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Abstract:

In this paper we study the notion of preradical on some subcategories of the category of semimodules

and homomorphisms of semimodules.

Since some of the known preradicals on modules fail to satisfy the conditions of preradicals, if the
category of modules was extended to semimodules, it is necessary to investigate some subcategories of
semimodules, like the category of subtractive semimodules with homomorphisms and the category of
subtractive semimodules with ek-regular homomorphisms.
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Introduction:

Throughout this work, S stands for a
commutative semiring with identity and a
semimodule means a unitary left $-semimodule. An
S-subsemimodule L of an S-semimodule A is called
subtractive if forall a,a’ € A, a + a’,a € L implies
a' € L it is clear that 0 and A are subtractive S-
subsemimodules of A. An S-semimodule A is a
subtractive S-semimodule if it has only subtractive
subsemimodules (1). The category of S-
semimodules will be denoted by Ms.

In this work we will introduce the concept
of ek-regular homomorphism (which are relevant to
our work). A homomorphism of S-semimodules
¢@: A — B is said to be epimorphism-kernel regular
(ek-regular) if ¢ is an epimorphism and k-regular.

In module theory, a preradical P on R-Mod
(the category of unitary left R-modules) is any
subfunctor of the identity functor of R-Mod (2). The
concept of preradical in semimodules was not found
in the literatures.

In this paper we study the notion of preradical
on some subcategories of the category of
semimodules and homomorphism of semimodules.
Since some of the known preradicals on modules
fail to satisfy the conditions of preradicals, if the
category of modules was extended to semimodules,
it is necessary to investigate some subcategories of
semimodules, like M,_g  (the category  of
subtractive ~ semimodules  with  ek-regular
homomorphisms) and the category of subtractive
semimodules with homomorphisms M.
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That is only we need to prove some
properties of homomorphisms on S-semimodule.

In addition to section One, there are five more
sections. Section Two consists of the preliminaries
that we need in our investigation; some of these
were found in the literatures, while the results
(Lemma 2.10, which are relevant to our work, and
other results in the next sections) are part of our
investigation. In section Three, three types of
preradicals were investigated, Jacobson radical,
socle, and second of semimodule. Singular and
torsion of semimodule were studied in Section Four
. In Section Five the concepts of reject and inject of
semimodule were investigated. Finally, in Section
Six, preradicals and their properties and types were
introduced applying these concepts to the examples
of the previous sections.

Preliminaries

Some definitions and propositions that needed
in this work will be introduced.

Definition 2.1(3). Let S be a semiring. A leftS-
semimodule Ag is a commutative monoid
(4, +,0) for which we have a function $ X A — A,
defined by (s,a) »sa such that Vs,te
Sanda,a’ € A,

1- s(a+a)=sa+sd.

2- (s+t)a=sa+ta.

3- (st)a = s(ta).

4- Oga =0y =s0,.

If 1ga = a holds then a left $-semimodule A is

called unitary.
Definition 2.2(3). Let L be a subset of a left S-
semimodule A then L is called subsemimodule of A
if L is closed under addition and scalar
multiplication. In this case it is denoted by L < A.
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Definition 2.3(3). An S-subsemimodule L of an §-
semimodule A is called subtractive if for all
a,a’ €A a,a+a €Limpliesa’ € L.

An $-semimodule A is a subtractive $-
semimodule if it has only subtractive
subsemimodules.

Definition 2.4(3). Let Aand B be $-semimodules.
A homomorphism from A to B is a map ¢:4 —
B such that

1- p(a+a") =¢(a)+¢(a)and

2- ¢(sa) =sp(a) Vaa €Aands €S.
For a homomorphism of S-semimodules¢ : A —
B we define:

1- ker(p) = {a € Alp(a) = 0}.

2- @A) ={p(a)la € A)}.

3- Im(p)={b€B|b+ f(a)=f(a") for some a,

a'e A}

A homomorphism of S-semimodules ¢ : A — B is
a

1-  Monomorphism, if for any S-semimodule L and
S-homomorphisms a,B:L - A with poa =
@of we havea =p.

2- Epimorphism, if for any S-semimodule K and
S-homomorphisms a,B:B - K with ao¢ =
B o @ we have a = f.

3- Isomorphism if ¢ is monomorphism and
epimorphism.

4- Image regular (i-regular), if (4) = Im(p).

5- Kernel regular (k-regular) if ¢(a) = ¢(a') =
a+k=a'+k'forsome, k, k' € ker(¢p).

6- Regular if ¢ isi-regular and k-regular.

Definition 2.5. A homomorphism of §-

semimodules ¢: A — B is said to be epimorphism-

kernel regular (ek-regular) if ¢ is an epimorphism

and k-regular.

Definition 2.6(4). The (possibly infinite) sequence

of S-semimodules {4;};¢;

WA % Aisq (pl—“>Ai+2%... is said to be:

1- Exact, if Imp; = kerg;.,Vi€ I

2- proper exact, if ¢;(A4;) = kerp; Vi€ I

Proposition 2.7(3). Let A and B be S-semimodules,

then a homomorphism of S-semimodules p: A — B

is:

1- Injective if and only if is a monomorphism.

2- Surjective if and only if is an epimorphism and
¢@(A) S B is subtractive.

Lemma 2.8 (3). LetA,B be S$-semimodules

and ¢ € Homg(4,B) , then

1- Im(¢) is subtractive.

2- @(A) is subtractive if and only if @(4) =
Im(o).

Proposition 2.9 (5). For any k-regular

homomorphism ¢:4 — B from a subtractive

semimodule Ato a semimodule B and any

subsemimodule L of A, ¢ *(¢(L)) = L + kere.
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The following lemma serves to consider the
category of subtractive S-semimodules and
ek-regular $- homomorphisms.

Lemma 2.10. Let A,B and C be S-semimodules
and ¢@:A— B,a:B — Cbhe ek-regular §-
homomorphisms thenap: A — Cis also ek-
regular.

Proof: Let a(¢p(a)) = a(p(a)), since a isek-
regular, then we have
p@)+k=¢p@)+k'
kera € B = p(A).
Then, k, k" € p(A) = @(a+x) =@ +x") ,
for some x, X' € A.

So, a+x+t=a +x"+¢
ker ¢.

Now,since ker ¢ < ker(ap) = t,t' €
ker(ag), also x, X' € ker(a¢). On the other hand,
it is clear that a¢ is epimorphism; therefore, ag is
ek-regular. O

Note that for any semimodule A, the identity 1,
is an ek-regular homomorphism.

where k, k' €

for somet,t’' €

Jacobson Radical, Socle and Second of
Semimodule

In this section we study firstly, the Jacobson
radical of semimodule. Secondly, we study the
socle radical of semimodule. Also, we proved some
properties of it depending on some definitions and
results. Finally, the notion of second module and
second radical were introduced in (6), and
investigating some properties of them. We extend
these notions to semimodules. Although, the notion
of second semimodule was given in (7), but we
gave a different definition analogous to the
definition of (6).
Jacobson Radical of Semimodule
Definition 3.1.1 (8). Let A be an S-semimodule and
L be a non-zero S-subsemimodule of A. We say that
L is a small (superfluous ) S-subsemimodule of A if
for every S-subsemimodule U of A , L+U =4
implies U = A. Then we shall denote a small $-
subsemimodule L of S-semimodule A by L <; A.

It is known that the image of a small submodule
under a homomorphism of modules is small. This is
not true, in general for semimodules and
homomorphisms of semimodules (see
Example(1)(8)). In (8) this property was proved
under certain condition on homomorphism. The
following lemma uses a weaker condition to prove
the same property.
Lemma 3.1.2 LetA,B be subtractive S-
semimodules, L <; A and let ¢ € Homy(4, B), if
@ is ek-regular. Then ¢ (L) <, B.
Proof: Assume that (L) + U = B, where U < B.
Now, Leta€ A = ¢(a) = @(l) +u, for some
leLauel.
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Since @(A) is subtractive, it followsu € ¢@(A4)
and u = @(x) for some € A (x € ¢~ 1(U)) .
Then p(a) = (Il + x). Since ¢ is-<ek-regular, we
obtain
at+k=1l+x+k, where, k' € Kerg S
e (V)= a€L+¢*U). ThusA=L+
o~ ().
Since L <, A, it follows ¢~ 1(U) = A. Thus U = B
(¢ s an epimorphism). Hence ¢ (L) <; B. m
Recall that a maximal S-subsemimodule of a
semimodule A is a proper subsemimodule of A that
is not contained properly in any other proper
subsemimodule of A.
Definition 3.1.3(8). Let A be an S-semimodule, the
Jacobson radical of A is denoted by j(A) and
defined as
J4)
[
KEA
: K is a maximal subsemimodule of A}.
Proposition 3.1.4(8). LetA be an S-semimodule,
then

>

LA
= ﬂ {K:is a maximal subsemimodule of A} .

KCcA
Proposition 3.1.5. Let A be an S-semimodule then:

1- J(A) - A.

2- Let A and B be subtractive S-semimodules
and @ € Homg(A,B) be ek-regular §-
homomorphism, then ¢ (J(4)) <€ J(B).

Proof: (1) it is obvious by Definition(3.1.3).

(2) by Proposition(3.1.4) J(A) = Xi<.al.

Then ‘P(](A)) = ‘P(2L<SA L) = Yi<.a®(L),

Since ¢ is ek-regular, so by the Lemma(3.1.2).

‘P(](A)) = ‘P(2L<SA L) = Z(p(LKsB p(L) <

ZK<SBK =J(B). o
Note that the previous result (2), was proved in

(8), with condition on ¢, k-quasiregular, but we

proved the result with the weaker condition k-

regular.

Lemma 3.1.6. Let A be an S-semimodule, U is

maximal in A/C if and only if U=v"1(0) is

maximal in A.

Proof: = Assume that viA — A/C be an §-

homomorphism and. U is maximal in A/C, then

U=v1(0)— U0=U/C. To prove U is maximal

inA.

Now,let UcVcA=0cV/Cc A/C for some

subsemimodule V of A containing C.

Then V/C =0 or V/C=A/C

maximal ), ThatisV =U or V = A.

Hence U is a maximal in A.

(since U is
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& Assume that U = v=1(0) is maximal in 4 and let
UcVecA/c, but V=VvV/C for some
subsemimodule V of A containing C.

So,U/C cV/C< A/C,whichimpliesU CV C A.
Since U is maximal in 4,

ThusV =U or V=A4,thatis U=V
A/C.

Hence U is a maximal in 4/C. O
Proposition 3.1.7. Let A be an S-semimodule and |
is a Jacobson radical of A then J(A/J(4)) = 0.
Proof: Let

J(A/](4)) =

N{U|U is maximal subsemimodule in A/J(A4)}
and J(4) = C.

Since U is maximal subsemimodule in 4/](4) =
U =U/c, (where U is a maximal subsemimodule in
A and containing C by Lemma (3.1.6)).

Then

J(A/J(A)) =

N{U|U is maximal subsemimodule of A/J(A)}

or V=

nt@ U is maximal subsemimodule of A and
containing J(A)}
=NU/J(4)
=J(A)/](4) = 0.
Socle Radical of Semimodule
Recall that a non-zero S-semimodule A is called
simple if it has no proper non-zero S-
subsemimodule.
Definition 3.2.1(5). Let A be an S-semimodule. The
Socle radical of A is denoted by Soc(A) and defined
as
Soc(A) = Y{L : L is a simple S-subsemimodule of
A}.
Lemma 3.2.2. Let AandB be subtractive S-
semimodules and ¢ € Homg (4, B) be ek-regular
S-homomorphism, if L is a simple S-subsemimodule

of A then ¢(L) is simple S-subsemimodule of B.
Proof: Let L be simple S-subsemimodule of A .
If0+#U o @(L) = either "2 (U)=0=U=0
(which is a contradiction).

Oor o lW=L=>U=¢)

epimorphism).

Then 0 # @~ 1(U) © ¢~ (@(L)).

Now, since ¢ is k-regular, so by Proposition (2.9)

we have

e (U)o L+ Kerp = ¢ 1(U) o L (which is a

contradiction). ]

Proposition 3.2.3. Let A be an S-semimodule then:

1- Soc(A4) - A.

2- Let A and B be subtractive S-semimodules and
@ € Homg(A,B),if ¢ is ek-regular then
@(Soc(A)) € Soc(B).

Proof: (1) it is clear by Definition(3.2.1).

O

(sincepis an
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(2) by Definition(3.2.1), Soc(4) = X{L:
L is a simple S-subsemimodule of A}.
Then,p(Soc(4)) = (X L)= X (L)
(L is a simple S-subsemimodule of A).
Since ¢ is ek-regular, so by Lemma (3.2.2), we
have
@(Soc(4)) = X{p(L):L
subsemimodule of A }

= Y{p(L): (L) is a simple S-
subsemimodule of B}

c Y{K:K is a simple S-subsemimodule
of B} = Soc(B) . o
Second Radical of Semimodule:

Recall that a left annihilator of x in S is
defined by anng(x) = {s € §|sx =01}, it is clear
that anng(x) is a left ideal of §. Also if L is a
subsemimodule  of A, then anng(L) =
{seS|lsx=0vVxeL}

Definition 3.3.1 AnS$-semimodule A is called a
second semimodule where A # 0 and anng(A4) =
anng(A/L) VL € A. Any subsemimodule of A is
said to be second if it is a second semimodule.
Definition 3.3.2. LetA be an S-semimodule. The
Second radical of A is denoted by Sec(4) and
defined as

Sec(A) = Y{L : L is a second S-subsemimodule of
A}.

Lemma 3.3.3. Let AandB be subtractive S-
semimodules and ¢ € Homg (4, B) be k-regular, if

L is a second S-subsemimodule of A then ¢(L) is

second S-subsemimodule of B.

Proof: Let L be second S-subsemimodule of A =

anng(L) 2 anng(L/K), VKL ANK#L.

AndletK'  @(L) A sp(L) €K' VsE€S.

Now s@(L) €S K' = ¢(sL) €K' VsE€S.

So, @ 1(p(sL) € ¢ Y (K") = sL + kerp S

@ 1(K")  (by Proposition(2.9)).

WehavesL € K = sL =0 Vs € S.

Thus sL € ¢ 1(K') = sL = 0 = s¢(L) = 0.

Hence ¢(L) is second S-subsemimodule of B.

O

Proposition 3.3.4. Let A be an S-semimodule then:

1- Sec(A) - A.

2- Let A and B be subtractive S-semimodules
and ¢ € Homg(4, B), if ¢ is k-regular then
@(Sec(A4)) < Sec(B).

Proof: (1) it is clear by Definition(3.3.2).

(2) by Definition(3.3.2), Sec(4) =Y{L:

L is a second S-subsemimodule of A}

Then,p(Sec(4)) = (X L)= X o(L) ( isasecond

S-subsemimodule of A)

Since ¢ is k-regular, so by Lemma (3.3.3), we have

@ (Sec(A)) = X{p(L): L is asecond S-
subsemimodule of A}

is a simple

S_
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= Y{ep(L): p(L) is a second S-
subsemimodule of B}

c  Y{K:is asecond S-subsemimodule
of B} = Sec(B). m
Singular and Torsion of Semimodule

In this section, we study two concepts singular

subsemimodule and torsion subsemimodule and
some characterization of them.
Singular of Semimodule
Definition 4.1.1(9): An ideal I of a semiring S is
said to be an essential ideal of S if for every ideal K
of S, INK=0 implies K =0. Then we shall
denote an essential ideal I of a semiring S-
semimodule by I =, S.
Definition 4.1.2(9): Let A be an $-semimodule, a
singular subsemimodule of A is denoted by Z(A)
and defined as Z(4) = {a € A|anng(a) =, $}.We
say that A is singular if Z(A) = A and nonsingular
if Z(A) = 0.

Proposition 4.1.3. Let A be an S-semimodule and

L be S-subsemimodule of A then:

1- Z(A) - A.

2- Z(L)=LnZA).

3- Z2(Z2(A) =Z(4).

4- Let A and B Dbe S-semimodules,
Homg(A, B) then ¢(Z(A)) € Z(B).

ifp €

Proof: (1),(2) and (3) they are clear by
Definition(4.1.2).
(4) let

a € Z(A) = anng(¢(a)) 2 anng(a) =, $ =
anng(¢(a)) =, S. Thus g(a) € Z(B).
Hence ¢ (Z(A)) € Z(B).
Torsion of Semimodule
Definition 4.2.1(10): Let A be an S-semimodule.
An element a € A is said to be torsion element if
there exists 0 # s € $ such that sa = 0. A torsion
subsemimodule of A is denoted by 7(A) and define
sa=0

as T(4) = {a EA for some 0 % s € }.We say
that A is torsion if T7(A) = A and torsion free if
T(A) =0.

In order to have 7 (4) a subsemimodule of A.
We need to convert Definition (4.2.1) to the
following:
Definition 4.2.2. Let A be a semimodule over a
commutative semiring S. An element a € A is said
to be torsion element if sa = 0, for some nonzero
divisor s € S. then

O

T(A) =

{a € A|sa = 0 for some nonzero divisor s € S }.
Proposition 4.2.3. Let A be an S-semimodule and
L be S-subsemimodule of A then:

1- T(4) < A.

2- T(L)=LNnT(A).
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3- T[T A) =T(A).

4- T(A/T(A)) =0.

5- Let A and B be $-semimodules,
Homg(A, B) then ¢ (T (A)) < T(B).

Proof: (1),(2) and (3) they are clear

Definition(4.2.1).

(4)Let0 = a+T(A) € A/T(A) = a ¢ T(4)

Now, if s(a + T(4)) = 0, then sa + T (4) = 0, so

sa € T (A) for some nonzero divisor s € S.

Hence t(sa) = 0, for some nonzero divisor t € S

implies (ts)a =0, that is, a€T(A) a

contradiction.

Therefore a + T (A) is not torsion. Thus T (A/

T(A)) = 0.

®)

T(A) =

{a € A|sa = 0 for some nonzero divisor s € S$}.

Now,

a€T(A) = sa=

0 for some nonzero divisor s € S.

= @(sa) = 0, for some nonzero divisor s € §.

= s@(a) = 0 for some nonzero divisor s € S.

Thus ¢(a) € T(B).

Hence ¢ (T (A)) < T(B).

ifp €

by

By Definition (4.2.1),

let

O

Reject and Inject of Semimodule
In the following we need to define
subcategories of the category of S-semimodule and
S-homomorphism.
1- The category of subtractive S-semimodules and
S-homomorphism, which will be denoted by Ms.
2- The category of subtractive S-semimodules and
ek-regular (see Lemma 2.10), which will be
denoted by M.y_s.
Definition 5.1 (1)(p.54). Let A be a class of
semimodules. The reject of an S-semimodule A
denoted by Ra(A) is defined by Rx(4) =n
kerf{f € Homs(A,B),B €A }
Proposition 5.2 (1)(p.58). Let A be a class of all S-
semimodules. If A,B €A and f € Homg(4,B),
then f(Ra(4)) < Ra(B).
The following operator has an analogous in
modules with abbreviation "Trace", we will define
it for semimodules using another name and symbol
convenient to Definition(5.1).
Definition 5.3. Let A be a class of semimodules and
A an S-semimodule. The inject of A denoted by
1A4(4A) and defined as LA(4) =X Imf{f €
Homg(B,A), B€A}.
Proposition 5.4. Let A be a class of all subtractive
S -semimodules. If A,B € Aand f € Homg (4, B),
then £ (1L2(4)) < 1A(B).
Proof: Suppose x € LA(4)and h € Homy(L,B) ,L €
Athen hf € Homg(L, A)
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= f(x) € Imh. (Note that in M g Imh= h(L), see
2.7(2))

Hence f(12(4)) < LA(B).
Preradical on Semimodules

This section consists of  definitions and
examples about preradicals on semimodules
analogous to the cases in modules (see (2)), also
some results, to solve the problems arises through
the extension of the category of modules to that of
semimodules, are proved in the category of
semimodules or some subcategories of it.

Definition 6.1. A functor P: Mg — M is called
preradical on Mg if the following two conditions are
satisfied:

1- P(A) oA YAEM,

2- V¢ € Homg(A B) ¢(P(A)) € P(B).

In this definition (and what follow) the
categoryMs, can be replaced by M. (The
subcategory of subtractive S-semimodules and S-
homomorphism) or by M_g (the subcategory of
subtractive  S-semimodules  and  ek-regular
homomaorphisms).

Examples 6.2.

6.2.1 By Propositions (3.1.5), (3. 2.3) and (3.3.4)
the functors J, Soc and Sec are preradicals on the
category Mey_s.

6.2.2 By Propositions (4.1.3(1,4)) and (4.2.3(1,5))
the functors Z and T are preradicals on the category
Ms.

6.2.3 By Proposition (5.2) a functor R, is preradical
on the category Mg and by Proposition (5.7) the
functor 12 is preradical on the category M.
Definitions 6.3. VA€ Mg , a Preradical P is
called,

1- Radical if P(4/P(A)) = 0.

2- Idempotent if P(P(A4)) = P(4).

3- Hereditary if P(L) = L N P(A) ,with L & A.
Examples 6.4.

6.4.1 The preradicals J and T are radicals by
Proposition ((3.1.7),(4.2.2)(4))) .

6.4.2 The preradical Soc is hereditary and
idempotent (by (5), Corollary 3.11), and also the
preradicals Z,7 are hereditary and idempotent by
Propositions (4.1.3(2,3), (4.2.3(2,3))).

Note 6.5. LetP be a preradical v A€ M. If
{P; : i € I} isacollection of preradicals then

O

1- Nieg P;y  is  defined  as(Nie PH(A) =
Nie; P; (A), is preradical.
2- Yier Py, is defined as  (Xie Pi) (A) =

Yier Pi (A), is preradical.

3- LetP,t.. be two preradicals, then P <1,
ifP(A)) cL(4),VAE M.
Definition 6.6. Let M be a class of

semimodules, M is said to be,
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1- Hereditary if M is closed under isomorphisms
and subsemimodules.

2- Cohereditary if M is closed under epimorphic
images.

Definition 6.7. LetP be a preradical, anS$S-

semimodule A € Mg is said to be,
1- P-torsion if P(A) = A. A class of all P-torsion
semimodules is denoted by Tp .

2- P-torsionfree if P(4) =0. A class of all P-
torsionfree semimodules is denoted by Fp .
Proposition 6.8. Let A€Mg andP be a

preradical ,vV K & A ,then:

1- P(K) € KnP(A).

2- (P(A)+K)/K = P(A/K).

3- IfP(A/K) = 0 then P(A) C K.

4- 1fP(K) = K then K € P(A).

Proof: (1) and (2) by definition of preradical. (3) by

(2)and (4) by (1). ©

Proposition 6.9. Let P be a preradical. If { 4; : i €

1} is a collection of $-semimodules then:

1- P(Dies A)) =Dies P(4).

2- P(HieIAi) = Hiel P(Ai)-

Proof: Since P is a subfunctor of the identity

functor. O

Proposition 6.10. Let P be a preradical, then:

1- Tp is a cohereditary class closed under arbitrary
direct sums.

2- Fp is a hereditary class closed under arbitrary
direct products.

Proof: (1). Let Ae Tp = P(A) = A,¢0:A — B be

an epimorphism.

Then p(P(4)) S P(B) = ¢(A) € P(B)
(since P(A) = A)

= B € P(B) (since @is onto)
....(1).

But P(B) € B  (by definition) ....(i1).

So, from (i) and (ii) we have P(B) = B = B € Ts.
Now, let{A;: i€} S Tp = P(4;) = A; Vi€l
Then P(De; A)) =DBies P(A) =Dies 4; =
@iel A; € Tp.

Hence Tp is a cohereditary class closed under
arbitrary direct sums.

(2).LetA € Fp = P(4) = 0.

So, if K€ A= P(K) S KnP(A)
Kn0o=0= P(K)=0.

Thus K € Fp.

Now, let ¢: A — K be an isomorphism and A € Fp.
Then o' (P(K)) S P(4) = 0 = P(K) S

kerop™1 =0,S0K € Fp.

Now, let {A;:i€l} S Fp=P(4;,)) =0V i€l
Since P([lie;4i) S [LierP(A4) =0 = [lies 4 €
Fp

Hence Fp is a hereditary class closed under arbitrary
direct products. O

Proposition 6.11. Where P is a preradical, then

1- Homg(T,F) =0, VT € Tpand F € Fp.

= P(K) c
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2‘ Tp n _Fp = O
Proof: (1). Let T € Tp,F € Fp and ¢: T — F, then
(M= @@P(T)) € P(F)=0.So¢ = 0.
(2). Let Ne Tp N Fp, then N=P(N)=0.
Proposition 6.12. Let P be a radical, then:
1- T e Tp if and only if HomS(T,F) =0, VFE
Fp.
2- Tp is closed under extensions.
Proof: (1). By Proposition (6.11), it is enough to
prove the sufficiency.
Let Homg(T,F) =0, Y F € Fp.
Since T/P(T) € Fp (P is a radical), then the natural
map T — T/P(T) is zero, hence P(T) =T € Tp.
2. Follows from 1. o
Proposition  6.13. Let
idempotent Preradical, then:
1- FeFpif and only if Homg(T,F) =0, VT €
TP.
2- Fp isclosed under extensions.
Proof: (1). By Proposition (6.11), it is enough to
prove the sufficiency.
Now, let Homg(T,F) =0, VT € Tp.
Since P(F) € Tp(P is an idempotent), then the
inclusion map P(F) — F is a zero map, hence
P(F)=0.
Thatis F € Fp.
(2). Follows from1. o
Proposition 6.14. Let {A; : i € I} be a collection
of S-semimodules then:
1- IfA; €Tp Vi€l then Y A; € Tp.
2- IfAJA; €FpVi€l,then A/ Nie A; € Fp.
Proof: (1) since A; € Tp = P(4;) = 4;
Then P(Xier Ai) = Zier P(A) = Xier 4Ai-
Hence Y;e; A; € Tp.
(2) since A/A; € Fp = P(A/A;) = 0.
Foreach j €1, let p;: A/n A; — A/A; be a natural
epimorphism (a+N 4; — a + 4;), then
ker ¢;= A;In A; for each j, hence
Ai € _Fp. O
Recall that a functor F is said to be left exact, if
from a given exact sequence

0— AS M S w— 0 we get a left exact sequence

F(o) F(a)

0— FA) — F (M) — F (W).

Proposition 6.15. Let P be a preradical on M,
then the following are equivalent:

1- Pis left exact as a functor

2- P is hereditary

3- Pisidempotent and Tp is hereditary.

Proof: (1)=(2) let N be a subsemimodule of M
then by (1), the sequence

0— P(N) —» P(M) — P(M/N)
P(N)=N nP(M).

O

P be an

is exact, SO
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(2>=(3) let P be hereditary, then we have
P(P(M)) =P(M)NP(M)= P(M).So P is an
idempotent.

Now, ifKSEM and MeT, = PK)=Kn

P(M)=KnM =K.
Hence K € Tp and T is hereditary.
3)=(1) let 0— NS M S woo be an exact
sequence.
P(p)

Then the sequence 0— P(N) — P (M) P (W),
where P(¢) and P(a) are restrictions of ¢ and
a. The exactness in P(N) is clear also the inclusion
ImP(p) € kerP(a).

Since P(Imp NnP(M)) = (Imp nP(M)) N
P(P(M)) = Imp nP(M) ...(>i).

And P(Imp nP(M)) € P(Imy) = ImP(¢p)
...(ii).

From (i) and (ii) = Imp NnP(M) S ImP(¢)
...(iii).

Now let a € kerP(a) be an arbitrary element =
a€ePM)Aa(a) =0= a€P(M)Aa € Imep.
Thus a € Ime N P(M).

So by (i) a € ImP(p) = kerP(a) S kerP(¢) as
required. i

Theorem 6.16. If P is a Preradical on M, then
the following are equivalent

1- P isan idempotent radical.

2- VA€ Mg(My) there exists a uniquely
determined (up to isomorphism ) proper exact
sequence(exact sequence) 0—>T - A->F -
0, FEFp, T € Tp.

VA € Mg there exists an exact sequence(proper
exact sequence)0 > T - A—>F -0, F € Fp,
T € Tp.

P is an idempotent radical
closed under extensions.
Proof:(1)=(2). Let 0—PA4) —
A/P(A) — 0 be an exact sequence.

4- and Tp , Fp are

(4) —

Since P be an idempotent radical = P(4) € Tp.
(2)=(3). It is obvious.

(3)=(4). Since there is an exact sequence 0 —
T—A—>F —0,

Then P(P(A))=P(T)=T=P(A)=P is an
idempotent preradical with T € Tp.

AlsoF = A/P(A) EFp = P(F) =0 =
P(A/P(A)) = 0 = Pisaradical.

(4)=(1). It is obvious. O
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