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Abstract: 
Support vector machines (SVMs) are supervised learning models that analyze data for classification 

or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two 

classes. SVM has very good accuracy and extremally robust comparing with some other classification 

methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, 

working with large datasets can cause many problems such as time-consuming and inefficient results. In this 

paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, 

stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the 

classification of different cancer types is important for cancer diagnosis and drug discovery, SGD-SVM is 

applied for classifying the most common leukemia cancer type dataset. The results that are gotten using 

SGD-SVM are much accurate than other results of many studies that used the same leukemia datasets. 

 

Key words: Classification, Dimension Reduction, Feature Selection, Leukemia Diagnosis, Stochastic 

Gradient Descend. 

 

Introduction:  
For every subject in a given dataset, 

suppose information on 𝑝 dimensional covariate 

vector, 𝑋𝑝×1 exists, and a response 𝑦 that has two 

possible categories are given. In statistics, besides 

SVMs there are many classifier methods such as 

ANN (1), LDA (2), PCA (3), random forest (4), 

naïve Bayes (5), and NN (6). SVM is a supervised 

learning technique. It means a classifier based on a 

training dataset can be created, then that classifier 

can be used for future observations. The goal of the 

SVM is to create an algorithm, so that given 

information for a new observation, the category of 

the response can be predicted.  

For example, let’s define 𝑦 = +1 if the 

response is in the first category, and 𝑦 = −1 if the 

response is in the second category. The aim is to 

design a classifier rule 𝑓(𝑋) as follows, 

𝑦 = +1  if  𝑓(𝑋) > 0  and  𝑦 = −1  if  𝑓(𝑋) < 0. 

This can be used to determine the response 

category given the covariate information. A 

geometric procedure is used in SVM that finds the 

classifier according to some optimization criterion; 

unlike LDA which uses a distribution for 𝑋 given 

its category (7). A linear SVM (hard margin SVM), 

i.e., 𝑓(𝑋) =  𝛽0 +  𝛽1𝑋 where 𝛽0 and 𝛽1 are 

unknown parameters, creates a hyperplane in the 𝑋-

space that acts as a separator between the two 

response categories. Linearity is a simplifying 

assumption, and in some cases, it may work 

sufficiently well; hence the non-linearity case does 

not need to be considered (8). However, if the data 

is not linearly resorbable, 𝑓 as non-linear SVM (soft 

margin SVM) should be assumed (3). Soft margin 

SVM is a tool for many real-world applications.  

This paper is organized as follows, first, 

both hard and soft margins SVM are discussed. For 

nonlinear SVM, some types of kernels are 

introduced and used. Then our modified method is 

explained, SGD-SVM. It was tested on two 

simulation datasets with 50 and 100 observations. 

SGD-SVM  is applied, in the end, on a real dataset, 

the most common cancer type (Leukemia dataset) 

(9). SGD-SVM was compared with some existing 

methods which are K-nearest neighbor, random 

forest, and naïve Bayes. 

Hard Margin SVM  

The hard margin SVM is the case when two 

classes are linearly separable. If 𝑦𝑖 = {−1, +1}, and 

𝑥𝑖 ∈ ℝ𝑑, then 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛  is the 𝑛 data points. 

Figure 1.a shows the case when the labels of 𝑦 are 
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linearly separable. Several hyperplanes (e.g., 

𝐻1, 𝐻2, 𝐻3, and 𝐻4) can be defined to separate the 

data points with two classes (10).  

Our goal is to find the best separable 

hyperplane; i.e., the hyperplane should be in the 

middle of the two classes, so that the distance from 

the closest point on either side to the hyperplane is 

the same (11). 

By assuming 𝑥1and 𝑥2 are two points that lie on the 

optimal hyperplane 𝐻0 =  𝛽𝑇x + 𝛽0, then 𝛽𝑇𝑥1 +
𝛽0 =  𝛽𝑇𝑥2 + 𝛽0 = 0, 𝛽𝑇(𝑥1 − 𝑥2) = 0. It means 

that 𝛽𝑇 ⊥ (𝑥1 − 𝑥2). Let 𝑥 be any point on one side 

of the hyperplane, then 𝛽𝑇𝑥 + 𝛽0 = 0 implies that 

𝛽0 = −𝛽𝑇𝑥. To find the distance of a point to the 

hyperplane (𝑑𝑖), a point can be chosen, say 𝑥0, so 

that  

𝑑𝑖 =  
𝛽𝑇(𝑥 − 𝑥0)

|𝛽|
=  

𝛽𝑇𝑥 − 𝛽𝑇𝑥0

|𝛽|
=  

𝛽𝑇𝑥 + 𝛽0

|𝛽|
 

Since the data point can be either side, and y can 

take a positive and negative sign, the distance of 𝑥0 

to the hyperplane is 𝑑𝑖𝑦𝑖 . Therefore, the margin can 

be defined as follows, 

Margin= 𝑚𝑖𝑛{𝑦𝑖𝑑𝑖} = 𝑚𝑖𝑛 {
𝑦𝑖(𝛽𝑇𝑥𝑖+𝛽0)

|𝛽|
} 

…   (1) 

For any point that is not on the hyperplane, 

yi(𝛽𝑇𝑥i + 𝛽0) ≥ 𝐾. This implies that: 

y𝑖 (
𝛽𝑇

𝐾
𝑥𝑖 +

𝛽0

𝐾
) ≥ 1;  i. e., y𝑖(𝛽′𝑇

𝑥𝑖 + 𝛽0
′ ) ≥ 1 for 

some 𝛽′ =
𝛽𝑇

𝐾
  and  𝛽0

′ =
𝛽0

𝐾
. 

Hence, there exist some 𝛽 and 𝛽0 such that 

𝑦𝑖(𝛽𝑇𝑥𝑖 + 𝛽0)  ≥ 1 ∀ 𝑥𝑖. Eq.(1) can be written as 

follows,  

Margin = 𝑚𝑖𝑛 {
1

|𝛽|
} …   (2) 

Since the goal is to maximize the margin, 
1

2
|𝛽|2 should be minimized such that  𝑦𝑖(𝛽𝑇𝑥𝑖 +

𝛽0)  ≥ 1. This constrained optimization problem is 

called Quadratic Programming (QP) problem. It is 

named according to the quadratic objective function 

(12). The Lagrange multiplier method can be used 

to solve this QP problem as follows,  

𝐿𝑝(𝛽, 𝛽0, 𝛼𝑖) =
1

2
|𝛽|2

+ ∑ 𝛼𝑖(1

𝑛

𝑖=1

− 𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0)) 

…  (3) 

where 𝛼𝑖 ≥ 0 is the Lagrange coefficients for 

𝑖 = 1, … , 𝑛. Let 
𝜕

𝜕𝛽
𝐿𝑝(𝛽, 𝛽0) = 0  and  

𝜕

𝜕𝛽0
𝐿𝑝(β, β0) = 0 

Therefore, above forms leads to, 

𝛽 = ∑ 𝛼𝑗𝑦𝑗𝑥𝑗
𝑛
𝑗=1    and   ∑ 𝛼𝑖𝑦𝑖 = 0𝑛

𝑖=1  

Substituting these two forms into Eq.(3) (the primal 

problem), the following dual problem is gotten, 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐿𝑑(𝛼)

=  ∑ 𝛼𝑖

𝑛

𝑖=1

−
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇

𝑛

𝑗=1

𝑥𝑗

𝑛

𝑖=1

 

…(4) 

subject to 𝛼𝑖 ≥ 0, ∑ 𝛼𝑖𝑦𝑖 = 0.𝑛
𝑖=1  𝐿𝑑 is the greatest 

lower bound (infimum) of 𝐿𝑝 for all 𝛽 and 𝛽0; i.e., 

the dual problem is related to the prime problem by 

𝐿𝑑 = inf 𝐿𝑝(𝛽, 𝛽0, 𝛼). Solving Eq.(4), 𝛼𝑖 can be 

gotten, from which 𝛽 of the optimal plane can be 

found. 

In Fig.1b, the points 𝑥𝑖 on either of the two 

boundary hyperplanes 𝐻1 and 𝐻2 are called support 

vectors, and they correspond to positive Lagrange 

multipliers 𝛼𝑖 > 0. All the points that are far away 

from the 𝐻1 and 𝐻2 are not important. So, the 

training model will depend only on the support 

vectors. For a support vector 𝑥𝑖  on either 𝐻1 and 𝐻2, 

the constraining condition is  

𝑦𝑖(𝑥𝑖𝛽 + 𝛽0) = 1 …   (5) 

where 𝑖 ∈ 𝛿, and 𝛿 is the set of all indices of 

support vectors 𝑥𝑖 that corresponding to 𝛼𝑖 > 0.  

Substituting 𝛽 = ∑ 𝛼𝑗𝑦𝑗𝑥𝑗 = ∑ 𝛼𝑗𝑦𝑗𝑥𝑗𝑗∈𝛿
𝑛
𝑗=1  

into Eq.(5), it becomes 

𝑦𝑖 (∑ 𝛼𝑗𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

𝑗∈𝛿

+ 𝛽0) = 1 …   (6) 
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a. Hyper planes that separate first and second 

classes ( 𝐻1, 𝐻2, 𝐻3, 𝑎𝑛𝑑 𝐻4). 

 
b. Separating hyperplane (𝐻0) and two 

boundary hyperplanes (𝐻1 𝑎𝑛𝑑 𝐻2). 

Figure 1. Classification by Support Vector Machine 

 
By simplifying Eq.(6), 

𝑦𝑖 ∑ 𝛼𝑗𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

𝑗∈𝛿

= 1 − 𝑦𝑖𝛽0 …   (7) 

For the optimal values of 𝛽 and 𝛽0, define 

|𝛽|2 = 𝛽𝑇𝛽 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑇  

𝑖∈𝛿

∑ 𝛼𝑗𝑦𝑗𝑥𝑗 

𝑗∈𝛿

=  ∑ 𝛼𝑖𝑦𝑖 ∑ 𝛼𝑗𝑦𝑗

𝑗∈𝛿

𝑥𝑖
𝑇𝑥𝑗 

𝑖∈𝛿

 

= ∑ 𝛼𝑖(1 − 𝑦𝑖𝛽0) =  ∑ 𝛼𝑖 − 𝛽0 ∑ 𝛼𝑖𝑦𝑖

𝑖∈𝛿𝑖∈𝛿𝑖∈𝛿

 

Since ∑ 𝛼𝑖𝑦𝑖 = 0𝑛
𝑖=1 , |𝛽|2 equals to ∑ 𝛼𝑖𝑖∈𝛿 . So, the 

margin, the distance between 𝐻1 (or 𝐻2) and the 

optimal decision hyperplane 𝐻0, is 
1

|𝛽|
=

1

√∑ 𝛼𝑖𝑖∈𝛿

 …   (8) 

 

Soft Margin SVM 

The condition of the optimal hyperplane can be 

relaxed by including an extra term, when 

the response classes are not linearly separable as 

follows, 

𝑦𝑖(𝛽𝑇𝑥𝑖 + 𝛽0)  ≥ 1 − 𝜂𝑖 , ∀𝑖 = 1, … , 𝑛. 
To get a minimum error, 𝜂𝑖 ≥ 0 should be 

minimized as well as |𝛽|, so the objective function 

becomes, 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 |𝛽|2 + +𝐾 ∑ 𝜂𝑖
𝑠

𝑛

𝑖=1

 …   (9) 

subject to 𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) ≥ 1 − 𝜂𝑖 and 𝜂𝑖 ≥ 0 

where 𝑖 = 1, … , 𝑛. 𝐾 is a regularization parameter 

that controls the agreement between minimizing the 

training error and maximizing the margin. Small 𝐾 

influence to emphasize the margin while ignoring 

the outliers in the training dataset 𝐷, while large 𝐾 

may tend to overfit the training dataset 𝐷. When 

𝑠 = 1, Eq.(9) is called first norm soft margin, and 

when 𝑠 = 2, it is called second norm soft margin. 

The algorithm based on the first norm soft margin is 

less sensitive to outliers in the training dataset 

where it ignores the outliers. In the next section, the 

first and second norm soft margins are going to be 

discussed. 

First Norm Soft Margin 

From Eq.(9), when 𝑠 = 1, it follows that: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 |𝛽|2 + +𝐾 ∑ 𝜂𝑖

𝑛

𝑖=1

 

Subject to 𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) ≥ 1 − 𝜂𝑖 and 

𝜂𝑖 ≥ 0,    ∀ 𝑖 = 1, … , 𝑛. 

…(10) 

And hence, the prime Lagrangian becomes 

𝐿𝑝(𝛽, 𝛽0, 𝜂, 𝛼, 𝛾)

=  
1

2
|𝛽|2

+ 𝐾 ∑ 𝜂𝑖

𝑛

𝑖=1

− ∑ 𝛼𝑖[𝑦𝑖(𝛽𝑇𝑥 + 𝛽0)

𝑛

𝑖=1

− 1 + 𝜂𝑖] − ∑ 𝛾𝑖𝜂𝑖

𝑛

𝑖=1

 

… (11) 

with 𝛼𝑖 ≥ 0 and 𝛾𝑖 ≥ 0. 
Substituting 

𝜕𝐿

𝜕𝛽
= 𝛽 − ∑ 𝑦𝑖𝜂𝑖𝑥𝑖 = 0𝑛

𝑖=1 ;    
𝜕𝐿

𝜕𝜂
= 𝐾𝜂 −

𝛼 = 0;    
𝜕𝐿

𝜕𝛽0
= ∑ 𝑦𝑖𝛼𝑖 = 0𝑛

𝑖=1  
…(12) 

in to Eq.(11), the following dual problem is gotten 

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Support vector Machines

First Class

Second Class 

H1

H2

H3

H4

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Support vector Machines

First Class

Second Class 

Separating Hyper Plane 

H0

H1

H2
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𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐿𝑑(𝛼, 𝛾)

= ∑ 𝛼𝑖

𝑛

𝑖=1

−
1

2
∑ ∑ 𝑦𝑖𝑦𝑗

𝑛

𝑗=1

𝛼𝑖𝛼𝑗𝑥𝑗
𝑇𝑥𝑖

𝑛

𝑖=1

− ∑ 𝛼𝑖𝜂𝑖

𝑛

𝑖=1

− ∑ 𝛾𝑖𝜂𝑖

𝑛

𝑖=1

+ 𝐾 ∑ 𝜂𝑖

𝑛

𝑖=1

 

…(13) 

= ∑ 𝛼𝑖 −
1

2

𝑛

𝑖=1

∑ ∑ 𝑦𝑖𝑦𝑗

𝑛

𝑗=1

𝛼𝑖𝛼𝑗𝑥𝑗
𝑇𝑥𝑖

𝑛

𝑖=1

 

subject to 0 ≤ 𝛼𝑖 ≤ 𝐾, ∑ 𝛼𝑖𝑦𝑖 = 0𝑛
𝑖=1 .  

Solving Eq.(13) for 𝛼𝑖, the optimal decision 

hyperplane, 𝛽 and 𝛽0, with the margin becomes 
1

|𝛽|
=

1

√∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗𝑗∈𝛿𝑖∈𝛿

 

Second Norm Soft Margin  

By plugging 𝑠 = 2 in Eq.(9),  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 |𝛽|2 + +𝐾 ∑ 𝜂𝑖2

𝑛

𝑖=1

 …(14) 

subject to 𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) ≥ 1 − 𝜂𝑖,   ∀  𝑖 =

1, … , 𝑛. Notice that the condition 𝜂𝑖 ≥ 0 is dropped 

and set 𝜂 = 0 if it is less and equal to 0; hence the 

objective function is further reduced. In this case, 

the prime Lagrangian is 

𝐿𝑝(𝛽, 𝛽0, 𝜂, 𝛼, 𝛾)

=
1

2
|𝛽|2

+
𝐾

2
∑ 𝜂𝑖

2

𝑛

𝑖=1

− ∑ 𝛼𝑖[𝑦𝑖(𝛽𝑇𝑥 + 𝛽0)

𝑛

𝑖=1

− 1 + 𝜂𝑖] 

…(15) 

Substituting the condition that given in Eq.(12) into 

Eq.(15), the following dual problem will be gotten 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐿𝑑(𝛼)

= ∑ 𝛼𝑖 −
1

2

𝑛

𝑖=1

∑ ∑ 𝑦𝑖𝑦𝑗

𝑛

𝑗=1

𝛼𝑖𝛼𝑗𝑥𝑗
𝑇𝑥𝑖

𝑛

𝑖=1

−
1

2𝐾
∑ 𝛼𝑖

2

𝑛

𝑖=1

 

…(16) 

subject to 𝜂𝑖 ≥ 0, ∑ 𝛼𝑖𝑦𝑖 = 0𝑛
𝑖=1 . Solving 

Eq.(16) for 𝛼𝑖, the optimal values for 𝛽 and 𝛽0 

with the margin becomes 
1

|𝛽|
=

1

√∑ 𝛼𝑖 −
1
𝐾

∑ 𝛼𝑖
2

𝑖∈𝛿𝑖∈𝛿

 

Karush-Kuhn-Tucker (KKT) conditions 

In the previous sections, the cases where the 

datasets are linearly separable are discussed, so the 

solution has been found by solving the dual form of 

Lagrangian. This can be done by minimizing a 

quadratic function subject to a set of constraints. To 

find the dual objective function, the following 

conditions (KKT conditions) should be satisfied: i. 

stationarity, ii. dual feasibility, iii. complementary 

slackness, and iv. primal feasibility (13). To 

minimize 𝑓(𝑥) subject to the constraint 𝑔𝑖(𝑥) ≥
0 ∀𝑥, then the Lagrangian function becomes 

𝐿(𝑥, 𝛼𝑖) = 𝑓(𝑥) − ∑ 𝛼𝑖𝑔𝑖(𝑥)𝑖 . If 𝑥⋆ is a point 

where 𝛽 is optimal for our cost function, the 

necessary KKT conditions for 𝑥⋆ to be the local 

minimum are i. Stationarity: 
𝜕𝐿

𝜕𝑥
(𝑥⋆) = 0, ii. Dual 

Feasibility: 𝛼𝑖 ≥ 0, iii. Complementary Slackness: 

𝛼𝑖𝑔𝑖(𝑥⋆) = 0, and iv. Primal Feasibility: 𝑔𝑖(𝑥⋆) ≥ 

0. The primal function is not convenient if any of 

the KKT conditions is not satisfied. In general, if 

the dataset has 𝑁 variables, the computational 

complexity is 𝑂(𝑁3) (14). 

Non-linearly SVM 

When a dataset is not linearly separable, the 

techniques introduced in the previous section do not 

converge. However, a hyperplane (decision surface) 

can be found by transforming the data to the high 

dimensional spaces by using an appropriate kernel. 

Even though the original dataset is not linearly 

separable, a hyperplane can be found to separate the 

mapped datasets (12). Fig.2 shows an example of 

transforming data points from two-dimensional 

(2D) spaces to three-dimensional (3D) spaces. In 

the 2D, the data points are not linearly separable, 

but the data points are easily can be separated by a 

surface when they are transformed into 3D. 
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Figure 2. A kernel function that transfers dataset from 2D to 3D. 

 

If 𝛷 is a kernel function that satisfies 𝛷(𝑥𝑖 , 𝑥𝑗) =

 𝜙𝑇(𝑥𝑖) . 𝜙(𝑥𝑗), then the corresponding dual 

problem is 

𝐿(𝛼)

=  ∑ 𝛼𝑖 −  
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝛷(𝑥𝑖, 𝑥𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑖=1

 
…(17) 

subject to ∑ 𝛼𝑖𝑦𝑖 = 0,𝑛
𝑖=1  and 𝛼𝑖 ≥ 0   ∀𝑖 =

1, … , 𝑛. In terms of the unknown parameters, the 

function 𝐿(𝛼) is convex and quadratic, so the 

problem can be solved through QP as shown in the 

previous sections (15). Moreover, the set of KKT 

conditions for Eq.(17) give the following decision 

rule, 

𝐿(𝑥, 𝛼𝑖
⋆, 𝛽0) = ∑ 𝑦𝑖𝛼𝑖

⋆𝛷(𝑥𝑖 , 𝑥) + 𝛽0

𝑁𝛿

𝑖=1

 …(18) 

where 𝑁𝛿  denotes to the number of support vectors, 

and 𝛼𝑖 denotes to the non-zero Lagrange multipliers 

that corresponding to the support vectors. The most 

common choices of the kernel are: 

1. Linear kernel: Φ(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 

2. Polynomial kernel: Φ(𝑥𝑖, 𝑥𝑗) = (1 + 𝑥𝑖
𝑇𝑥𝑗)

𝑝
 

3. Radial Basis Function (RBF) (or Gaussian) 

kernel: Φ(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝{−
(𝑥𝑖−𝑥𝑗)

𝑇
(𝑥𝑖−𝑥𝑗)

2𝜎2 } 

4. Multi-Layer Perceptron (MLP) (or Sigmoid) 

kernel: Φ(𝑥𝑖, 𝑥𝑗) = tanh(𝑘1𝑥𝑖
𝑇𝑥𝑗 + 𝑘2) 

In the implicit mapping of the data to feature space, 

kernel functions that satisfy Mercer’s conditions 

ensure the convexity of the 𝐿(𝛼) which leads to the 

unique optimum (16). Mercer condition state that a 

kernel function Φ(𝑥, 𝑦) must be continuous, 

symmetric, and positive semi-definite, so the 

matrices do not have non-negative eigenvalues (17) 

(18). 

Gradient Descent 

The goal is to minimize the following function, 

𝐿(𝛽) =
1

2
𝛽0

𝑇𝛽0 + 𝐾 ∑ max( 0, 1

𝑖

− 𝑦𝑖𝛽𝑇𝑥𝑖 ) 

… (19) 

Eq.(19) is convex in 𝛽, and it is a quadratic 

optimization problem. In previous methods, the 

technique from QP is used, but it is very slow. 

Whenever there are no constraints, the gradient 

descent (GD) can be used (19). In general, the 

gradient is the direction of the steepest increase in 

the function, so it goes in the opposite direction to 

get to the minimum as shown in Fig.3. 

 
Figure 3. The general strategy for minimizing a 

function 𝐋(𝛃) 
 

The general GD strategy for minimizing Eq.(19) 

starts with an initial value for 𝛽, say 𝛽0, then iterate 

until convergence. GD-SVM is faster than QP, and 

it is still slow. The GD-SVM in Algorithm 1 can be 

summarized as follows: 

 

Algorithm 1:  GD-SVM 

Iterate until convergence 

Initialize 𝛽0 

For 𝑖 = 1, … , 𝑑: 

Evaluate: ∇(𝛽𝑗) =  
𝜕𝑓(𝛽,𝛽0)

𝜕𝛽j  = 𝛽j + 𝐾 ∑
𝜕𝐿(𝑥𝑖,𝑦𝑖)

𝜕𝛽j
𝑛
𝑖=1 , where 𝐾 is a regularization parameter.  

Update 𝛽 as follows: 𝛽𝑗  ←  𝛽𝑗 − 𝜂∇(𝛽𝑗), where 𝜂 is the learning rate parameter. 

Return final 𝛽. 
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Stochastic Gradient Descent 

Computing ∇(𝛽𝑗) takes 𝑂(𝑛) time, where 𝑛 is the 

size of the training dataset, so GD-SVM is slow 

when 𝑛 is large. In the GD-SVM algorithm, the 

value of the objective function is improved at every 

step. It takes fewer steps to converges, as can be 

shown in Fig.4., but each step takes much longer 

time to be computed (20). To speed the GD-SVM 

algorithm, the gradient is evaluated for each training 

example instead of evaluating it for all examples. 

This process is called stochastic gradient descent 

SVM (SGD-SVM). It improves the value of the 

objective function noisily. This process takes many 

more updates than gradient descent, but each update 

is less computationally expensive, and hence SGD-

SVM is faster than GD-SVM. SGD-SVM algorithm 

(Algorithm 2) is guaranteed to converge to the 

minimum of 𝐽 if 𝛾𝑡  is small enough (21) (22). 

  

a. Gradient Descent b. Stochastic Gradient Descent 

Figure 4. Gradient Descent vs. Stochastic Gradient Descent. 

 
Algorithm 2:  SGD-SVM 

Given a training set 𝑆 = {(𝑥𝑖 , 𝑦𝑖): 𝑥 ∈ ℝ𝑛 𝑎𝑛𝑑 𝑦 ∈ {−1, +1}} 

Initialize: 𝛽0 = 0 ∈ ℝ𝑛 

For 𝑡 = 1, … , 𝑇: 

Pick a random example (𝑥𝑖 , 𝑦𝑖) from the training set 𝑆. 

Repeat (𝑥𝑖 , 𝑦𝑖) to make a full dataset and take the derivative of the SVM objective at the current 𝛽𝑡−1 to be 

∇Jt(𝛽𝑡−1). 

∇Jt(𝛽𝑡) =  
1

2
𝛽0

𝑇𝛽0 + 𝐾 · 𝑁 · max (0,1 − 𝑦𝑖𝛽𝑇𝑥𝑖), where 𝑁 is the number of training examples. 

Update 𝛽 as follows: 𝛽𝑡 ← 𝛽𝑡−1 − 𝛾𝑡∇Jt(𝛽𝑡−1). 
Return final 𝛽. 

 

Simulation Studies 

To test the GD-SVM and SGD-SVM methods, two 

simulation datasets are generated with 50 and 100 

observations. Each dataset has a set of variables and 

a response that has two classes. In real life, it is 

unknown whether the datasets are linearly or 

nonlinearly separable. So, as can be shown in Fig.5 

and Fig.6, complex datasets (nonlinearly separable) 

are generated. GD-SVM and SGD-SVM are applied 

to the two datasets by using different types of 

kernels. In both methods, the RBF kernel gives the 

best accuracy with two datasets. In Tables 1 and 2, 

GD-SVM and SGD-SVM are compared concerning 

the best value of 𝐾, the number of support vectors, 

using the sensitivity (also called the true positive 

rate) and specificity (also called the true negative 

rate). 



Open Access     Baghdad Science Journal                                P-ISSN: 2078-8665 

2020, 17(4):1255-1266                                                            E-ISSN: 2411-7986 

 

1261 

 
a. Linear kernel 

b. 

Polynomial kernel 

 
c. RBF kernel 

 
d. MLP kernel 

Figure 5. SGD-SVM for a data set with 50 observations. 

 

 
a. Linear kernel 

 
b. Polynomial kernel 

 
c. RBF kernel  

d. MLP kernel 

Figure 6. SGD-SVM for a data set with 100 observations. 
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Table 1. GD-SVM & SGD-SVM for a data set with 50 observations. 

Method Kernel Type Best 𝐾 Value 
Number of 

Support Vectors 
Sensitivity % Specificity % 

GD-SVM 

Linear 5 20 50.33 63.49 

Polynomial 1 25 68.40 90.58 

RBF 10 39 71.44 94.01 

MLP 1 36 68.95 74.33 

SGD-SVM 

Linear 5 29 66.66 75.00 

Polynomial 5 30 68.57 93.33 

RBF 10 32 75.00 94.44 

MLP 0.1 42 72.41 80.95 

 

Table 2. GD-SVM & SGD-SVM for a data set with 100 observations. 

Method Kernel Type Best 𝐾 Value 
Number of 

Support Vectors 
Sensitivity % Specificity % 

GD-SVM 

Linear 5 33 60.30 69.43 

Polynomial 1 60 68.40 83.58 

RBF 1 79 72.74 74.01 

MLP 0.1 40 70.95 74.33 

SGD-SVM 

Linear 1 62 75.00 77.77 

Polynomial 1 71 77.77 72.72 

RBF 0.1 92 74.54 80.00 

MLP 0.1 76 72.54 80.00 

 

Real Dataset 

One of the universal cancer types is 

Leukemia dataset. Its diagnosis and classification 

are complex. For experimental evaluation, The 

Leukemia dataset is used in this section. The dataset 

was published by Golub et al in 1999 (9). It comes 

from a proof of concept study. It shows how the 

gene expression monitoring (via a DNA microarray) 

can classify the new cases of cancer, providing a 

common approach for assigning tumors to known 

classes (11). Using this type of data set, patients can 

be classified into Acute Myeloid Leukemia (AML) 

and Acute Lymphoblastic Leukemia (ALL) 

(13)(23). The complete Golub-Merge dataset is 

available in the golubEsets packages. It has 3051 

genes and 72 observations. Working with large 

datasets confront many difficulties such as time-

consuming and inefficient results (24). 

 

Analyzing Golub Datasets 

To analyze the Leukemia dataset, the most 

significant genes for cancer type need to be 

selected. This means the genes that are differentially 

expressed across classes should be considered. 

Since the differentially expressed genes between 

two groups, a t-test seems like the common choice. 

However, the t-test requires normality assumption 

which might not be a logical assumption. A 

3051 × 2 histogram cannot be plotted to have an 

idea about the justification for normality. Mann 

Whiteny U test looks more adequate in this case 

(25), and it is nearly as efficient as the t-test. 

After running the test and adjusting p-

values according to Benjameni-Hochberg method, it 

is ended up with only 329 significant genes. The 

majority of genes does not seem to have different 

mean values across classes. The same result for the 

median is gotten. The median differences between 

classes are clustered around zero, Fig.8. Only a few 

numbers of genes seem interesting, and they can be 

easily indicated. Fig.7 provides a quick summary of 

the selected genes (26). Some important genes in 

Fig. 9 were plotted. As can be seen, the most 

significant genes id that influences the model are 

G4847, G3252, G1882, G6855, and G2288. 
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Figure 7. Summary of selected genes. 

 
Figure 8. Plot for the differences in Mean and Median. 

 
Figure 9. Importance genes for Leukemia dataset. 
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Results and Discussion: 
SGD-SVM was applied to the Leukemia 

dataset. A comparison between some different 

kernel functions had been done. The most common 

kernel which are linear, polynomial, RBF and MLP 

kernels were used. Also, our method was compared 

with some existing methods. These methods used 

the same dataset for leukemia classification which 

are k-nearest neighbor random forest and naïve 

Bayes (13). In Fig.10, SGD-SVM models for the 

Leukemia dataset classification are plotted. Only 

the most two important genes in which their id are 

G3252 and G4847 are used. These two genes 

expressions are relevant to judge if a new sample 

related to ALL or AML classes. As it is shown from 

the plot (Fig.10) and the table (Table 3) the best 

SGD-SVM model is satisfied when the RBF kernel 

is applied. The RBF kernel gets 100% accuracy 

which is the highest performance compared with 

other kernels. SGD-SVM performed 96.93% 

accuracy for the linear kernel, 97.00% accuracy for 

the polynomial kernel, and 97.00% accuracy for 

MLP kernel. SGD-SVM performed much better 

than other methods where k-nearest neighbor 

performed 86.80% accuracy, random forest 

performed 87.10% accuracy, and naïve Bayes 

performed 84.6% accuracy. 

 
a. Linear kernel 

 
b. Polynomial kernel 

 
c. RBF kernel 

 
d. MLP kernel 

Figure 10. Classification Leukemia Cancer type using SGD-SVM 
 

Table 3. Comparison between SGD-SVM, k-nearest neighbors, random forest, and naive Bayes for 

classification leukemia cancer type. 

Methods 
Number of 

Support Vectors 

Accuracy Rate 

% 
Sensitivity % Specificity % 

SGD-SVM 

Linear kernel 8 96.93 97.87 96.00 

Polynomial kernel 11 97.00 94.00 1 

RBF kernel 7 1 1 1 

MLP kernel 6 93.33 97.77 88.88 

k-nearest neighbors 86.80 85.20 88.40 

random forest 87.10 89.33 84.87 

naive Bayes 84.60 86.49 82.71 
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Conclusion: 
In this paper, the SGD-SVM method was 

proposed. The method was developed using a 

stochastic Gradient descent process. Two simulation 

datasets were used to test the performance of the 

method. The results showed that SGD-SVM has a 

larger accuracy rate comparing with the regular 

SVM method. By applying the SGD-SVM on 

Leukemia datasets, it found that the best accuracy 

exists for classification of the two types of 

Leukemia cancer when the RBF kernel has been 

applied. 
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مع تطبيقات على بيانات الانحدار العشوائي تطوير شعاع الدعم الالي للتصنيف باستخدام 

 سرطان الدم

 
 غدير جاسم محمد مهدي

 

 ، جامعة بغداد، بغداد، العراق. ابن الهيثم -كلية التربية للعلوم الصرفة قسم الرياضيات، 

 
 الخلاصة:

هو أحد تطبيقات معادلة الانحدار للتعليم الاستنتاجي الذي يحلل البيانات ويستخدم في التصنيف ومعادلة  (SVM) الاليشعاع الدعم 

بشكل واسع بأختيار مقطع مثالي للفصل بين مجموعتين. وهو يمتلك دقة عالية و مستقر بصورة هائلة  SVMالانحدار. في التصنيف، يستخدم 

.على naïve model  و random forest ،  k-nearest neighbor لأخرى مثل الانحدار اللوجستي الخطي،بالمقارنة مع طرق التصنيف ا

طورت  SVMأي حال، عند العمل على بيانات هائلة تتولد مشاكل كبيرة كاستهلاك للوقت وأيضا النتائج  تكون غير دقيقة.  في هذا البحث 

اختبرت بأستخدام مجموعتين من البيانات. ولأن تصنيف أنواع السرطان  SGD-SVM. الطريقة المحدثة، العشوائي الانحداربأستخدام طريقة 

طبقت لتصنيف بيانات تكسر كريات الدم الشهيرة. النتائج التي حصلنا عليها  SGD-SVMمهم بالنسبة لتشخيص السرطان واستكشاف الدواء. 

 لتي تم الحصول عليها من بعض الدراسات السابقة التي استخدمت نفس البيانات.كانت دقتها اعلى من النتائج ا SGD-SVMمن طريقة 

 

 .العشوائي الانحدار التصنيف، تقليل الأبعاد، اختيار الميزات، تشخيص سرطان الدم، الكلمات المفتاحية:

 


