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Abstract:

A new type of the connected domination parameters called tadpole domination number of a graph is
introduced. Tadpole domination number for some standard graphs is determined, and some bounds for this
number are obtained. Additionally, a new graph, finite, simple, undirected and connected, is introduced
named weaver graph. Tadpole domination is calculated for this graph with other families of graphs.
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Introduction:

Let G = (V, E) be finite, simple, connected
and undirected graph where V denotes its vertices
set and E its edges set. A degree of a vertex v of
any graph G is defined as the number of edges
incident onwv. It is denoted by deg(v). The
minimum and maximum degrees of vertices in G
are denoted by &(G) and A(G), respectively.
A graph is called connected if there is a path from
any vertex to any other vertex in the graph. A graph
which is not a connected one is called a
disconnected graph, the disconnected graph can
contain at least two of the connected graphs, each of
these is called component. A cut-vertex of a graph
G is a vertex where removing it from the graph
would increase the number of components.

The girth of a graph is the length of the
shortest cycle contained in a graph. A Hamiltonian
graph is agraph possessing a cycle that goes
through all the vertices of G. A set D cV of
vertices in a graph G = (V,E) is called a
dominating set if every vertex v € V is either an
element of D or is adjacent to an element of D. The
domination number of G y(G) is the minimum
cardinality taken over all dominating sets in G (1,2).
Many authors have introduced different types of
domination parameters through adding conditions
on the dominating set. Sampathkumar and Walikar
(3) defined a connected dominating set D; a
connected dominating set exists if the induced sub
graph D is connected. The topic of domination
parameter is associated with several studied types of
dominating sets especially a connected domination
number due to its importance.
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In network you need the communication
between its members. Such as the internet or
electricity or any social network in daily life,
facilitating the business task and reducing the cost.
Refer to (4,5,6,7,8,9,10,11,12) for more types of
domination in graphs.

In this work, a new type of connected graph
domination is introduced. If the vertices of a
dominating set in a graph form a sub graph as a
tadpole graph then these vertices represent a tadpole
dominating set in this graph. Some results for this
new domination are determined. Also, a new model
of graph called weaver is initiated and its tadpole
domination, is calculated.

Main results

Definition 2.1.(13) The graph obtained by joining
cycle C,, to a path B, with a bridge called Tadpole
graph denoted by T, ,,. (Fig.1).

\./
Figure 1. Ty 3 tadpole graph

Definition 2.2. A subset D of V(G) is said to be a
tadpole dominating set of G if D is a dominating set
and the set of vertices of D forms a tadpole graph
TynWhere m > 3, n > 1.

Definition 2.3. Let G(V,E) be a graph, if D is a
tadpole dominating set, then D is called a minimal
tadpole dominating set if it has no proper tadpole
dominating set. A minimum tadpole dominating set
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is atadpole dominating set of smallest size in a
given graph.

Definition 2.4. The minimum cardinality of a
minimal tadpole dominating set is called the tadpole
domination number of G and is denoted by y;p(G).

Example 2.5. Fig.2 illustrates the minimal tadpole
dominating sets for different cardinality in the graph
below.

Dy ={v7, v10, va, vs} Dy ={vy, 3, V5,04, V10},
D3 ={vg, vg, V10, V4, Vs, V1}, and Dy={

Uy, V3, Vs, Vs, V13, V12, Vio)-

The minimum tadpole dominating set is D,, and the
tadpole domination number is, yrp(G) = 4.

Figure 2. Minimum tadpole dominating set in G

Observation 2.6. For any graph G has a tadpole
dominating set, then:

1. Theorderof Gis p = 4.
2. 8§(G) =1,A(6) = 3.

Proposition 2.7. For any graph G with a minimum
tadpole dominating set D if v € G is a cut vertex
then, v € D.

Proof. Let G has tadpole dominating set. Then G
has T,,, asasub graph such that each vertex of set
V — D is adjacent to at least one vertex in D. Let v
be a cut-vertex in G. Since v is a cut vertex of G, G
—v is disconnected and has at least two
components. From a partition of V — {v} by
letting U consist of the vertices of one of these
components and W the vertices of the others. Then
any two verticesu € Uandw € W lie in different
components of G — v. Therefore, every u — w path
in G contains v.

If veV —D,and v is dominated by some vertices
say in U then the vertices of W are not dominated
by any vertex in D. Therefore, v € D.

Proposition 2.8. For any complete graph of order
n =4, yrp(Kn)= 4.

Proof. The girth of the complete graph is a cycle of
order three. Since G is a complete graph then each

vertex from these three vertices is adjacent to all
other vertices of G we need exactly to one other
vertex to be the vertex of the path that adjacent to
this cycle to obtain a tadpole dominating set.
Therefore, yrp(K,)= 4.

Proposition 2.9. For the tadpole graph
m=3,n =2, yTP((Tm’n)= m+n-—1.
Proof. Let G be a tadpole graph of order greater
than four. Then G has only two tadpole sub graphs
of orders (m+n) and (m+n—1). Hence,

yTP( (Tm_n) =m+n-—1.

Tm,n )

Observation 2.10.

1. yrp(W,)= 4, where W, is the wheel graph
of order n > 4.

2. yrp(Knm)=5, where K, ,, is the complete
bipartite graph of order n > 2, m > 3.

3. For the tadpole graph T,,;, m =3,

VTP( (Tm,l) =m+ 1L

Theorem 2.11. A connected graph G has a tadpole
domination if and only if:

i) There exist a maximal path P such that V(P)
dominates G.

i) The maximal path P dominates a cycle in G such

that there exists at most one path of order greater
than 2, which is common with one vertex with this
cycle.

Proof. If a graph G is connected and has a tadpole
domination number, then there is a minimum
tadpole dominating set say D such that it contains a
cycle of order m and a path of order n such that all
vertices of G are dominated by the vertices these
cycle and the path. G[D] contains a path forms from
the vertices of the cycle and the path, where they
have one vertex in common. Then D contains a path
of order m + n, say P;. This path is included in a
maximal path say P in G. Therefore, (i) is holds. It’s
clear that (ii) is holds from the above proof.
Conversely, it’s clear that if (i) and (ii) are satisfied,
then G is connected and has a tadpole dominating
set, so it has a tadpole domination number

Corollary 2.12. Let G be a graph containing at
least three simple cycles joined with a common
vertex with at least four vertices in every cycle then
there is no tadpole dominating set for this graph.

Observations 2.13. Every tadpole dominating set
D of G is a connected dominating set but not
conversely.
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Example 2.14. The complete graph K,, has a
connected dominating set but there is no tadpole
dominating set when n < 3.

Characterizations 2.15.

1. For any graph G with n > 4 vertices, 4 <
yre(G) < n.
Cycles and trees have no tadpole domination
number.
Let G be a graph having a tadpole dominating
set then yp(G) = g(G) + 1, where, g(G) is
the girth of G.
If a spanning sub graph H of a graph G has a
tadpole dominating set then G has a tadpole
dominating set.
Let G be a graph having a tadpole dominating
set for any e = uv where, e is a bridge in G,
if the vertices u, v are cut vertices, thenu, v €
D.
If any graph G with more than one cycle has a
tadpole dominating set then y;p(G) <n-—1L,
where L are the pendant vertices in G.
If the tadpole dominating set D has pendent
vertices then the number of pendent vertices
in any D is exactly one.
For any graph G with n > 4 vertices, we have
yrp(G) + A(G) <2n — 1.
Let G be a graph of order n > 5 has a tadpole
dominating set D, if G is Hamilton graph
then the Hamilton cycle of G do not belong
to any D as the cycle of T, ,,.

2.

3.

Proposition 2.16. Let G and H be two graphs such
that G + H is not isomorphic to a cycle nor to a tree
then yrp(G + H) = 4,5.

Proof. There are three cases as follows:

Case 1. If G is K, and H is a null graph of order m,
then G + H = S;41 (Sma1, IS @ star). Thus, in this
case G + H has no tadpole dominating set. Now, if
G and H are two null graphs of order two, then G +
H = (C,, again G + H has no tadpole dominating
set.

Case 2. If at least one of the two graphs G or H is
not a null graph then without loss of generality
say G. So, there is an edge say e in G, which forms a
cycle in G + H with any vertex in H. At least one of
the vertices of this cycle becomes of degree greater
than or equal to three. Thus, there is a path that is
not contained in this cycle and joins with it by one
edge. One can conclude that, this path is of order
one such that a sub graph T3, that contains these
cycle and path which are mentioned above
dominates all other vertices in G+ H. Thus,
Yre(G + H) = 4.
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Case 3. If G and H are two null graphs that are not
mentioned in case 1, then G + H = K, ,,. Thus, by
Observation 2.10 (2), yrp(G + H) = 5.

Proposition 2.17. For any connected simple graph
Gwithn= 4, yrp(G) =4 ifandonly if G =
K4, Ky —{e},and T3;.

Proof.

Suppose that G has a tadpole domination number
yrp(G)= 4. Since G is connected and is not
isomorphic to P, nor to Cy, then one can conclude
that G = K,, K, — {e}, e € K, and T3 .
Conversely, If ¢ = K,, K, —{e}, e € K, and T3,
then y;p(G)=4, Since each of these graphs
contains spanning sub graph isomorphic to Ts;.
(Characterizations 2.15.(4)).

Theorem 2.18. For any connected graph G with
n >4, we have y(G)+ yrp(G)+2 A(G)+1 <
3n.

Proof. According to y(G) < n — A(G) and by
(Characterizations 2.15.(8)).

yrp(G) + A(G) < 2n — 1. Thus, yrp(G) + A(G)
< 2n - 1. So, the two statements can be written as
follows:

AG) < n — y(G)...(D).

AG) < 2n — 1 — yp(G) ...(2). From (1) and
(2) y(G) + yrp(G) +2 A(G) +1 < 3n.

Tadpole domination in some graphs

Definition 3.1. (14) A graph of order p =2n
vertices core is called sun graph. Consisting of a
central complete graph K,, with an outer ring
of n vertices, each of which is joined to both
endpoints of the closest outer edge of the central.

Remark 3.2. For sun graph of ordern, 3 <n <
6, yrp(G) =4. ( Asanexample see Fig. 3).

Figure 3. Sun graph with minimum tadpole
dominating set, yrp(G) =4

Theorem 3. 3. For the sun graph, y;p(G) =[n/2],
where n > 7 is the order of K,,.
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Proof. Every vertex in K, is adjacent to two
vertices in the outer ring. Let the vertices of K, are
V; ={v;,v,,v3,..,v, } and the outer ring
V, = {uq,uy,us, ..., u,}. Since K,, is complete, so
one vertex dominates all its vertices. The girth
in K,, is 3, therefore, a cycle of length 3 is chosen
to belong to a dominating set. Every vertex in V;
with odd label is adjacent to different and
independent vertices from V,. These vertices are
contained in a path, choosing any three of these
vertices forms a cycle, such that v,_; belongs to
the dominating set. So, let v, ,v5, and v,,_, are the
vertices belonging to a set D and the remaining
vertices of set V; with odd labels representing a
path that belongs to D as follows:

D ={vy_41,i=12,..,[n/2]}, vertices of D that
dominate all the vertices of G thus, y;p(G) < |D|
<[n/2]. To prove the reverse inequality, the
induction method on the number of vertices n is
used. The results are clear if n = 7. Suppose that
the result is true for all sun graphs of order less than
n. Then D=D; U D, where D; is the minimum
tadpole dominating set that dominates the sun graph
with order less thann, when n is odd. By

induction |D,| = [nT_ll and hence when one vertex
is added to the sun graph (n—1 order of the
complete graph) one vertex is needed to dominate
it.

Therefore, |D| = [nT_ll +1= E] Where |D,| = 1
ID| = [nT_ll = E] if n is even such that |D,| = ¢.

Therefore, y;p(G) = E] (For example see Fig. 4) .

Figure 4. Sun graph with minimum tadpole
dominating set, yrp(G) =4

Definition 3.4.(14) A stacked (or generalized) prism
graph Y,,, ,, is a simple graph given by the Cartesian
product of K, and C,,.

It can therefore, be formed by connecting
n concentric cycle graphs C,, along spokes.
Therefore, Y, ,  has (mn) vertices and m(2n —
1) edges.
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Remark 3.5. For n =1,m > 3, a stacked prism

graph Yy, ,, , there is no tadpole dominating set since
Ym1= Cn and for n=2, yrp(G)=m+ 1.

Lemma 3.6. The tadpole domination number for a
stacked prism graphY;,, n = 3is yrp(G)
=n+1.

Proof. In this graph there are A copies of cycle C5
and B copies of path P,, n = 3. The vertices for
this graph are labeled byV(Ys,)={vdi=
1,23 d = 1,2,..,n}. (As shown in Fig. 5). Let the
set D c V( Y3,n). So, it’s clear that the vertices in
any P, are adjacent to all other remaining vertices
of Y3 ,. Therefore, the vertices of only one path can
dominate V(Y3,). Now to choose the shortest
cycle and shortest path in Y3, to get the minimum
tadpole domination the cycle which vertices are
v?,i=1,2,3 is the one. Since v? is a common
vertex of C; and the chosen path so n—2+43
vertices dominates the graph. Thus, |D| = n+ 1.
It is clear that D is a tadpole domination set and it is
minimum.

Figure 5. A stacked prism graph, yrp(¥33) =
4

Theorem 3.7. For a stacked prism graph Y, ,,
m > 3, n=3, then the tadpole domination
number is:
)’TP(Ym,n)

m
g(n—1)+m—1 if m=0(mod3),n

[\
w

= [g] mn—-1D)+m+n—-4 ifm=1(mod3),n

L [gl(n—1)+m—2

v
S

ifm=2 (mod3),n =5

Proof. A stacked prismgraph ¥,,,,, m = 3, n >3
is formed from A copies of cycle C,,, and B copies
of path P,. Let the vertices of this graph be labeled
by V(Ymn)={v}i=123,.md=12.,n}
Three cases are obtained as follows:

Case 1.
i) When m = 3 the proof is in Lemma 3.6.


http://mathworld.wolfram.com/GraphCartesianProduct.html
http://mathworld.wolfram.com/GraphCartesianProduct.html
http://mathworld.wolfram.com/CycleGraph.html

Baghdad Science Journal

Vol.15(4)2018

ii) Whenm > 3: If m =0 (mod 3)then, let D =
[{viz,i= 1,2,.,m} U {vf d=2,..,n }U
(vl v}y Vd= 1,2,...,?—1} U{vgj_z,d =

o Mm_
4.n¥j=2.5-1

For the same reason in Lemma (3.6), the graph is
dominated by vertices of C2 .
v(cz)={v},i=12,..,m }, and for the path

pf, V(pf) ={vf, d =2,..,n}. Since each p:

is adjacent to two different paths, therefore,
paths are adjacent to two different paths by jumping
two adjacent paths. To complete the chosen path,
the set {viy_,,vly ,Vd=12,..,5—1} must
be taken to get these paths whose vertices are in the
following set: {v§;_,,d=4..n,vj=2, ?}
The number of vertices in every path is equal
to n?. There are % common vertices between
C% and the chosen paths. The path {v%,d =
2,..,m} is chosen to be of ordern—1. Such
that |D| = n ?+ m— % — 1. Hence, the vertices in
D represent the minimum tadpole dominating
set. ( See Fig. 6 a).

Case 2. If m =1 (mod 3), then as in case. 1 the
graph is dominated by the vertices of set D. There is
only one path of vertices v%_, which is not
dominated by any vertices in D. This path of order
n — 3, will be taken to dominate its vertices and
add these vertices to the set D in case 1. Therefore,

D= [(v?,i=12,..,m} U{vid=

2,..,1n }U{v?d_l,v?d , Vd=1,2,...,[%]—
LU, d=4.n¥j=2.[Z[}u

(v&_, d=4,..,n }]. Hence, |[D| = n [%] +m-—
[§]+n—4.

The vertices in D represent the minimum tadpole
dominating set. (As an example see Fig. 6 b).

Case 3. If m = 2 (mmod 3), as in case. 2 the graph
is dominated by the vertices in D.

In this case there are two adjacent paths of
vertices v%_, and v%_,, they are not dominated
by any other vertices in D. So we will take the
vertices vZ_, to dominate the vertices v _;.
But to continue forming the path from the path with
the vertices v%_, to the path with vertices
vd_, we pass through the vertex vit_5, so we
have the following set:
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D = [{viz,i =12,..,m} U {vl d=

2,..,1 } U{vl_,, vl vd=12,.., [%] —
205, d=4.nVj=2.[F[}u

(vis 3

Therefore, |D| =n [%] +m-— [%] —2.

Hence, the vertices in D represent the minimum
tadpole dominating set. (As an example see Fig. 6
c).

Example 3.8. For the graph Yy, vrp(Yoe) =

23, VTP( Y7,7) =22, )/Tp( Y5_4) =09.

(€): Y54
Figure 6. Minimum tadpole dominating set in
stacked prism graphs
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