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Abstract:

This paper aims to find new analytical closed-forms to the solutions of the nonhomogeneous functional
differential equations of the n™ order with finite and constants delays and various initial delay conditions in
terms of elementary functions using Laplace transform method. As well as, the definition of dynamical
systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay
differential equations which contain multiple delays with a discussion of their dynamical properties: The

exponential stability and strong stability.
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Introduction:

In electrical engineering, in which electronic
components are often controlled by on-off switches,
discontinuous forcing functions are the norm. Also,
in physics, forces often change suddenly and are
best described by discontinuous functions. A useful
way for representing discontinuous functions is in
terms of the unit step function (1). It is well known
that the step function is discontinuous at the origin,
but that is not necessary in the signal theory. The
step function is an important tool for testing and
introducing other signals such as multiplying shifted
step functions by other different shifted step
functions (2).

A bat hitting a ball and two billiard balls
colliding are impulsive forces occur at nearly an
instant of time. To deal with these types of forces
mathematically, the impulse function (Dirac delta
function or unit impulse) is defined (1). In
engineering, the idea of an action occurring at a
point is dealt with. Whether it is a force at a point
in space or a signal at a point in time, it becomes a
useful way to develop a quantitative definition for
this phenomena. This leads us to the notion of a unit
impulse, probably the second most essential
function, in systems and signals (2). The delay
differential equations (DDEs) are usually used in
many mathematical, physical and engineering
models. Several methods have been used to solve

some of them by using numerical methods, others
by using analytical methods. Many researchers used
the Lambert W function to obtain solutions of the
DDEs (3-6). Recently, Abdullah and et al. found
analytical solutions of retarded dynamical systems
of the third order and of the n™ order by using
Lambert W function and a discussion of their
stability in their two papers (7-8) respectively.
Abdullah and et al. found approximate
characteristic roots for DDEs with multiple delays
via the method of spectral tau (9).

A few researchers have worked on finding
analytical solutions without using Lambert W
function such as Pospi$il and Jaro§ who used the
unilateral Laplace transform to introduce a closed-
form formula for a solution of a system of
nonhomogeneous linear delay differential equations
with a finite number of constant delays (10). In this
paper, many rules for finding analytical solutions of
nonhomogeneous DDEs are obtained using Laplace
transform without using the nonelementary Lambert
W function. In addition, some of dynamical systems
are constructed with a discussion of their stability.

Basic Concepts
Definition 1 (11) A dynamical system is a map

o:GxX—>X, where X is an open set of
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Euclidean space and writing o(t, X) = o,(X), the
map o, : X = X satisfies:

(1) o, : X — X is the identity; that is o (X) = X
forall X in X .

(2) The composition o ° o
G.

Inthiswork G=R" U{0} and X =R.

In the case G =R the dynamical system is called

flow and in the case G = R™ w{0} the dynamical
system is called semi flow.
Definition 2 (12) The semi group (T,),., is called

iff vxeX, limT,x=0

t—w

=0y, forall t,s in

strongly stable in X

inX .

Definition 3 (12) The semi group (T,)wo
exponentially stable iff their exists D <oo and
@ >0 suchthat [T, [<D e*, for t>0.

Proposed Rules for Nonhomogeneous Delay
Differential Equations of Advanced Type With
Multiple Delays by Laplace Transform Method

In this section, many rules for solving
nonhomogeneous DDEs are driven with different
initial delay conditions and multiple delays

T.,1=01..,n,j=12,...m. Let T;'s, be

ij?
constant delays Vi, j such that "i" denotes the
number of derivative of y and " j" denotes the
j™ delay of y® and T;'s are arranged in
Consider that T,, =0, Vi, and
the coefficients a;'s are constants.
Recall that Laplace transform for the functions
yO (€ T),i =0,12,..n, with the initial delay
condition:

yt) =o(t), -T <t <0,
where T isaconstantdelay T >0, is:
LyOe-T)}= [ yO-T)e dt.

Using the assumption z=t—T , yields:
Ly 1= [ y®(2)e " "dz

increasing order.

0 . 0 .
=e [ yO(medt+e | y® (et

i—1
e[ U tdt e (S (5) - Y sy (0)).
k=0

Theorem 3.1: Consider the DDE:
n m .
Zzaijy(l)(t_-rij): a(t), Tij >0, @

i=0 j=0
with the initial delay condition:
y(t) = o(t), for =T <t<0,and T =max{T;},

i=0,12, .,n,  j=0,12..m, and
L{g(t)}—%

h(s) # 0. Then, the solution of the equation (1) is:

y(t) = L [{- h(s)ZZa“e’ST j 0P (t)e dt +

i=0 j=1

is the Laplace transform of g (t),

n i-1

h©)D S a,s Ve Ty (0) + k(s)}
1

i=1 j=0 k=l

' n__m ]
h(s)>.> a;s'e™"

i=0 j=0
Proof: Equation (1) can be written as:

gy (t) + D 3,y (1) +> ayy(t-T,;)
i=1 j=1

n m i
+Zzaijy(l)(t_Tij)=g(t)'

i=1 j=1
Taking the Laplace transform to the both sides,
gives:

Y (9)+ 3 g[S (5)- 3. sy (0)]

m
=Ty 0
+Y ay;[e 'L_(p
j=1 o
n

#2 el [ o0t e T (Y ()

i=1 j=1

(t)e™'dt +e ™Y (5)]

IZl:S' (k+1) (k)( D=2 k(s)

h(s)
Then.
h(S)(ZZau 'e )Y (5)——h(3)zzau
7ST"'[ (p(')(t)e Stdt+h(s)zn:i2aus' (k)

gl y (k)(0)+k (s).
Therefore, the solution is:
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n m

YO =LH-NE)Y Y ae L eV

e'dt +h (s)iiiaijs‘(k”)e REA()!

(S,
h(s)ZZaijs'e’ST”

Corollary 3.2: Let =T <t <0 and T = max{T;},
1=012,...,n, j=0,1,2,---, m. Then:
1. If ¢(t) = c, the solution of the DDE (1) is:

YO =T (CaSae ™)

+csh(s)ZZa”s‘1 4 sk(s)} ,

i=l j=0

1

| sh(s) (ii a;s'e”™)

i=0 j=0
where € is constant.
2. If o(t) =t the solution of the DDE (1) is:

V(O L (s) (O, — Y ™)+

s h(s)(_z 3Ty, —Zai,- Y ae™)

] )

+5 h(s)ZZaus' 26" £ 52 k(s)}
. L ] 3)
s? h(s) ZZaijsie’ST“

3. If @(t)=t+T, the solution of the delay
differential equation (1) is:

YO = LH(E) (X a0y~ D ™) +(s),

j=1

(TZane‘ST‘” —Zaoj(T —TOJ.)—Za1j +

Za“ e ™M) +s?h(s) (T 3> ays e ™

i=1 j=0
n m )
+> > st

i=2 j=0

2671) + 52 k(s)}.

1
n m i T
s?h(s) Y > a;s'e™
i=0 j=0
4. If @(t)=e", the solution of the delay
differential equation (1) is:

I (4)

YO = LTEREY. > a, ¢ (e - ) -+h(s)
.(c-s)zn: Zm: .2_1: a;s e~ ck + (c-s)k(s)}
' nl m ]’ (5)

h(S) (C'S) Z alj K

where C is constant.

Proof 3. Let @(t) =t+T . Since @' (t)=0 for
I =2,3...,n, then:

iiaﬁe—sﬁ J._OT o (e dt

i=0 j=1

e sTOJ Te sTOJ -|- TO] m sT1J

‘ZaOJ & +Zalj

By Theorem 3.1,
e N6) X s o STos
y@t)=L"[{- 52 (Zaoj' _Zaoj'e )

j_

h(S)(ZaO Te_STOJ zaOJ(T TOJ)

_Za'll +Za'11 ST“)"_ h(S)ZiIZ:au

i=1l]j

S

5t e - y “(0)+ k (s)}

1
n m ]

| his) > > a;s'e ™™

i=0 j=0

— () (D, - Zao, e ™) +sh(s)

j=1 =1
.(TZane_STOj _Zaoj(T _TOJ)_Zaij

+Za“e_ST“)+s h(s) (T ZZa”s‘l Bk

j=l i=1 j=0

+_zn:_zm;a,,s' %6 %) + 5 k(s)}
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1
s2 h(s) Zn:i a;s'e”"
i=0 j=0

The proofs of 1, 2 and 4 are similar to the proof of
3, so they are omitted.

]

Analytical Solutions of New Forms of Advanced
Differential Equations With Multiple Delays

In this section, analytical solutions for many
new forms of nonhomogeneous DDEs have been
found with Heaviside functions and Dirac delta

functions and multiple delays T;, j=12,...,m such

that t;tTJ.,

is sought which s
(=T,0), T =max{T,},and

0. T, T O (T, ).

Theorem 1: Suppose that Uis the Heaviside
function and ¢ is the Dirac delta function. Then:
1. The solution of the DDE:

Y Y ay(t-T)=mca,-ca, Y u(tT,)

. In other words, a real valued function

continuous on
is differentiable on

i=0 j=0 j=1
+h ) ST, (6)
j=0
with the initial delay condition:
o(t) =c, for te[-T,0] and
T=ma{T;},j=012...,m,is:

c Zn: s +b
y(t) = L_l{n—}:
Za, '

i=
e b and ¢ are constants.
solution of the DDE:

ere
2. The
>N ay?(t-T)=mat-a,> utT,) (T,
i=0 j=0 =

whe

—aOZl:Tj —aizl:u(t—Tj)+ ma,
j= j=

+bD6(tT)), (7
j=0
with the initial delay condition:
pt)=t, for te[-T,0] and T =max{T,}
,j=0,1,2, ---,m,is:

n .
> a;s"?+b
v = U ——,
Das
i=0
where b is a constant.
3. The solution of the DDE:

ZZay")(t T,)=magt - aOZU(tT)(t-T)

i=0 j=0

—(Ta0+a1)Zu(t—Tj)+aoZ(T -T))

+ma1+bzm:5(t-Tj), 8

j=0
with the initial delay condition:
pt)=t+T, for te[-T,0] and T =max{T,},
is:
TY a8+ a8 +b
y(t) — L—l{ i=1 i=2 },
i

where b is constant.
4. The solution of the DDE:

> Yay(t-T) =biu(t—(rj +2))

i=1 j=0

+d Zm:(S(t-(TJ— +a)) 9)

j=0
with the initial delay condition:

pt)=c, for te[-T,0] and T =max{T,},
j=0,1,2, ---,m,is:

—as
y(t)=c+ L_l{w}v

s> g
=

where b,c and d are constantsand a > 0.
5. The solution of the DDE:

n

Z ay"(t-T,) :qut(T +a))

i=2 j=0

+dz5(t-(Tj +2)) (10)
j=0
with the initial delay condition:
pt)=t, for te[-T,0] and T =max{T,},

j=0,1,2 -, m,is:
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yt) =t + L’l{w},
s> as'
i22

where b and d are constants and a > 0.
6. The solution of the DDE:

n

Z ay"(t-T,) =qut-T +a))

i=2 j=0 j=0

+di5(t-(rj +a)),

with the initial delay condition:

(L)

pt)=t+T, for te[-T,0] and T =max{T;},

j=0,1,2, ---, m,is:

yit) =T +t+ Lfl{M}.
s> as'
i=2

where D and d are constants and a > 0.
7. Suppose that n is an odd number and
n 1

az(i)+1 = _az(i) y 0 1 Then, the
solution of the DDE is:
Y Y ayl(t-T,)=bd u(t-(T, +a
i=0 j=0 j=0
m
+d Y u(t-(T; +a)) (12)
j=0

with the initial delay condition g(t) =e', for
te[-T,0] and T =max{T;}, j=0,1,...,m, is:

n i-1

Z Z a; gi-(k+D)

—as
L—l{i:lk:O +(b+ds)e 1,

Zn:ai s’ szn:ai s'
i=0 i=0

where b and d are constantsand a>0.

Proof of 5: Let ¢(t)=t, for te[-T,0] and
T=max{T;}, j=0,1,2, ---,m. Therefore, by
equation (3) yieIdS'

3ZZa s 27 462

y(t) =

m m
e Ye i rdse™ Ye ™)

y(t) _ L_l{ i=2 j=0 — j=0 j=0 }
$*Y Yaste™
i=2 =0
4. (b+ds)e™
=t+L+———%}

s> as'
i=2

1198

Proof of 7: Let ¢(t)=e', for te[-T,0] and

T =max{T,}, j=0,1,2,---,m and
n-1
g1 =~y for 1=0,1,.. e Therefore, by
equation (5) yields:
yt) =L [{=sY. > a (e —e ") +s(1-3)
i=0 j=1

n m i-1

Y3 Y as e +(1-s)(b+d s)

i=1 j=0 k=0

ey ]
=0 s(l—s)ZZai s'e”™

i=0 j=0

= Lﬁl[{s(l - S)i i i a, Sif(k+1)e—sTj
i=1 j=0 k=0

+(1-s)(b+d s)e’asie’ﬂ"}

1

) n m ]
sL-9)> > a e
i=0 j=0
Since az(i)+l = _az(i) .
Therefore:
n i-1
z a. |(k+1)
i _
b+ds)e™
(t) L—l{l =1k ° +( +n ) }

z a s'
i=0
The other proofs are similar.

s> as
i=0

Ilustrative Examples
Example 1: Consider the fourth order DDE:

yO ) +2y D (t-1)-5y"(t-2)+ y"(t—4) =1+

2u(t—1)—gu(t—2)(t-2)2 +%u(t—4)(t-4)2 (13)

with the initial delay condition:
y(t) =¢p(t) =t, -4<t<0.

By equation (3) with
k(s)=s’+2s%"°

—%® +e™, h(s)=s°, the

solution of the DDE (13) is given as follows:

e (P +sH)s2+25% " - +e ™)
s'(s°+28% - 4e™)

a1l 1
aRll il

]
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BT
41
Example 2: Consider the DDE:
n n 1 " " 3
y"t)+y (t—5)+y t-D+y (t—§)+

Yn(E-2)+y -4+ 3y O +3y"E )
+3y"(t-1) + 3y"(t _%) + 3y "(t —g)+
y"t—-4)+3y'(t)+3y'(t —%)+3y "t -1
3yt —g)+3y’(t —g)+3y -4+ y ()
B E-2) +YE-D +y €)Y E—)
Ly (t—4) = 5t —u(t—%) (t—%)—u(t—l)
E-D-uE—) € -2)- uE-DE—)

U -4) (-4) - T -2)+ uE-D+

3 5 51
u(t —E)+u (t —E)+u (t —4)]+?+ 2(o(t)

1 3 5
+o(t —E)+5(t -1) +o(t —E)+5(t —E)+

ot —4)), (14)
with the initial delay condition
p(t)=t+4, te[-4,0]. Since the DDE (14) is in
the form of (8), the solution of the DDE (14) is
given as follows:

1 A(SP+35+3)+5+5
t)y=L"
yo) { s¥+3s%+35+1
_L_1{452+135+17}
(s +1)°

=4e7' +5tet +4t%7t,

}

In a similar manner, many DDEs and their
analytical solutions can be introduced as shown in
the following Table 1:

Table 1. DDEs and the corresponding closed-forms formulas.

YO +y(t—2)—yt)-y(t—-2)=u(t-1)+ut-3), p(t)=e', -2 <t <0,

' y(t)=e'—u(t-1)+e" u(t-1),t>0.
YOO +y" ) -y )+ y -+ y P (-2 +y"(t-1+y"(t-2) - y"(t-1) - y'(t-2)
5 =o()+o(t-D)+o(t-2), yt)=pt)=t+2, —2<t<0,

y(t) =1+ e cosh§t+i e sinh-£t,t>0.

NG

YO O)+ 2y @ (t—1) —5y"(t—2) + y"(t—4) = u(t —2) —gu(t _ 4 (-4Y’ +%u(t ~6) (t-6)’
+2u(t-3), y(t) =p(t)=t, -4 <t < 0,
y(t)=t+%u(t—2)(t—2)4,t20.

YOO +y' )+ Yy -2+ yP(t -4+ y'(t—-2)+ y'(t—4) =u(t 1) +u(t—3) +u(t -5),
y(t)=p(t)=t, -4<t< 0,

y(t)=t+u(t-1) [%(t—l)z —1+cos(t-1)],t>0.

YOO -y )+ y®P -1+ y®(t-2) -y (t-1) - y"(t-2) =35(t—2) +35(t —3) +35(t - 4),

yit)=p(t)=t+2, -2 <t <0,
y(t) =2+t +ut—2)[-3(t-2)+e? — e cos B (t—2) ++/3 2 ?sinE(t—2)],t >0,

1199
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10

11

12

13

14

15

16

YOO +y"t) -y t)+yOt-1)+yOt-2) + y"(t-1) + y"(t-2) - y"(t-1) - y"(t - 2)
=5(t-3)+5(t-4)+5(t-5), y(t) =pt)=t, -2 <t < 0,

y(t) =t—u(t—3)[1+(t—3)—e*“ cosh-£ (t—3) - \/gez‘t ¥ sinh-& (t—3)],t > 0.

yOM) -y (t) + y©t-5) - y"(t—5)=u(t—4) +u(t—9), y(t) = p(t) =c, -5<t<0,
y() =c+u(t-4) [—%(t —4)? +%cosh(t -4) —%COS(t —-4)],t>0.

2y"(t)+2y"(t-2)+6y'(t) +6Yy'(t—2) +4y(t) + 4yt —2) =12 —12u(t —2) + 25(t) + 26(t — 2),
p(t)=3, te[-2,0],

y(t) =—4e " +7e ", t=0.

y'®)+y"(t-D)+y"(t-2)-2y"(t) -2y"(t-1) -2y"(t-2) + y'() + y'(t -1 + y'(t - 2)
=2-u(t-D)—-u(t-2)+25(t)+25(t-1)+25(t—-2),p(t)=t, te[-2,0],

y(t)=te', t>0.

V'O +y't-D+y"(t-2)+y'({t)+y({t-1)+y'(t—2)=5u(t—2) +5u(t — 3) + 5u(t — 4),
p(t)=2,te[-20],

y(t)=2+u(t—-2)[Ge “? +5(t—2)-5],t>0.

yO ) + y P (t-2)+ y? (t-3) - 2y"(t) - 2y"(t - 2) - 2y"(t - 3) +4y"(t) +4y"(t - 2)
+4y"(t-3)=u(t-1) +u(t-3)+u(t-4), e(t) =t t[-3,0],

1
83
YOO -y'0)+y(t-2) +yO(t-5) - y'(t-2) - y"(t-5) = 5(t - 4) + 5(t - 6) + 5(t - 9),
y(t)=pt)=t, -5 <t <0,

y(t) = t+u(t—1) [%(t—1)+%(t—1)2 _ 1 _etsiny/3(t-1)],t>0.

y(t) = t+u(t—4) [(t—4) +%sin(t —4) +%sinh(t —4)],t>0.

YOO +y P (t-2)+y O (t-3) - 2y"(1) - 2y"(t-2) - 2y"(t - 3) + 4y"() + 4y"(t - 2)
+4y"(E-3) =u(t-D +u(t-3) +u(t—4), p(t)=t, te[-3,0],

1 1 , 1
y(t)=t+u(t—l)[§(t—1)+§(t—1) Ve sin+/3(t-1)],t>0.

YOO -y ) +y(t-2)+y?(t-5) - y'(t-2) - y"(t-5) = 5(t - 4) + 5(t - 6) + 5(t - 9),
y(t)=p(t)=t -5 <t < 0,

y(t) = t+u(t—4) [(t—4) +%sin(t —4) +%sinh(t —4)],t>0.

YO + YDt —1)+ YO (t—2) + 4y"(t) + 4y"(t—1) + 4y"(t — 2) + 4y"(t) + 4y"(t -1)
+4y"(t—2) = 2u(t— 2)+2u(t 3)+2u(t 4), p(t) =t +2, te[-2,0],

y(t) =2+ t+ut— 2)[———(t 2)+ —(t 2y ;’2“ ) _ (t—2)e’2(t’2’],t20.

y)+y'(t-2)+y(t- 5) y(t) y(t-5)-y(t-2)= U(t—5)+U(t—7)+u(t—10),
p(t) =€t e[-5,0],

y(t)=¢e'+u(t—5)[e"-1],t >0.
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Exponentially Stable and Strongly Stable of
Advanced Differential Equations in Normed

Space Lp
In this section, the previous results are used to
construct dynamical systems resulting from

nonhomogeneous DDEs with multiple delays and
discussing some of their properties (exponentially
stable and strongly stable) with the following initial
delay conditions:

y(t) =x(@) =c,yt)=x(0)=6 and
yt)=x(@)=6+T for O¢<[-T,0], 6>T,
T =max{T;} in normed space Lp .

Let us formulate our problem by considering the
first order DDE:

ZZay')t T,)=mca, —caOZutT (15)

i=0 j=0

where TJ. > 0, with the initial delay condition:

y(t) =x(0) =c, (16)
for 6<[-T,0] such that T =max{T,}, where

X € Xsuch that X is a normed vector space of
functions on [0, T].

A semi dynamical system is defined as:

T:X =X, (17)
which can be found by the solution of the DDE (6)
as follows:

4,

(TX)(0) = y(t,6) = ce *,t>0, %>o,

vOée[0T], (18)
where Y is the solution of (15) - (16).

Also, the following second order DDE is
considered:

Case i) The DDE:
ZZay(')(t T,)=magt-a, Zu(tT ) (+T,)

i=0 j=0

—aOZTj —aiz:u(t ~T)+ma, T;>0 (19)
j=1 j=1

with the initial delay condition:

y(t) =x(0) =0, (20)
for 0e[-T,0] such that T =max{T,}and
a, =2,/a,a;, >0 where x e Xsuch that X is a
normed vector space of functions on [0, T].

A semi dynamical system is defined as:

T X > X, (21)

which can be found by the solution of the DDE (7)
as:

(TX) (0) = §(t, 0) =(0-T)e Pt Z:>O,t20,

Ve e[0T], (22)
where y is solution of (19) - (20).
Case ii) The DDE:

ZZay")(t T;)=magt - aOZu(tT)(tT)

i=0 j=0
—(a,T +a1)Zu(t D aOZ(I' D
j=1 j=1
ma, +b)_S(t-T;), (23)
j=0
with the initial delay condition:
y(t) =x(0) =0+T, (24)
for Oe[-T,0] such that T =max{T,},

X € X such that X is a normed vector space of
functions on [0, T].

Also, A semi dynamical system is defined as:

T: X > X, (25)
which can be found by the solution of the DDE (8)

as:
3o

- |20t
TX) (0) =9t 0)=0e V2, 2050 t>0,
2

<[0T, (26)
where ¥ is solution of (23) - (24).

Theorem 1: The group (T IS
exponentially stable in L, if for every T >0,

semi

a )
—0>0, there exists O<D<oo such that

a

1
cT?<D,c>0.
Proof: Suppose that x € L, , then:

Fxl, =([ e oraof

fio]

aot

x(@-T)e *
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o |-

= ce_aT 9B

0
1 _a,
=CcTPe?.
1
Since there exists 0 < D < oo such that cT P
1, _8,
then cTPe  <De % . Therefore, the semi

group (T, )0 is exponentially stable.

<D,

Theorem 2: The semi group (ft)tzo is strongly

a
stablein L if T >0, 250,
a
1
Proof: Suppose that x e L, ,
_a,
T,x=ce .
Therefore:
_%,

limTx=clime * =0.

t—w t—oowo

Thus, the semi group (T,) is strongly stable in
X.
Theorem 3: The semi group (T;);s is strongly

a
stablein L, if T>0, 050,
a,

Proof: Suppose that X € L,

a,
Tx=(0-T)e ‘.
Therefore:

20y

limT,x = (0-T) lim e V= -0,

toow
Thus, the semi group ('I:;)tZO is strongly stable in
X.
Theorem 4: The semi group (T,)wo IS
exponentially stable in L if for every T>0,

a
_O>O
a,

1
p+1 B
that (T J <D.
p+1

Proof: Suppose that X € L, then:

there exists O<D<w such

1

o |~

a p
— |20t
x(@-T)e ‘/; déo

-1
Po\p
- joTeeJit d6

1
T\p
0

(e

-

p+1

p+1

Since there exists O0<D<w such
1

that [T"2 )P _ o

p+1
Therefore:

1
a1\, % _ |2
(Tp l]p e % <De \/;t-
p+1

Thus, the semi group (ft)tzo is exponentially
stable.
Theorem 5: The semi group (ft)tzo is strongly

a
stablein L, for T >0, 200,
a,

Proof: Suppose that x € L,

) Ft
T,x=0¢e &
Therefore:

_ |2

. ) t
limTx=0lime '* =0.

t—>o t—>o
Thus, the semi group (I:t)tZO is strongly stable in
X.

Conclusions:

This paper is concerned with finding analytical
solutions of advanced differential equations because
very few researchers have worked in this direction,
most of them focus on finding numerical solutions.
Solving delay differential equations as in the
ordinary differential equations is adopted in this
work, especially when nonhomogeneous delay
differential equations have multiple delays contain
discontinuous  forcing  functions  (Heaviside
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functions and Dirac delta functions). One can find
many  elementary  solutions  rather  than
nonelementary solutions such as the solutions which
depend on the Lambert W function which is
classified as a nonelementary and very difficult
function. Also, the exponential stability and the
strong stability for delay differential equations
which contain multiple delays are discussed.
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