
+
𝜕2𝜃

𝜕𝑧2
) = 0       …  (15) 

    The boundaries of the channel will obtain the 

dimensionless form as follows: 

𝑧 = ∓ℎ(𝑥) = ∓1 ∓ ∅ 𝑐𝑜𝑠2𝜋𝑥               …  (16)
     The corresponding boundary conditions are: 

𝑢 = −1 at y = ∓1 , 𝑢 = −1 at 𝑧 = ∓ℎ(𝑥) ,                   
…  (17) 

𝜃 = 𝑎1, Ω = 𝑎2 at y = 1 ,  𝜃 = 𝑏1, Ω = 𝑏2 at 

𝑦 = −1 ,            …  (18) 

𝜃 =  Ω = 0 at  𝑧 = ℎ(𝑥) ,  𝜃 = Ω = 1 at  𝑧 =
−ℎ(𝑥)         …  (19) 

    The statements for the dimensionless flow 

functions can be described as 𝑢 =
𝜕𝜓

𝜕𝑧
, 𝑤 =

𝜕𝜓

𝜕𝑥
 

where 𝜓 represents the flow function. 

Problem solving by HPM:  

    The solution of the nonlinear partial differential 

equations (11)-(15) have been found by the HPM. 

The deformity equations for the problem are 

defined as (Ji-Huan, 2010).  

ℋ(𝑣, 𝑟) = 𝒱[𝑣] − 𝒱[𝑢̃0] + 𝑟𝒱[𝑢̃0] +

𝑟 {𝛽2
𝜕2𝑣

𝜕𝑦2
− (1 + 𝜆1) ((

1

𝐷𝑎
+𝑀2) (𝑣 + 1) +

𝜕𝑝

𝜕𝑥
−

𝐺𝑟Θ − 𝐵𝑟Ω)} = 0,… (20) 

ℋ(Θ, 𝑟) = 𝒱[Θ] − 𝒱[𝜃̃0] + 𝑟𝒱[𝜃̃0] +

𝑟 {𝛽2
𝜕2Θ

𝜕𝑦2
+ 𝑁𝑏 (𝛽

2 𝜕Φ

𝜕𝑦

𝜕Θ

𝜕𝑦
+
𝜕Φ

𝜕𝑧

𝜕Θ

𝜕𝑧
) +

𝑁𝑡 (𝛽
2 (

𝜕Θ

𝜕𝑦
)
2
+ (

𝜕Θ

𝜕𝑧
)
2
)} = 0, …  (21) 

ℋ(Φ, 𝑟) = 𝒱[Φ] − 𝒱[Ω̃0] + 𝑟𝒱[Ω̃0] +

𝑟 {𝛽2
𝜕2Φ

𝜕𝑦2
+

𝑁𝑡

𝑁𝑏
(𝛽2

𝜕2Θ

𝜕𝑦2
+
𝜕2Θ

𝜕𝑧2
)} = 0.    …  (22) 

Here, r is the parameter included that has the range 

 0 ≤ 𝑟 ≤ 1, provided that for  𝑟 = 0, obtained the 

primary solution and for  𝑟 = 1, reached the final 

solution. Here, 𝒱 is the linear operator that is taken 
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here as 𝒱 =
𝜕2

𝜕𝑧2
. Choosing the following 

preliminary estimates 

𝑢̃0(𝑦, 𝑧) =
1

𝛽2
(1 − 𝑦2)(𝑧2 − ℎ2) − 1,   …  (23) 

𝜃̃0 = Ω̃0 = 𝛽
2(𝑧2 − ℎ2) +

ℎ−𝑧

2ℎ
.                 …  (24) 

    Let us define  

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0 + 𝑟𝑣1 + 𝑟
2𝑣2 +⋯

Θ(𝑥, 𝑦, 𝑧) = Θ0 + 𝑟Θ1 + 𝑟
2Θ2 +⋯

Φ(𝑥, 𝑦, 𝑧) = Φ0 + 𝑟Φ1 + 𝑟
2Φ2 +⋯

}   …  (25) 

    Replacing the equations (25) into equations (20)–

(22) and then the similar forces are compared with 

𝑟, the following problems are produced with 

corresponding boundary conditions, i.e. 

For 𝑟0: 

𝒱[𝑣0] − 𝒱[𝑢̃0] = 0,  with 𝑣0 = −1 at  𝑦 = ∓1,  

𝑣0 = −1 at  𝑧 = ∓ℎ(𝑥),  

𝒱[Θ0] − 𝒱[𝜃̃0] = 0,  with Θ0 = 𝑎1  at  𝑦 = 1,  

Θ0 = 𝑏1 at  𝑦 = −1, Θ0 = 0 at  𝑧 = ℎ(𝑥),  Θ0 = 1 

at  𝑧 = −ℎ(𝑥), 

𝒱[Φ0] − 𝒱[Ω̃0] = 0, with Φ0 = 𝑎2 at  𝑦 = 1,  

Φ0 = 𝑏2 at  𝑦 = −1, Φ0 = 0 at  𝑧 = ℎ(𝑥),  Φ0 = 1 

at  𝑧 = −ℎ(𝑥). 

For 𝑟1: 
𝜕2𝑣1

𝜕𝑧2
+ 𝛽2

𝜕2𝑣0

𝜕𝑦2
+
𝜕2𝑣0

𝜕𝑧2
− (1 + 𝜆1) ((

1

𝐷𝑎
+

𝑀2) (𝑣0 + 1) +
𝜕𝑝

𝜕𝑥
− 𝐺𝑟Θ0 − 𝐵𝑟Φ0) = 0, 

            
𝜕2Θ1

𝜕𝑧2
+ 𝛽2

𝜕2Θ0

𝜕𝑦2
+
𝜕2Θ0

𝜕𝑧2
+𝑁𝑏 (𝛽

2 𝜕Θ0

𝜕𝑦

𝜕Φ0

𝜕𝑦
+

𝜕Θ0

𝜕𝑧

𝜕Φ0

𝜕𝑧
) + 𝑁𝑡 (𝛽

2 (
𝜕Θ0

𝜕𝑦
)
2
+ (

𝜕Θ0

𝜕𝑧
)
2
) = 0,        

            
𝜕2Φ1

𝜕𝑧2
+ 𝛽2

𝜕2Φ0

𝜕𝑦2
+
𝜕2Φ0

𝜕𝑧2
+

𝑁𝑡

𝑁𝑏
(𝛽2

𝜕2Θ0

𝜕𝑦2
+

𝜕2Θ0

𝜕𝑧2
) = 0. 

with 𝑣1 = Θ1 = Φ1 = 0 at  𝑦 = ∓1,  𝑣1 = Θ1 =
Φ1 = 0 at  𝑧 = ∓ℎ(𝑥),          

For 𝑟2: 
𝜕2𝑣2

𝜕𝑧2
+ 𝛽2

𝜕2𝑣1

𝜕𝑦2
− (1 + 𝜆1) ((

1

𝐷𝑎
+𝑀2) 𝑣1 −

𝐺𝑟𝜃1 − 𝐵𝑟𝜗1) = 0, 

            
𝜕2Θ2

𝜕𝑧2
+ 𝛽2

𝜕2Θ1

𝜕𝑦2
+ 𝑁𝑏 (𝛽

2 𝜕Θ1

𝜕𝑦

𝜕Φ0

𝜕𝑦
+

𝜕Θ1

𝜕𝑧

𝜕Φ0

𝜕𝑧
+
𝜕Θ0

𝜕𝑦

𝜕Φ1

𝜕𝑦
+
𝜕Θ0

𝜕𝑧

𝜕Φ1

𝜕𝑧
) = 0,                                                          

            
𝜕2Φ2

𝜕𝑧2
+ 𝛽2

𝜕2Φ1

𝜕𝑦2
+

𝑁𝑡

𝑁𝑏
(𝛽2

𝜕2Θ1

𝜕𝑦2
+
𝜕2Θ1

𝜕𝑧2
) = 0. 

with 𝑣2 = Θ2 = Φ2 = 0 at  𝑦 = ∓1,  𝑣2 = Θ2 =
Φ2 = 0 at  𝑧 = ∓ℎ(𝑥),          
    The corresponding solutions for the above 

equation systems determines after three iterations 

and uses equations (25) as  
𝑢 = lim𝑟→1 𝑣 = 𝑣0 + 𝑣1 + 𝑣2 +⋯
𝜃 = lim𝑟→1 Θ = Θ0 + Θ1 + Θ2 +⋯
 Ω = lim𝑟→1Φ = Φ0 +Φ1 +Φ2 +⋯

  

Obtained:  

𝑢(𝑥, 𝑦, 𝑧) =
1

𝛽2
(1 − 𝑦2)(𝑧2 − ℎ2) − 1 +

ℎ2(1+𝜆1)

12𝐷𝑎𝛽2
[ℎ2(1 + 𝐷𝑎𝑀2)(𝑦2 − 1) + 𝐷𝑎𝛽2(𝐵𝑟 +

𝐺𝑟)(5𝛽
2 − 3) + 6𝐷𝑎𝛽2 +

𝜕𝑝

𝜕𝑥
] +

ℎ2(1+𝜆1)

144𝐷𝑎𝛽2𝑁𝑏
{ℎ2𝑁𝑏(1 + 𝜆1)(1 + 𝐷𝑎𝑀

2) [𝐷𝑎𝛽2(𝐵𝑟 +

𝐺𝑟)(244𝛽
2 − 150) + 244ℎ2(1 + 𝐷𝑎𝑀2)(𝑦2 −

1) + 300𝐷𝑎𝛽2(𝐵𝑟 + 𝐺𝑟)
𝜕𝑝

𝜕𝑥
] + 𝐷𝑎𝛽2(1 +

𝜆1)[600ℎ
2𝐷𝑎𝛽2(𝐵𝑟𝑁𝑡 + 𝐵𝑟𝑁𝑏 + 𝐺𝑟𝑁𝑏) −

244ℎ4𝛽2𝑁𝑏(1 + 𝐷𝑎𝑀
2) + 𝐷𝑎𝑁𝑏𝐺𝑟(𝑁𝑡 +

𝑁𝑏)(75 + 244ℎ
4𝛽2)]} −

1

2
ℎ(𝐵𝑟 + 𝐺𝑟)(1 + 𝜆1)𝑧 +

𝑧2(1+𝜆1)

4𝐷𝑎𝛽2
[2ℎ2(1 + 𝐷𝑎𝑀2)(𝑦2 − 1) + 𝐷𝑎𝛽2(𝐵𝑟 +

𝐺𝑟)(2ℎ
2𝛽2 − 1) + 2𝐷𝑎𝛽2

𝜕𝑝

𝜕𝑥
] +

𝑧3(𝐵𝑟+𝐺𝑟)(1+𝜆1)

12ℎ
−

𝑧2(1+𝜆1)

12𝐷𝑎𝛽2
[𝐷𝑎𝛽4(𝐵𝑟 + 𝐺𝑟) + (1 + 𝐷𝑎𝑀

2)(𝑦2 −

1) + 𝐷𝑎𝛽2] +
7ℎ3(1+𝜆1)𝑧

720𝐷𝑎
[4𝐷𝑎𝛽2𝐺𝑟(𝑁𝑡 + 𝑁𝑏) −

(1 + 𝜆1)(1 + 𝐷𝑎𝑀
2)(𝐵𝑟 + 𝐺𝑟)] +

(1+𝜆1)𝑧
2

48𝐷𝑎2𝛽2𝑁𝑏
[ℎ2𝑁𝑏(1 + 𝜆1)(1 + 𝐷𝑎𝑀

2) +

10ℎ2(1 + 𝐷𝑎𝑀2)(𝑦2 − 1) + 10𝐷𝑎ℎ2𝛽4(𝐵𝑟 +

𝐺𝑟) − 6𝐷𝑎𝛽
2 (𝐵𝑟 + 𝐺𝑟 − 2

𝜕𝑝

𝜕𝑥
) −

20𝐷𝑎ℎ4𝛽4𝑁𝑏(1 + 𝐷𝑎𝑀
2) + 24ℎ2𝐷𝑎2𝛽4(𝐵𝑟𝑁𝑡 +

𝐵𝑟𝑁𝑏 + 𝐺𝑟𝑁𝑏) + 𝐷𝑎
2𝛽2𝑁𝑏𝐺𝑟(𝑁𝑡 +𝑁𝑏)(8ℎ

4𝛽4 +

3)] −
ℎ2𝑁𝑏𝑧

6

15
{𝐷𝑎𝛽4𝐺𝑟[4𝐷𝑎𝛽

2(𝑁𝑡 + 𝑁𝑏) −

(1 + 𝜆1)(1 + 𝐷𝑎𝑀
2)] − 𝐷𝑎𝛽2𝐵𝑟(1 + 𝜆1)(1 +

𝐷𝑎𝑀2) − (1 + 𝐷𝑎𝑀2)[(1 + 𝜆1)(1 + 𝐷𝑎𝑀
2)(𝑦2 −

1) − 2𝐷𝑎𝛽2]} +

𝐷𝑎ℎ𝛽4𝑁𝑏𝑧
3 (

𝑧2

10
−
1

3
) [4𝐷𝑎𝛽2𝐺𝑟(𝑁𝑡 + 𝑁𝑏) −

(1 + 𝜆1)(1 + 𝐷𝑎𝑀
2)(𝐵𝑟 + 𝐺𝑟)] −

𝑧2

4
{𝐷𝑎2𝛽2𝑁𝑏[𝐺𝑟𝑁𝑏 + 4ℎ

2𝛽2𝐵𝑟(1 + 2𝑁𝑡)] +

(1 + 𝜆1)(1 + 𝐷𝑎𝑀
2) [𝐷𝑎𝑁𝑏𝛽

2(2ℎ2𝐵𝑟 +

𝐺𝑟)(2ℎ
2𝛽2 − 1) + 4ℎ4(1 + 𝐷𝑎𝑀2)(𝑦2 − 1) +

4ℎ2𝐷𝑎𝛽2
𝜕𝑝

𝜕𝑥
] − 2ℎ4𝐷𝑎2(1 + 𝐷𝑎𝑀2)}                                                            

…  (26) 

𝜃 = 𝛽2(𝑧2 − ℎ2) +
ℎ−𝑧

2ℎ
+

1

24
[24ℎ2𝛽2 + (8ℎ4𝛽4 +

3)(𝑁𝑡 + 𝑁𝑏)] −
1

24
ℎ𝛽2(𝑁𝑡 +𝑁𝑏)𝑧 +

𝑧2

8ℎ2
(8ℎ2𝛽2 +

𝑁𝑡 +𝑁𝑏) +
(𝑁𝑡+𝑁𝑏)𝛽

2

3ℎ
(𝑧3 − ℎ𝛽2𝑧4) −

ℎ4𝛽4

45
[15(3𝑁𝑡 + 2𝑁𝑏) + 4ℎ

2𝛽2(𝑁𝑏
2 + 2𝑁𝑡

2 +

3𝑁𝑡𝑁𝑏)] +
𝑧

720ℎ
[120ℎ2𝛽2(3𝑁𝑡 + 2𝑁𝑏) +

(16ℎ4𝛽4 + 15)(𝑁𝑏
2 + 2𝑁𝑡

2 + 3𝑁𝑡𝑁𝑏)] −
𝑧3

6
[24ℎ2𝛽2(3𝑁𝑡 + 2𝑁𝑏) + (3 − 16ℎ

4𝛽4)(𝑁𝑏
2 +

2𝑁𝑡
2 + 3𝑁𝑡𝑁𝑏)] + 2ℎ𝛽

2𝑧4[4ℎ2𝛽2(3𝑁𝑡 + 2𝑁𝑏) +

(𝑁𝑏
2 + 2𝑁𝑡

2 + 3𝑁𝑡𝑁𝑏)] −
𝛽2

60ℎ
(𝑁𝑏

2 + 2𝑁𝑡
2 +

3𝑁𝑡𝑁𝑏) (5ℎ𝑧
2 + 8𝛽2𝑧5 −

16

3
ℎ𝛽4𝑧6)          …  (27)  
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Ω = 𝛽2(𝑧2 − ℎ2) +
ℎ−𝑧

2ℎ
−
𝛽2(𝑁𝑡+𝑁𝑏)

𝑁𝑏
(𝑧2 − ℎ2) −

𝑁𝑡

768ℎ4𝛽4𝑁𝑏
[768ℎ6𝛽6 + (1 + 96ℎ4𝛽4 +

256ℎ8𝛽8)(𝑁𝑡 + 𝑁𝑏)] +
𝑁𝑡(1+16ℎ

4𝛽4)(𝑁𝑡+𝑁𝑏)𝑧

48ℎ3𝛽2𝑁𝑏
+

𝑁𝑡

48ℎ3𝛽2𝑁𝑏
[48ℎ3𝛽4𝑧2 +

(𝑁𝑡+𝑁𝑏)

16ℎ𝛽2
(4ℎ𝛽2𝑧 − 1)4]                                                       

…  (28) 

    The volumetric flow rate 𝑞 is 

𝑞 = ∫ ∫ 𝑢(𝑥, 𝑦, 𝑧)
1

0
𝑑𝑦𝑑𝑧

ℎ(𝑥)

0
                     …  (29) 

    The average volume flow rate over one period 

(𝑇 =
𝜆

𝑐
)
 of the peristaltic wave is  

𝑄 = ∫ ∫ (𝑢(𝑥, 𝑦, 𝑧) + 1)
1

0
𝑑𝑦𝑑𝑧

ℎ(𝑥)

0
= 𝑞 + ℎ(𝑥)                                                                                           

…  (30) 

 

    From solving equation (30) after compensating 

the equation (29), the pressure gradient is obtained; 

𝑑𝑝

𝑑𝑥
=

15𝐷𝑎

ℎ3[2ℎ2(1+𝜆1)
2(1+𝐷𝑎𝑀2)−5𝐷𝑎(1+𝜆1)]

{𝑄 +
ℎ3

9𝛽2
−

8ℎ5(1+𝜆1)(1+𝐷𝑎𝑀
2)

45𝐷𝑎𝛽2
+

68ℎ7(1+𝜆1)(1+𝐷𝑎𝑀
2)

945𝐷𝑎𝛽2
(3𝛽2 + 2𝑀2) + +

68ℎ7

945𝐷𝑎2𝛽2
[1 +

2𝜆1 + 𝜆1
2(1 + 𝐷𝑎𝑀2)2] −

ℎ3𝐵𝑟(1+𝜆1)

10080𝐷𝑎
[1470𝐷𝑎 + ℎ2(1 + 𝜆1)(1 + 𝐷𝑎𝑀

2)(1088ℎ2𝛽2 − 651)] −
1

10080𝐷𝑎ℎ3(1+𝜆1)[1470𝐷𝑎+33𝐷𝑎𝑁𝑡+𝐷𝑎𝑁𝑡ℎ
2𝛽2(102ℎ2𝛽2−84)+ℎ2(1+𝜆1)(1+𝐷𝑎𝑀

2)(1088ℎ2𝛽2−65)]
}                           …  (31) 

 

    Numerical integration of the pressure gradient 

along one wave, gives us a pressure rise ∆𝑝 

formula, i.e. 

∆𝑝 = ∫ (
𝑑𝑝

𝑑𝑥
)

1

0
𝑑𝑥                                      …  (32) 

    The dimensionless friction force F at the wall per 

wavelength is given by: 

𝐹 = ∫ ℎ (−
𝑑𝑝

𝑑𝑥
)

1

0
𝑑𝑥                     …  (33) 

    The corresponding stream function 𝜓 can be 

obtained by integrating equation (26) with respect 

to 𝑧. 

 

Results and Discussions: 
    Analytical solutions are acquired for momentum 

equation, energy equation and neutralizing the 

concentration of nano-particles with the help of 

homotopy perturbation technique up to the third 

order deformation. Discussed graphically all 

solutions obtained under variations of different 

parameters relevant in this section. The effects of 

side walls (aspect ratio 𝛽), amplitude ratio ∅, 

thermophoresis parameter 𝑁𝑡, average flow rate 𝑄, 

Brownian movement parameter 𝑁𝑏, magnetic 

parameter 𝑀, local nanoparticle Grashof number 

𝐵𝑟, Jeffrey fluid parameter 𝜆1, local temperature 

Grashof number 𝐺𝑟 and Darcy number Da on the 

velocity 𝑢, temperature 𝜃, nano-particles 

concentration 𝜗, pressure rise ∆𝑝, pressure gradient 
𝑑𝑝

𝑑𝑥
 and friction force 𝐹 are presented by sketching 

graphs for three and two dimensions. The 

phenomenon of a trapped bolus is also incorporated 

by drawing streamlines for various physical 

parameters. 

    Based on equation (26), Figs. 2 - 6, illustrate the 

effect of the parameters 

∅,𝑁𝑡 , 𝑁𝑏 , 𝑄,𝑀, 𝐵𝑟 , 𝜆1, 𝐺𝑟 , 𝐷𝑎 and 𝛽 on the velocity. 

It is found that the velocity profile u, achieve its 

maximum height at z =0, the speed of the fluid 

begins to increase and tends to be fixed in the walls 

∓ℎ(𝑥) as particularly at the boundary conditions. 

Figure 2, illustrates the influence of the parameters 

∅ and 𝑁𝑡on the velocity distribution function u vs. 

z. It is found that the velocity profile u rising up 

with the increasing ∅, when |𝑧| ≤ 1, while u 

increases with increasing of 𝑁𝑡 when z ∈ (-1,-0.4)

 (0.5,1), and u decreases with increasing 𝑁𝑡, when 

-0.4< z <0.5. Figure 3, shows the behavior of u 

under the variation of 𝑄 and 𝑁𝑏, one can depict here 

that u increases with the increasing of 𝑄, while u 

increases with the increasing of 𝑁𝑏when -1< z <0.5, 

and u decreases with increasing 𝑁𝑏, when 0.5< z 

<1. Figure 4, contains the velocity profile behavior 

under the difference of 𝑀 and 𝐵𝑟, it is aforesaid that 

the velocity profile rises with the increase of 

parameter 𝑀. The effect of the 𝐵𝑟 parameter is 

similar to the parameter effect 𝑁𝑡 on the velocity 

profile increases, where u increases with the 

increasing of 𝐵𝑟 when z(-1,-0.5) (0.5,1), and u 

decreases with increasing 𝐵𝑟, when |𝑧| ≤ 0.5. 

Figure 5, illustrates the effects of the parameters 

𝜆1and 𝐺𝑟 on the velocity distribution function u vs. 

z. It is found that the velocity profile u rising up 

with the increasing of 𝜆1. Add to that, u goes down 

with the increasing 𝐺𝑟, when -0.35<z<0.55, and u
increases with increasing 𝐵𝑟, when z(-1,-0.35)
(0.55,1). Finally, Fig. 6 shows the velocity profile 

behavior under the variation of 𝑄 and 𝐷𝑎. It is 

previously mentioned that the velocity profile goes 

down with the increasing effects of both the 

parameters. This appears to increase the extent of 

the side walls either by increasing the height of 

vertical or by reducing the horizontal distance of the 

walls, resulting in a decrease in fluid velocity. 
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Figure 2. Velocity distribution for various values of ∅ and 𝑵𝒕 with 𝒙 = 𝟎,𝑵𝒃 = 𝟎. 𝟓, 𝑸 = 𝟏,𝑩𝒓 =

𝟎. 𝟓, 𝝀𝟏 = 𝟎. 𝟔, 𝑮𝒓 = 𝟎. 𝟓, 𝜷 = 𝟏. 𝟓, 𝑫𝒂 = 𝟎. 𝟗,𝑴 = 𝟏. 𝟏. 
 

    
Figure 3. Velocity distribution for various values of 𝑸 and 𝑵𝒃 with 𝒙 = 𝟎, ∅ = 𝟎. 𝟏𝟓,𝑵𝒕 = 𝟎. 𝟓, 𝑩𝒓 =

𝟎. 𝟓, 𝝀𝟏 = 𝟎. 𝟔, 𝑮𝒓 = 𝟎. 𝟓, 𝜷 = 𝟏. 𝟓, 𝑫𝒂 = 𝟎. 𝟗,𝑴 = 𝟏. 𝟏. 

 

      
 

Figure 4. Velocity distribution for various values of 𝑴 and 𝑩𝒓 with 𝒙 = 𝟎, ∅ = 𝟎. 𝟏𝟓,𝑵𝒃 = 𝟎. 𝟓, 𝑵𝒕 =
𝟎. 𝟓, 𝑸 = 𝟏, 𝝀𝟏 = 𝟎. 𝟔, 𝑮𝒓 = 𝟎. 𝟓, 𝜷 = 𝟏. 𝟓, 𝑫𝒂 = 𝟎. 𝟗. 

0.1 , 0.2

Nt 0.1

Nt 0.6

Nt 1.1

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

1.0

1.5

2.0

z

u

Q 0.7

Q 1

Q 1.3

Nb 0.1 , 1.1

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

1.0

1.5

2.0

z

u

M 0.9 , 1.1

Br 0.1

Br 0.5

Br 0.9

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

1.0

1.5

z

u



Open Access     Baghdad Science Journal                                P-ISSN: 2078-8665 

Published Online First: January 2021                                                            E-ISSN: 2411-7986 

 

285 

 

           
 Figure 5. Velocity distribution for various values of 𝝀𝟏 and 𝑮𝒓 with 𝒙 = 𝟎, ∅ = 𝟎. 𝟏𝟓,𝑵𝒕 = 𝟎. 𝟓,𝑵𝒃 =

𝟎. 𝟓, 𝑩𝒓 = 𝟎. 𝟓, 𝑸 = 𝟏, 𝜷 = 𝟏. 𝟓, 𝑫𝒂 = 𝟎. 𝟗,𝑴 = 𝟏. 𝟏. 

 

                
Figure 6. Velocity distribution for various values of 𝑫𝒂 and 𝜷 with 𝒙 = 𝟎, ∅ = 𝟎. 𝟏𝟓,𝑵𝒕 = 𝟎. 𝟓,𝑵𝒃 =

𝟎. 𝟓, 𝑩𝒓 = 𝟎. 𝟓, 𝑸 = 𝟏, 𝑮𝒓 = 𝟎. 𝟓, 𝝀𝟏 = 𝟎. 𝟔,𝑴 = 𝟏. 𝟏. 

 

Based on equation (27), Fig. 7, illustrates 

the effect of the parameters ∅, 𝛽, 𝑁𝑏 
and 𝑁𝑡 on the 

temperature distribution function 𝜃. The graph for 

temperature curve along with the variations of the 

amplitude ratio ∅ and the lateral wall 𝛽 with the 

other constant parameters are explained in (a). It is 

mentioned earlier that the velocity profile goes 

down with the increasing effects of both the 

parameters. Also, it is important to note that the 

temperature curve gives linear demeanor at 𝛽 = 0.3 

while for the large values of the side walls, the 

bending begins and gets its maximum curvature 

near z = -0.1 and disappears at z = h(x) to meet the 

physical quality at the walls. In (b), the temperature 

curve is a reduced function of 𝑁𝑏 and 𝑁𝑡 in the 

region -1.2< z <-0.3, while in -0.3< z <1.2, it shows 

opposite variation.  

 

                
Figure 7. Temperature distribution 𝜃 vs. 𝒛 with 𝒙 = 𝟎, 𝒚 = 𝟏, for (a) different values of ∅ and 𝜷 at 

 𝑵𝒕 = 𝟎. 𝟓, 𝑵𝒃 = 𝟎. 𝟓, (b) different values of 𝑵𝒕 and  𝑵𝒃 at ∅ = 𝟎. 𝟐, 𝜷 = 𝟎. 𝟓. 

    

Based on equation (28), Fig. 8 illustrate the 

effect of the parameters ∅, 𝛽, 𝑁𝑏 and 𝑁𝑡 on the 

nanoparticles concentration Ω. The influence of the 

amplitude ratio ∅ and the lateral walls 𝛽 on Ω can 

be measured from (a), the behavior of the 

concentration is almost similar to the behavior of 

temperature with variation ∅ and 𝛽. Whilst, it 

depicts that the concentration of nanoparticles is 
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directly proportional to the difference of 𝑁𝑏but 

inversely related to 𝑁𝑡, view (b). From the figures 

below, observed the movement from - h(x) to 0, the 

curves are declined, but as proceed, those begin to 

rise and get stable in h(x). 

 

    
Figure 8. Temperature distribution Ω vs. 𝒛 with 𝒙 = 𝟎, 𝒚 = 𝟏, ∅ = 𝟎. 𝟐, 𝝀𝟏 = 𝟏, for (a) different values 

of 𝜷 at  𝑵𝒕 = 𝟎. 𝟓,𝑵𝒃 = 𝟎. 𝟓, (b) different values of 𝑵𝒕 and  𝑵𝒃 at 𝜷 = 𝟎. 𝟓. 

 

    Based on equation (31), Fig. 9 illustrates the 

influence of the parameters ∅,𝑁𝑡 , 𝑁𝑏 , 𝑀, 𝐵𝑟 , 𝐺𝑟 , 𝐷𝑎 

and 𝛽 on the pressure gradient 
𝑑𝑝

𝑑𝑥
 vs. x. The effects 

of the parameters 𝑀 and 𝑁𝑏 on the pressure gradient 

are explained in (a). It is found that 
𝑑𝑝

𝑑𝑥
 rises with the 

increasing 𝑁𝑏, while 
𝑑𝑝

𝑑𝑥
 goes down with the 

increasing 𝑀 when 0.25<x<0.65 and 
𝑑𝑝

𝑑𝑥
 rises with 

the increasing 𝑀, otherwise. Furthermore, if 𝑀 = 1, 
𝑑𝑝

𝑑𝑥
 0 when 0.35<x<0.65 at 𝑁𝑏= 0.3, 

𝑑𝑝

𝑑𝑥
 0 when 

0.32<x<0.68 at 𝑁𝑏= 0.4 and 
𝑑𝑝

𝑑𝑥
 0 when 0.3<x<0.7 

at 𝑁𝑏= 0.5, otherwise 
𝑑𝑝

𝑑𝑥
 0. Also, observed that, if 

𝑀= 1.2, 
𝑑𝑝

𝑑𝑥
 0 when 0.33<x<0.67 at 𝑁𝑏= 0.3, 

𝑑𝑝

𝑑𝑥


0 when 0.31<x<0.69 at 𝑁𝑏= 0.4 and 
𝑑𝑝

𝑑𝑥
 0 when 

0.3<x<0.7 at 𝑁𝑏= 0.5, otherwise 
𝑑𝑝

𝑑𝑥
 0. The 

influence of 𝛽 and 𝑁𝑡 on the pressure gradient can 

be noted from (b), it is mentioned here that 
𝑑𝑝

𝑑𝑥
 goes 

down with the increasing effects of both the 

parameters 𝛽 and 𝑁𝑡. Noted that, at 𝛽 =1.3, 
𝑑𝑝

𝑑𝑥
 0, 

while if 𝛽 =1.5, 
𝑑𝑝

𝑑𝑥
 0 when 0.23<x<0.77 at 𝑁𝑡= 

0.4, 
𝑑𝑝

𝑑𝑥
 0 when 0.26<x<0.74 at 𝑁𝑡= 0.5, 

𝑑𝑝

𝑑𝑥
 0 

when 0.28<x<0.72 at 𝑁𝑡= 0.6 and 
𝑑𝑝

𝑑𝑥
 0 otherwise. 

The influence of the parameters ∅ and 𝐷𝑎 on the 

pressure gradient is explained in (b). The pressure 

gradient is divided into two zones, positive and 

negative, under the variation of ∅ and 𝐷𝑎. In the 

positive area, when 0.28<x<0.72, the effect of ∅ 

and 𝐷𝑎 on the pressure is direct, while in the 

negative region the effect is reversed. Finally (d), 

contains the behavior pattern of pressure gradient 

under the change of 𝐵𝑟 and 𝐺𝑟. It is found that the 

pressure gradient goes down with the increasing 

effects of both parameters. Furthermore, if 𝐵𝑟=0.3, 
𝑑𝑝

𝑑𝑥
 0 when 0.1<x<0.9 at 𝐺𝑟=0.4 and 

𝑑𝑝

𝑑𝑥
 0 when 

0.2<x<0.8 at 𝐺𝑟=0.5, otherwise 
𝑑𝑝

𝑑𝑥
 0, while if 𝐵𝑟= 

0.5, 
𝑑𝑝

𝑑𝑥
 0 when 0.32<x<0.68 at 𝐺𝑟= 0.3, 

𝑑𝑝

𝑑𝑥
 0 

when 0.28<x<0.72 at 𝐺𝑟= 0.4 and 
𝑑𝑝

𝑑𝑥
 0 when 

0.2<x<0.8 at 𝐺𝑟= 0.5, otherwise 
𝑑𝑝

𝑑𝑥
 0. 
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Figure 9. pressure gradient vs. 𝒛 with 𝑸 = 𝟏, 𝝀𝟏 = 𝟏, for (a) different values of 𝑵𝒃and 𝑴 at ∅ =
𝟎. 𝟏𝟓,𝑵𝒕 = 𝟎. 𝟓, 𝑩𝒓 = 𝟎. 𝟓, 𝑮𝒓 = 𝟎. 𝟒, 𝜷 = 𝟏. 𝟓, 𝑫𝒂 = 𝟎. 𝟗, (b) different values of 𝜷 and  𝑵𝒕 at ∅ =
𝟎. 𝟏𝟓,  𝑵𝒃 = 𝟎. 𝟓,𝑵𝒃 = 𝟎. 𝟓, 𝑩𝒓 = 𝟎. 𝟓, 𝑫𝒂 = 𝟎. 𝟗,𝑴 = 𝟏. 𝟏, (c) different values of ∅ and 𝑫𝒂 at 𝑵𝒕 =
𝟎. 𝟓, 𝑵𝒃 = 𝟎. 𝟓, 𝑩𝒓 = 𝟎. 𝟓, 𝑮𝒓 = 𝟎. 𝟒, 𝜷 = 𝟏. 𝟓,𝑴 = 𝟏. 𝟐, (d) different values of 𝑩𝒓 and 𝑮𝒓 at ∅ =

𝟎. 𝟏𝟓,  𝑵𝒕 = 𝟎. 𝟓,𝑵𝒃 = 𝟎. 𝟓, 𝜷 = 𝟏. 𝟓, 𝑫𝒂 = 𝟎. 𝟗,𝑴 = 𝟏. 𝟐. 

    

Based on equation (32), Figs. 10 and 11, 

illustrates the effect of the parameters 

𝐵𝑟 , 𝜆1, 𝐺𝑟 , 𝑀, 𝑁𝑏 , 𝐷𝑎, 𝑁𝑡 and  𝛽 on the pressure rise 

∆𝑝 vs. ∅ and 𝑄, respectively. Figure 10, illustrate 

the effect of the parameters 𝐵𝑟 , 𝜆1, 𝐺𝑟 , 𝑀, 𝑁𝑏 , 𝐷𝑎, 𝑁𝑡 
and 𝛽 on the pressure rise vs. ∅. The behavior of ∆𝑝 

vs. ∅, under the variation of 𝐵𝑟 and 𝜆1 are explained 

in (a). One can depict here that ∆𝑝 rises with the 

increasing 𝜆1, while ∆𝑝 rises with the increasing 𝐵𝑟 

when 0<∅<0.4 and ∆𝑝 goes down with the 

increasing 𝐵𝑟 when 0.5<∅<1. Observed in (b), the 

influence of the parameters 𝐺𝑟 and 𝑀 on the 

pressure rise ∆𝑝 vs. ∅. One can depict here that ∆𝑝 

goes down with the increasing 𝑀, while if 𝑀=1.2, 

∆𝑝 increases with the increasing of 𝐺𝑟, and if 𝑀=1, 

∆𝑝 decreases with increasing of 𝐺𝑟 when 0<∅<0.4, 

and ∆𝑝 increases with the increasing 𝐵𝑟 when 

0.4<∅<1. Observed in (c), that ∆𝑝 rises with the 

increasing of both parameters 𝑁𝑏 and 𝐷𝑎. The 

behavior of ∆𝑝 vs. ∅, under the variation of 𝑁𝑡  and 

𝛽 are explained in (d). One can depict here that ∆𝑝 

goes down with the increasing 𝑁𝑡, while ∆𝑝 rises 

with the increasing 𝛽. Furthermore, observed that 

the pressure rise function is generally increasing in 

(d), notice that at 𝛽=1.3 the function is increasing at 

the beginning and when it reaches the almost 

middle of the distance (∅=0.45) it begins to 

decrease. 
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Figure 10. pressure rise ∆𝒑 vs. ∅, at 𝑸 =1 for (a) different values of 𝑩𝒓 and 𝝀𝟏at 𝑮𝒓 = 𝟎. 𝟒,𝑴 =
𝟏. 𝟐, 𝑵𝒃 = 𝟎. 𝟓,𝑵𝒕 = 𝟎. 𝟓, 𝑫𝒂 = 𝟎. 𝟗, 𝜷 = 𝟏. 𝟓, (b) different values of 𝑮𝒓 and 𝑴 at 𝑩𝒓 = 𝟎. 𝟓, 𝝀𝟏 =

𝟏,𝑵𝒃 = 𝟎. 𝟓,𝑵𝒕 = 𝟎. 𝟓,𝑫𝒂 = 𝟎. 𝟗, 𝜷 = 𝟏. 𝟓, (c) different values of 𝑵𝒃 and 𝑫𝒂 at 𝑩𝒓 = 𝟎. 𝟓, 𝝀𝟏 = 𝟏, 𝑮𝒓 =
𝟎. 𝟒,𝑴 = 𝟏. 𝟐,𝑵𝒕 = 𝟎. 𝟓, 𝜷 = 𝟏. 𝟓, (d) different values of 𝑵𝒕 and 𝜷 at 𝑩𝒓 = 𝟎. 𝟓, 𝝀𝟏 = 𝟏, 𝑵𝒃 = 𝟎. 𝟓, 𝑮𝒓 =

𝟎. 𝟒,𝑴 = 𝟏. 𝟐, 𝑫𝒂 = 𝟎. 𝟗. 

 

    Figure 11 illustrates the effect of the parameters 

𝐵𝑟 , 𝜆1, 𝐺𝑟 , 𝑀, 𝑁𝑏 , 𝐷𝑎, 𝑁𝑡 and 𝛽 on the pressure rise 

∆𝑝 vs. 𝑄. In (a) observed the influence of 𝐵𝑟  and 𝜆1 

on the pressure rise ∆𝑝 vs. 𝑄. One can depict here 

that ∆𝑝 goes down with the increasing 𝐵𝑟, while if 

𝐵𝑟=0.4, ∆𝑝 increases with increasing of 𝜆1 when 

0<𝑄<0.1, and ∆𝑝 decreases with the increasing 𝜆1 

when 0.1<𝑄<1, if 𝐵𝑟=0.5, ∆𝑝 increases with 

increasing of 𝜆1 when 0<𝑄<0.15, and ∆𝑝 decreases 

with the increasing 𝜆1 when 0.15<𝑄<1, and if 

𝐵𝑟=0.6, ∆𝑝 increases with increasing of 𝜆1 when 

0<𝑄<0.2, and ∆𝑝 decreases with the increasing 𝜆1 

when 0.2<𝑄<1. Furthermore, if 𝐵𝑟= 0.4 obtaining 

∆𝑝 < 0 when 𝑄 < 0.1, if 𝐵𝑟= 0.5 obtaining ∆𝑝 < 0 

when 𝑄 < 0.15, and if 𝐵𝑟= 0.6 obtaining ∆𝑝 < 0 

when 𝑄 < 0.2, otherwise ∆𝑝 > 0. Observed in (b), 

the behavior of ∆𝑝 vs. 𝑄, under the variation of 𝐺𝑟 

and 𝑀. Observed here that ∆𝑝 goes down with the 

increasing 𝐺𝑟, while if 𝐺𝑟=0.3, ∆𝑝 increases with 

increasing of 𝑀 when 0<𝑄<0.3, and ∆𝑝 decreases 

with the increasing 𝑀 when 0.3<𝑄<1, if 𝐺𝑟=0.5, ∆𝑝 

increases with increasing of 𝑀 when 0<𝑄<0.5, and 

∆𝑝 decreases with the increasing 𝑀 when 0.5<𝑄<1, 

and if 𝐺𝑟=0.7, ∆𝑝 increases with increasing of 𝑀 

when 0<𝑄<0.6, and ∆𝑝 decreases with the 

increasing 𝑀 when 0.6<∅<1. Furthermore, at 

𝑀=1.1, if 𝐺𝑟= 0.3 obtain the ∆𝑝 < 0 when 𝑄 < 0.15, 

if 𝐺𝑟= 0.5 obtain the ∆𝑝 < 0 when 𝑄 < 0.25, and if 

𝐺𝑟= 0.7 obtain the ∆𝑝 < 0 when 𝑄 < 0.3, otherwise 

∆𝑝 > 0. While at 𝑀=1.2, if 𝐺𝑟= 0.3 then ∆𝑝 < 0 

when 𝑄 < 0.1, if 𝐺𝑟= 0.5 then ∆𝑝 < 0 when 𝑄 < 

0.175, and if 𝐺𝑟= 0.7 then ∆𝑝 < 0 when 𝑄 < 0.25, 

otherwise ∆𝑝 > 0. In (c), observed that ∆𝑝 rising up 

with the increasing of 𝑁𝑏, while if 𝑁𝑏=0.3, ∆𝑝 

decreases with increasing of 𝐷𝑎 when 0<𝑄<0.4, 

and ∆𝑝 increases with the increasing 𝐷𝑎 when 

0.4<𝑄<1, if 𝑁𝑏=0.5, ∆𝑝 decreases with increasing 

of 𝐷𝑎 when 0<𝑄<0.25, and ∆𝑝 increases with the 

increasing 𝐷𝑎 when 0.25<𝑄<1, if 𝑁𝑏=0.7, ∆𝑝 

decreases with increasing of 𝐷𝑎 when 0<𝑄<0.2, 

and ∆𝑝 increases with the increasing 𝐷𝑎 when 

0.2<𝑄<1. Furthermore, at 𝐷𝑎=0.8, if 𝑁𝑏= 0.3 

obtain ∆𝑝 < 0 when 𝑄 < 0.2, if 𝑁𝑏= 0.5 obtain ∆𝑝 < 

0 when 𝑄 < 0.1, and if 𝑁𝑏= 0.7 obtain ∆𝑝 < 0 when 

𝑄 < 0.1, otherwise ∆𝑝 > 0. While at 𝐷𝑎=1.1, if 𝑁𝑏= 

0.3 then ∆𝑝 < 0 when 𝑄 < 0.275, if 𝑁𝑏= 0.5 then ∆𝑝 

< 0 when 𝑄 < 0.2, and if 𝑁𝑏= 0.7 obtain ∆𝑝 < 0 

when 𝑄 < 0.15, otherwise ∆𝑝 > 0. Observed in (d), 

that ∆𝑝 goes down with the increasing of both 

parameters 𝑁𝑡 and 𝛽. Furthermore, at 𝛽=1.3, if 𝑁𝑡= 

0.3 have ∆𝑝 > 0, if 𝑁𝑡= 0.5 then ∆𝑝 < 0 when 𝑄 < 

0.05, and if 𝑁𝑡= 0.7 then ∆𝑝 < 0 when 𝑄 < 0.1, 

otherwise ∆𝑝 > 0. While at 𝛽=1.5, if 𝑁𝑡= 0.3 obtain 

∆𝑝 < 0 when 𝑄 < 0.1, if 𝑁𝑡= 0.5 have ∆𝑝 < 0 when 

𝑄 < 0.15, and if 𝑁𝑡= 0.7 then ∆𝑝 < 0 when 𝑄 < 0.2, 

otherwise ∆𝑝 > 0. 
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Figure 11. pressure rise ∆𝒑 vs. 𝑸, at ∅ =0.15 for (a) different values of 𝑩𝒓 and 𝝀𝟏at 𝑮𝒓 = 𝟎. 𝟒,𝑴 =
𝟏. 𝟐, 𝑵𝒃 = 𝟎. 𝟓,𝑵𝒕 = 𝟎. 𝟓, 𝑫𝒂 = 𝟎. 𝟗, 𝜷 = 𝟏. 𝟓, (b) different values of 𝑮𝒓 and 𝑴 at 𝑩𝒓 = 𝟎. 𝟓, 𝝀𝟏 =

𝟏,𝑵𝒃 = 𝟎. 𝟓,𝑵𝒕 = 𝟎. 𝟓,𝑫𝒂 = 𝟎. 𝟗, 𝜷 = 𝟏. 𝟓, (c) different values of 𝑵𝒃 and 𝑫𝒂 at 𝑩𝒓 = 𝟎. 𝟓, 𝝀𝟏 = 𝟏, 𝑮𝒓 =
𝟎. 𝟒,𝑴 = 𝟏. 𝟐,𝑵𝒕 = 𝟎. 𝟓, 𝜷 = 𝟏. 𝟓, (d) different values of 𝑵𝒕 and 𝜷 at 𝑩𝒓 = 𝟎. 𝟓, 𝝀𝟏 = 𝟏, 𝑵𝒃 = 𝟎. 𝟓, 𝑮𝒓 =

𝟎. 𝟒,𝑴 = 𝟏. 𝟐, 𝑫𝒂 = 𝟎. 𝟗. 

 

Based on equation (33), Figs. 12 and 13 

illustrate the effect of the parameters 

𝐵𝑟 , 𝜆1, 𝐺𝑟 , 𝑀, 𝑁𝑏 , 𝐷𝑎, 𝑁𝑡 and 𝛽 on the friction force 

𝐹 vs. ∅ and 𝑄, respectively. Figure 12 illustrates the 

effect of the parameters 𝐵𝑟 , 𝜆1, 𝐺𝑟 , 𝑀, 𝑁𝑏 , 𝐷𝑎, 𝑁𝑡 and 

𝛽 on the friction force 𝐹 vs. ∅. Observed that the 

distribution of friction force gives an inverse 

behavior compared to the distribution of pressure 

rise versus the amplitude ratio factor. Also, 

observed that the distribution of friction force gives 

an inverse behavior compared to the distribution of 

pressure rise versus the average flow rate 𝑄 in Fig. 

13. 
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Figure 12. Friction force 𝑭 vs. ∅, at 𝑸 =1 for (a) different values of 𝑩𝒓 and 𝝀𝟏at 𝑮𝒓 = 𝟎. 𝟒,𝑴 =
𝟏. 𝟐, 𝑵𝒃 = 𝟎. 𝟓,𝑵𝒕 = 𝟎. 𝟓, 𝑫𝒂 = 𝟎. 𝟗, 𝜷 = 𝟏. 𝟓, (b) different values of 𝑮𝒓 and 𝑴 at 𝑩𝒓 = 𝟎. 𝟓, 𝝀𝟏 =

𝟏,𝑵𝒃 = 𝟎. 𝟓,𝑵𝒕 = 𝟎. 𝟓,𝑫𝒂 = 𝟎. 𝟗, 𝜷 = 𝟏. 𝟓, (c) different values of 𝑵𝒃 and 𝑫𝒂 at 𝑩𝒓 = 𝟎. 𝟓, 𝝀𝟏 = 𝟏, 𝑮𝒓 =
𝟎. 𝟒,𝑴 = 𝟏. 𝟐,𝑵𝒕 = 𝟎. 𝟓, 𝜷 = 𝟏. 𝟓, (d) different values of 𝑵𝒕 and 𝜷 at 𝑩𝒓 = 𝟎. 𝟓, 𝝀𝟏 = 𝟏, 𝑵𝒃 = 𝟎. 𝟓, 𝑮𝒓 =

𝟎. 𝟒,𝑴 = 𝟏. 𝟐, 𝑫𝒂 = 𝟎. 𝟗. 

 

 

 
Figure 13. Friction force 𝑭 vs. 𝑸, at ∅ =0.15 for (a) different values of 𝑩𝒓 and 𝝀𝟏at 𝑮𝒓 = 𝟎. 𝟒,𝑴 =
𝟏. 𝟐, 𝑵𝒃 = 𝟎. 𝟓,𝑵𝒕 = 𝟎. 𝟓, 𝑫𝒂 = 𝟎. 𝟗, 𝜷 = 𝟏. 𝟓, (b) different values of 𝑮𝒓 and 𝑴 at 𝑩𝒓 = 𝟎. 𝟓, 𝝀𝟏 =

𝟏,𝑵𝒃 = 𝟎. 𝟓,𝑵𝒕 = 𝟎. 𝟓,𝑫𝒂 = 𝟎. 𝟗, 𝜷 = 𝟏. 𝟓, (c) different values of 𝑵𝒃 and 𝑫𝒂 at 𝑩𝒓 = 𝟎. 𝟓, 𝝀𝟏 = 𝟏, 𝑮𝒓 =
𝟎. 𝟒,𝑴 = 𝟏. 𝟐,𝑵𝒕 = 𝟎. 𝟓, 𝜷 = 𝟏. 𝟓, (d) different values of 𝑵𝒕 and 𝜷 at 𝑩𝒓 = 𝟎. 𝟓, 𝝀𝟏 = 𝟏, 𝑵𝒃 = 𝟎. 𝟓, 𝑮𝒓 =

𝟎. 𝟒,𝑴 = 𝟏. 𝟐, 𝑫𝒂 = 𝟎. 𝟗. 
 

Trapping phenomena: 

    The effects of ∅, 𝜆1, 𝛽, 𝐵𝑟 , 𝐺𝑟 , 𝑁𝑡 , 𝑁𝑏 , 𝑄,𝑀 and 𝐷𝑎 

on trapping bolus can be seen through Figs. 14 – 23. 

Figure 14 shows that the size of the trapped bolus 

grows and increases with the increasing of ∅, the 

effect of 𝜆1 on trapping bolus is similar to the effect 

of ∅ on trapping bolus which can be seen in Fig. 15. 

The effect of lateral walls on trapping bolus is 

analyzed in Fig. 16. It can be deduced that the size 

of the trapped bolus in the channel is contracted and 

decreases when 𝛽 increases, also at 𝛽= 1.535 the 

upper bolus disappears while at 𝛽=1.5545 the lower 

bolus is disappeared. Figures 17 and 18 show that 

the size of the trapped bolus shrinks and decreases 

with the increases of 𝐵𝑟 and 𝐺𝑟, respectively. The 

effect of thermophoresis parameter 𝑁𝑡 on trapping 

bolus is analyzed in Fig. 19. It can be deduced that 

the size of the trapped bolus in the channel shrinks 

and decreases when 𝑁𝑡 increases. While in Fig. 20 

one can notice that the effect of the Brownian 

Nb 0.3

Nb 0.5

Nb 0.7

Da 0.8 , 1.1
c

0.0 0.2 0.4 0.6 0.8 1.0

400

300

200

100

0
F

Nt 0.3

Nt 0.5

Nt 0.7

1.3 , 1.5
d

0.0 0.2 0.4 0.6 0.8 1.0

300

200

100

0

F

Br 0.4

Br 0.5

Br 0.6

a1 1, 1.2

0.0 0.2 0.4 0.6 0.8 1.0

80000

60000

40000

20000

0

20000

Q

F

Gr 0.3

Gr 0.5

Gr 0.7

M 1.1 , 1.2

b

0.0 0.2 0.4 0.6 0.8 1.0

100000

80000

60000

40000

20000

0

20000

40000

Q

F

Nb 0.3

Nb 0.5

Nb 0.7

Da 0.8 , 1.1
c

0.0 0.2 0.4 0.6 0.8 1.0

100000

80000

60000

40000

20000

0

20000

40000

Q

F

Nt 0.3

Nt 0.5

Nt 0.7

1.3 , 1.5

d

0.0 0.2 0.4 0.6 0.8 1.0

80000

60000

40000

20000

0

20000

Q

F



Open Access     Baghdad Science Journal                                P-ISSN: 2078-8665 

Published Online First: January 2021                                                            E-ISSN: 2411-7986 

 

291 

motion parameter 𝑁𝑏 on trapping is inversion of 

effect of 𝑁𝑡 on the trapped bolus. The effect of 𝑄 on 

the trapping is analyzed in Fig. 21, note that the 

dose size increases and expands with an 

increased 𝑄. The effect of 𝑀 on trapping analogous 

to effect 𝑄 on trapping, Observe that in Fig. 22. And 

the effect of 𝐷𝑎 on trapping bolus is analyzed in 

Fig. 23. It can be deduced that the size of the 

trapped bolus in the channel is contracted and 

decreases when 𝐷𝑎 increases, also at 𝐷𝑎= 1.191 the 

upper bolus disappears while at 𝐷𝑎= 1.241 the 

lower bolus disappears.   

 

 
Figure 14. Streamlines for different values of ∅ at 𝒚 = 𝟏,𝑸 = 𝟎. 𝟏, 𝑮𝒓 = 𝟎. 𝟑,𝑴 = 𝟏. 𝟐,𝑵𝒃 = 𝟎. 𝟓,𝑵𝒕 =

𝟎. 𝟗, 𝑫𝒂 = 𝟎. 𝟗,  𝑩𝒓 = 𝟎. 𝟑, 𝝀𝟏 = 𝟎. 𝟔, 𝜷 = 𝟏. 𝟐 for: (a) ∅=0.15, (b) ∅=0.16 and (c) ∅=0.17. 

 

 
Figure 15. Streamlines for different values of 𝝀𝟏 at 𝒚 = 𝟏,𝑸 = 𝟎. 𝟏, 𝑮𝒓 = 𝟎. 𝟑,𝑴 = 𝟏. 𝟐,𝑵𝒃 = 𝟎. 𝟓, 𝑵𝒕 =

𝟎. 𝟗, 𝑫𝒂 = 𝟎. 𝟗, 𝑩𝒓 = 𝟎. 𝟑, ∅ = 𝟎. 𝟏𝟓, 𝜷 = 𝟏. 𝟐 for: (a) 𝝀𝟏=0.6, (b) 𝝀𝟏=0.7 and (c) 𝝀𝟏=0.8. 

 

 
Figure 16. Streamlines for different values of 𝜷 at 𝒚 = 𝟏,𝑸 = 𝟎. 𝟏, 𝑮𝒓 = 𝟎. 𝟑,𝑴 = 𝟏. 𝟐,𝑵𝒃 = 𝟎. 𝟓,𝑵𝒕 =

𝟎. 𝟗, 𝑫𝒂 = 𝟎. 𝟗, 𝑩𝒓 = 𝟎. 𝟑, ∅ = 𝟎. 𝟏𝟓, 𝝀𝟏 = 𝟎. 𝟔 for: (a) 𝜷=1.2, (b) 𝜷=1.3 and (c) 𝜷=1.53. 
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Figure 17. Streamlines for different values of 𝑩𝒓 at 𝒚 = 𝟏,𝑸 = 𝟎. 𝟏, 𝑮𝒓 = 𝟎. 𝟑,𝑴 = 𝟏. 𝟐,𝑵𝒃 =

𝟎. 𝟓, 𝑵𝒕 = 𝟎. 𝟗,𝑫𝒂 = 𝟎. 𝟗, ∅ = 𝟎. 𝟏𝟓, 𝝀𝟏 = 𝟎. 𝟔, 𝜷 = 𝟏. 𝟐 for: (a) 𝑩𝒓=0.2, (b) 𝑩𝒓=0.3 and (c) 𝑩𝒓=0.5. 

 
Figure 18. Streamlines for different values of 𝑮𝒓 at 𝒚 = 𝟏,𝑸 = 𝟎. 𝟏, 𝑩𝒓 = 𝟎. 𝟐,𝑴 = 𝟏. 𝟐,𝑵𝒃 =
𝟎. 𝟓, 𝑵𝒕 = 𝟎. 𝟗,𝑫𝒂 = 𝟎. 𝟗, ∅ = 𝟎. 𝟏𝟓, 𝝀𝟏 = 𝟎. 𝟔, 𝜷 = 𝟏. 𝟐 for: (a) 𝑮𝒓=0.6, (b) 𝑮𝒓=0.7 and (c) 𝑮𝒓=1. 

 
Figure 19. Streamlines for different values of 𝑵𝒕 at 𝒚 = 𝟏,𝑸 = 𝟎. 𝟏, 𝑩𝒓 = 𝟎. 𝟐,𝑴 = 𝟏. 𝟐,𝑵𝒃 =
𝟎. 𝟓, 𝑮𝒓 = 𝟎. 𝟑,𝑫𝒂 = 𝟎. 𝟗, ∅ = 𝟎. 𝟏𝟓, 𝝀𝟏 = 𝟎. 𝟔, 𝜷 = 𝟏. 𝟐 for: (a) 𝑵𝒕=1, (b) 𝑵𝒕=1.5 and (c) 𝑵𝒕=2. 

 
Figure 20. Streamlines for different values of 𝑵𝒃 at 𝒚 = 𝟏,𝑸 = 𝟎. 𝟏, 𝑩𝒓 = 𝟎. 𝟐,𝑴 = 𝟏. 𝟐,𝑵𝒕 =
𝟎. 𝟓, 𝑮𝒓 = 𝟎. 𝟑,𝑫𝒂 = 𝟎. 𝟗, ∅ = 𝟎. 𝟏𝟓, 𝝀𝟏 = 𝟎. 𝟔, 𝜷 = 𝟏. 𝟐 for: (a) 𝑵𝒃=1, (b) 𝑵𝒃=1.5 and (c) 𝑵𝒃=2. 
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Figure 21. Streamlines for different values of 𝑸 at 𝒚 = 𝟏,𝑩𝒓 = 𝟎. 𝟐,𝑴 = 𝟏. 𝟐,𝑵𝒃 = 𝟎. 𝟓, , 𝑵𝒕 =

𝟎. 𝟓, 𝑮𝒓 = 𝟎. 𝟑,𝑫𝒂 = 𝟎. 𝟗, ∅ = 𝟎. 𝟏𝟓, 𝝀𝟏 = 𝟎. 𝟔, 𝜷 = 𝟏. 𝟐 for: (a) 𝑸=0.1, (b) 𝑸=0.125 and (c) 𝑸=0.15. 

 
Figure 22. Streamlines for different values of 𝑴 at 𝒚 = 𝟏,𝑸 = 𝟎. 𝟏, 𝑩𝒓 = 𝟎. 𝟐,𝑵𝒃 = 𝟎. 𝟓, , 𝑵𝒕 =
𝟎. 𝟓, 𝑮𝒓 = 𝟎. 𝟑,𝑫𝒂 = 𝟎. 𝟗, ∅ = 𝟎. 𝟏𝟓, 𝝀𝟏 = 𝟎. 𝟔, 𝜷 = 𝟏. 𝟐 for: (a) 𝑴=1.2, (b) 𝑴=1.3 and (c) 𝑴=1.4. 

 
Figure 23. Streamlines for different values of 𝑫𝒂 at 𝒚 = 𝟏,𝑸 = 𝟎. 𝟏, 𝑩𝒓 = 𝟎. 𝟐,𝑵𝒃 = 𝟎. 𝟓, , 𝑵𝒕 =

𝟎. 𝟓, 𝑮𝒓 = 𝟎. 𝟑,𝑴 = 𝟏. 𝟐, ∅ = 𝟎. 𝟏𝟓, 𝝀𝟏 = 𝟎. 𝟔, 𝜷 = 𝟏. 𝟐 for: (a) 𝑫𝒂=0.8, (b) 𝑫𝒂=0.9 and (c) 𝑫𝒂=1.19. 

 

Concluding remarks: 
    The peristaltic flow of a nanofluid for Jeffrey 

fluid is deemed in a cross-section of rectangular 

porous medium duct to portray the mathematical 

results under convection is the phenomenon of heat 

transfer and the concentration of nanoparticles with 

the magnetic field. Current analysis can serve as a 

model that may help to understand the mechanism 

of physiological flows in a loop for fluids acting 

like nanofluids. From the mechanic’s point of view, 

it is interesting to note how the peristaltic 

movement of the applied pressure gradient is 

affected. The exact expressions for axial velocity of 

the fluid, axial pressure gradient, pressure rise and 

stream function are obtained analytically. All 

governing equations are designed under the long 

wavelength approximation and the number of 

Reynolds negligible. The flow is measured in a 

reference frame moving at constant speed c along 

the axial direction of the canal. Analytical results 

were obtained using the HPM and all physical 

parameters affecting the phenomenon were 

discussed. The main findings can be summarized as 

follows: 

1- The velocity is an increasing function vs. 

∅, 𝑄, 𝜆1 and 𝑀, respectively, but decreasing 
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function vs. 𝐷𝑎 and 𝛽 both for two and three 

dimensional analysis. 

2- The velocity is a decreasing function vs. 𝑁𝑡 , 𝐺𝑟 

and 𝐵𝑟, respectively, when -0.5 < z < 0.5, while 

the function is an increasing function when z(-

1,-0.5) ∪ (0.5,1). 

3- The velocity is an increasing function vs. 𝑁𝑏 

when -0.5 < z < 0.5, while the function is a 

decreasing when z ∈ (-1,-0.5) ∪ (0.5,1).    

4- The temperature distribution is changing 

inversely vs. ∅ and 𝛽, respectively. And the 

discussion previously mentioned that 

temperature curves decrease with increases in 𝑁𝑏 

and 𝑁𝑡 when -1 < z < 0 while increases when 0 < 

z < 1, respectively.   

5- The nanoparticles concentration rising up with 

the increase of 𝑁𝑏, while it reveals opposite 

relation with ∅,𝑁𝑡 and 𝛽. 

6- The pressure gradient profile displays direct 

relation with 𝑄 and 𝑁𝑏, while reverses variation 

with 𝜆1, 𝑁𝑡 , 𝐵𝑟 , 𝛽 and 𝐺𝑟. Also, the pressure 

gradient profile directs with 𝐷𝑎 and reverses 

with 𝑀 in middle part of the canal, whilst in the 

both sides the fact is reversed. Furthermore the 

pressure gradient is positive in middle part of the 

canal, whilst negative on both sides of the canal.  

7- The peristaltic pumping rate increases vs. ∅ with 

the increase in 𝑁𝑏 , 𝜆1, 𝐺𝑟 , 𝐷𝑎 
and 𝛽, while 

decreases with the increase in 𝐵𝑟 , 𝑁𝑡 and 𝑀, 

respectively. Moreover, observed that the 

relationship between the pressure rise function 

and the amplitude ratio parameter is a parabola. 

8- The peristaltic pumping rate decreases vs. the 

flux 𝑄, with the increase in 𝑁𝑡 , 𝐵𝑟 , 𝐺𝑟 
and 𝛽, 

respectively, while increases with the increases 

of in 𝑁𝑏. Moreover, observed that the 

relationship between the pressure rise function 

and the flux is a linear. Also, it is concluded that 

peristaltic retrograde pumping (∆𝑝<0) occurs 

when 0<𝑄<0.2, free pumping (∆𝑝=0) occurs 

near 𝑄=0.2 and peristaltic pumping region 

(∆𝑝>0) occurs when 𝑄>0.2. 

9- The size of the trapped bolus is growing and 

increasing with the increasing of ∅,𝑁𝑏 , 𝜆1, 𝑄 

and 𝑀, respectively, while the trapped bolus is 

contracting and decreasing with increasing in 

𝛽,𝑁𝑡 , 𝐵𝑟 , 𝐺𝑟 and 𝐷𝑎. In general, the size of 

trapped bolus in upper half is greater than of 

lower half. 
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 ظاهرة مع جيفري لمائع اميكا الممغنطةندييدروي للهالتمعج الانتقال على والتركيز الحرارة درجة تباين تأثير

 مستطيلة مسامية قناة خلال النانوية الجسيمات

 
 ضياء غازي صالح الخفاجي

 
 الديوانية, العراق.قسم الرياضيات, كلية العلوم, جامعة القادسية, 

 

 الخلاصة:
 المجال تأثير مع جيفري لمائع النانوية الجسيمات على الحراري والانتشار للتركيز المشتركة الآثار لدراسة رياضي إنشاء نموذج تم  

 المعادلات لحل الهوموتوبيالاضطراب  تقنية استخدمنا. الأبعاد ثلاثية مستطيلة مسامية متوسطة قناة في الأمواج احتواء عملية على المغنطيسي

 تدرج الضغط, ارتفاع السرعة, النانوية, الجسيمات تركيز الحرارة, درجة لتوزيع عددية نتائج على الحصول تم .خطيةلاال الجزئية التفاضلية

 والمعلمة الحجم لتدفق متوسط معدل مع مباشرة سرعة المائع أن وجدت البيانية, الرسوم خلال من. دالة التدفقو الاحتكاك قوة الضغط,

 البراونية الحركة معلمة تأثير تحت غريب بشكل السرعة تتصرف أيضا,. الجانبية والجدران دارسي عدد مع تكون عكسية بينما المغناطيسية

 .المحلي النانوي عدد كراشوف وتأثير

 

 تمعجي. تدفق نانوية, جسيمات هيدروديناميكي, جيفري, مجال مغناطيسي (, مائعHPM) الاضطراب الهوموتوبي طريقة :المفتاحية الكلمات

 


