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Abstract: 
       In this paper we study the notion of preradical on some subcategories of the category of semimodules 

and homomorphisms of semimodules. 

       Since some of the known preradicals on modules fail to satisfy the conditions of preradicals, if the 

category of modules was extended to semimodules, it is necessary to investigate some subcategories of 

semimodules, like the category of subtractive semimodules with homomorphisms and the category of 

subtractive semimodules with ҽҟ-regular homomorphisms. 
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Introduction: 
Throughout this work, Ş stands for a 

commutative semiring with identity and a 

semimodule means a unitary left Ş-semimodule. An 

Ş-subsemimodule 𝐿 of an Ş-semimodule 𝐴 is called 

subtractive if for all 𝑎, 𝑎′  ∈ 𝐴, 𝑎 + 𝑎′, 𝑎 ∈ 𝐿 implies 

𝑎′ ∈ 𝐿 it is clear that 0 and 𝐴 are subtractive Ş-

subsemimodules of 𝐴. An Ş-semimodule 𝐴 is a 

subtractive Ş-semimodule if it has only subtractive 

subsemimodules (1). The category of Ş-

semimodules will be denoted by 𝑀Ş. 

              In this work we will introduce the concept 

of ҽҟ-regular homomorphism (which are relevant to 

our work). A homomorphism of Ş-semimodules 

𝜑:𝐴 ⟶ 𝐵 is said to be epimorphism-kernel regular 

(ҽҟ-regular) if  𝜑 is an epimorphism and ҟ-regular. 

              In module theory, a preradical Ᵽ on 𝑅-Mod 

(the category of unitary left R-modules) is any 

subfunctor of the identity functor of 𝑅-Mod (2). The 

concept of preradical in semimodules was not found 

in the literatures. 

       In this paper we study the notion of preradical 

on some subcategories of the category of 

semimodules and homomorphism of semimodules. 

Since some of the known preradicals on modules 

fail to satisfy the conditions of preradicals, if the 

category of modules was extended to semimodules, 

it is necessary to investigate some subcategories of 

semimodules, like 𝑀ҽҟ−Ş (the category of 

subtractive semimodules with ҽҟ-regular 

homomorphisms) and the category of subtractive 

semimodules with homomorphisms  𝑀𝑐Ş. 
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That is only we need to prove some 

properties of homomorphisms on Ş-semimodule. 

       In addition to section One, there are five more 

sections. Section Two consists of the preliminaries 

that we need in our investigation; some of these 

were found in the literatures, while the results 

(Lemma 2.10, which are relevant to our work, and 

other results in the next sections) are part of our 

investigation. In section Three, three types of 

preradicals were investigated, Jacobson radical, 

socle, and second of semimodule. Singular and 

torsion of semimodule were studied in Section Four 

. In Section Five the concepts of reject and inject of 

semimodule were investigated. Finally, in Section 

Six, preradicals and their properties and types were 

introduced applying these concepts to the examples 

of the previous sections. 

Preliminaries 
       Some definitions and propositions that needed 

in this work will be introduced. 

Definition 2.1(3). Let Ş be a semiring. A left Ş-
semimodule 𝐴Ş is a commutative monoid 

(𝐴,+, 0) for which we have a function Ş × 𝐴 ⟶ 𝐴, 

defined by (𝑠, 𝑎) ↦ 𝑠𝑎 such that ∀ 𝑠, 𝑡 ∈
Ş and 𝑎, 𝑎′ ∈ 𝐴, 

1- 𝑠(𝑎 + 𝑎′) = 𝑠𝑎 + 𝑠𝑎′. 
2- (𝑠 + 𝑡)𝑎 = 𝑠𝑎 + 𝑡𝑎. 

3- (𝑠𝑡)𝑎 = 𝑠(𝑡𝑎). 
4- 0Ş 𝑎 = 0𝐴 = 𝑠0𝐴. 

       If 1Ş𝑎 = 𝑎 holds then a left Ş-semimodule 𝐴 is 

called unitary. 

Definition 2.2(3). Let 𝐿 be a subset of a left Ş-
semimodule 𝐴 then 𝐿 is called subsemimodule of 𝐴 

if 𝐿 is closed under addition and scalar 

multiplication. In this case it is denoted by 𝐿 ↪ 𝐴. 
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Definition 2.3(3). An Ş-subsemimodule 𝐿 of an Ş-
semimodule 𝐴 is called subtractive if for all 

𝑎, 𝑎′ ∈ 𝐴    𝑎, 𝑎 + 𝑎′ ∈ 𝐿 implies 𝑎′ ∈ 𝐿. 
       An Ş-semimodule 𝐴 is a subtractive Ş-
semimodule if it has only subtractive 

subsemimodules. 

Definition 2.4(3). Let 𝐴 and 𝐵 be Ş-semimodules. 

A homomorphism from 𝐴 to 𝐵 is a map 𝜑:𝐴 ⟶
𝐵 such that 

1- 𝜑(𝑎 + 𝑎′) = 𝜑(𝑎) + 𝜑(𝑎′) and 

2- 𝜑(𝑠𝑎) = 𝑠𝜑(𝑎)               ∀ 𝑎, 𝑎′ ∈ 𝐴 and 𝑠 ∈ Ş. 
For a homomorphism of Ş-semimodules 𝜑 : 𝐴 ⟶
𝐵 we define: 

1- ker(𝜑) = {𝑎 ∈ 𝐴|𝜑(𝑎) = 0}. 
2- 𝜑(𝐴) = {𝜑(𝑎)|𝑎 ∈ 𝐴)}. 
3- 𝐼𝑚(𝜑) ={𝑏 ∈ 𝐵 | 𝑏 + 𝑓(𝑎) = 𝑓(𝑎′) for some a, 

a'∈ 𝐴}. 

A homomorphism of Ş-semimodules 𝜑 ∶ 𝐴 ⟶ 𝐵 is 

a 

1- Monomorphism, if for any Ş-semimodule 𝐿 and 

Ş-homomorphisms 𝛼, 𝛽: 𝐿 → 𝐴 with 𝜑 ∘ 𝛼 =
𝜑 ∘ 𝛽 we   have 𝛼 = 𝛽. 

2- Epimorphism, if for any Ş-semimodule 𝐾 and 

Ş-homomorphisms  𝛼, 𝛽: 𝐵 → 𝐾 with 𝛼 ∘ 𝜑 =
𝛽 ∘ 𝜑 we have  𝛼 = 𝛽. 

3- Isomorphism if 𝜑 is monomorphism and 

epimorphism. 

4- Image regular (𝑖-regular), if 𝜑(𝐴) = 𝐼𝑚(𝜑). 
5- Kernel regular (ҟ-regular) if 𝜑(𝑎) = 𝜑(𝑎′) ⟹

𝑎 + 𝑘 = 𝑎′ + 𝑘′ for some, 𝑘, 𝑘′ ∈  ker (𝜑). 
6- Regular  if  𝜑 is 𝑖-regular and ҟ-regular. 

Definition 2.5. A homomorphism of Ş-
semimodules 𝜑:𝐴 ⟶ 𝐵 is said to be epimorphism-

kernel regular (ҽҟ-regular) if  𝜑 is an epimorphism  

and ҟ-regular. 

Definition 2.6(4). The (possibly infinite) sequence 

of  Ş-semimodules {𝐴𝑖}𝑖∈𝐼 

…𝐴𝑖
𝜑𝑖
→𝐴𝑖+1

𝜑𝑖+1
→  𝐴𝑖+2

𝜑𝑖+2
→  … is said to be: 

1- Exact, if 𝐼𝑚𝜑𝑖 = 𝑘𝑒𝑟𝜑𝑖+1∀ 𝑖 ∈ 𝐼. 
2- proper exact, if 𝜑𝑖(𝐴𝑖) = 𝑘𝑒𝑟𝜑𝑖+1∀ 𝑖 ∈ 𝐼. 
Proposition 2.7(3). Let 𝐴 𝑎𝑛𝑑 𝐵 be Ş-semimodules, 

then a homomorphism of Ş-semimodules 𝜑: 𝐴 ⟶ 𝐵 

is: 

1- Injective if and only if  is a monomorphism. 

2- Surjective if and only if is an epimorphism and 

𝜑(𝐴) ⊆ 𝐵 is subtractive. 

Lemma 2.8 (3). Let 𝐴, 𝐵 be Ş-semimodules 

and 𝜑 ∈  𝐻𝑜𝑚Ş(𝐴, 𝐵) , then 

1- 𝐼𝑚(𝜑) is subtractive. 

2- 𝜑(𝐴) is subtractive if and only if 𝜑(𝐴) =
𝐼𝑚(𝜑). 

Proposition 2.9 (5). For any ҟ-regular 

homomorphism 𝜑:𝐴 ⟶ 𝐵 from a subtractive 

semimodule 𝐴 to a semimodule 𝐵 and any 

subsemimodule 𝐿 of A, 𝜑−1(𝜑(𝐿)) = 𝐿 + 𝑘𝑒𝑟𝜑. 

       The following lemma serves to consider the 

category of subtractive Ş-semimodules and 

ҽҟ­regular Ş- homomorphisms. 

Lemma 2.10. Let 𝐴, 𝐵 𝑎𝑛𝑑 𝐶 be Ş-semimodules 

and 𝜑: 𝐴 ⟶ 𝐵 , 𝛼: 𝐵 ⟶ 𝐶 be ҽҟ-regular Ş-
homomorphisms then 𝛼𝜑: 𝐴 ⟶ 𝐶 is also ҽҟ-

regular. 

Proof: Let 𝛼(𝜑(𝑎)) = 𝛼(𝜑(𝑎′)), since 𝛼 is ҽҟ-

regular, then we have 

𝜑(𝑎) + 𝑘 = 𝜑(𝑎′) + 𝑘′           where   𝑘, 𝑘′ ∈
ker 𝛼 ⊆ 𝐵 = 𝜑(𝐴). 
Then, 𝑘, 𝑘′  ∈ 𝜑(𝐴)  ⟹  𝜑(𝑎 + 𝑥) = 𝜑(𝑎′ + 𝑥′) , 

for some x, x' ∈ 𝐴. 

So, 𝑎 + 𝑥 + 𝑡 = 𝑎′ + 𝑥′ + 𝑡′    for some 𝑡 , 𝑡′ ∈
ker𝜑. 
Now,since ker𝜑 ⊆ ker(𝛼𝜑)  ⟹  𝑡 , 𝑡′ ∈
𝑘𝑒𝑟( 𝛼𝜑) , also x, x' ∈ ker(𝛼𝜑). On the other hand, 

it is clear that 𝛼𝜑 is epimorphism; therefore, 𝛼𝜑 is 

ҽҟ-regular.   □ 

       Note that for any semimodule 𝐴, the identity 1A 

is an ҽҟ-regular homomorphism. 

 

Jacobson Radical, Socle and Second of 

Semimodule 

       In this section we study firstly, the Jacobson 

radical of semimodule. Secondly, we study the 

socle radical of semimodule. Also, we proved some 

properties of it depending on some definitions and 

results. Finally, the notion of second module and 

second radical were introduced in (6), and 

investigating some properties of them. We extend 

these notions to semimodules. Although, the notion 

of second semimodule was given in (7), but we 

gave a different definition analogous to the 

definition of (6). 

Jacobson Radical of Semimodule 

Definition 3.1.1 (8). Let 𝐴 be an Ş-semimodule and 

𝐿 be a non-zero Ş-subsemimodule of 𝐴. We say that 

𝐿 is a small (superfluous ) Ş-subsemimodule of 𝐴 if 

for every Ş-subsemimodule 𝑈 of 𝐴 , 𝐿 + 𝑈 = 𝐴 

implies 𝑈 = 𝐴. Then we shall denote a small Ş-
subsemimodule  𝐿 of Ş-semimodule 𝐴 by   𝐿 ≼𝑠  𝐴. 

       It is known that the image of a small submodule 

under a homomorphism of modules is small. This is 

not true, in general for semimodules and 

homomorphisms of semimodules (see 

Example(1)(8)). In (8) this property was proved 

under certain condition on homomorphism. The 

following lemma uses a weaker condition to prove 

the same property. 

Lemma 3.1.2 Let 𝐴, 𝐵 be subtractive Ş-
semimodules, 𝐿 ≼𝑠 𝐴 and let 𝜑 ∈  𝐻𝑜𝑚ȿ(𝐴, 𝐵), if 

𝜑 is ҽҟ-regular. Then 𝜑(𝐿) ≼𝑠 𝐵. 

Proof: Assume that φ(𝐿)  + 𝑈 = 𝐵, where 𝑈 ↪ 𝐵. 

Now, Let 𝑎 ∈ 𝐴 ⟹ 𝜑(𝑎) = 𝜑(𝑙) + 𝑢, for some 

𝑙 ∈ 𝐿 ˄ 𝑢 ∈ 𝑈. 
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Since 𝜑(𝐴) is subtractive, it follows 𝑢 ∈ 𝜑(𝐴) 
and 𝑢 = 𝜑(𝑥) for some ∈ 𝐴 (𝑥 ∈ 𝜑−1(𝑈)) . 
Then 𝜑(𝑎) = 𝜑(𝑙 + 𝑥). Since 𝜑 is ҽҟ-regular, we 

obtain 

𝑎 + 𝑘 = 𝑙 + 𝑥 + 𝑘′,   where, 𝑘′ ∈ 𝐾𝑒𝑟𝜑 ⊆
 𝜑−1(𝑈) ⟹  𝑎 ∈ 𝐿 + 𝜑−1(𝑈). Thus  𝐴 = 𝐿 +
𝜑−1(𝑈). 
Since 𝐿 ≼𝑠 𝐴 , it follows 𝜑−1(𝑈) = 𝐴. Thus 𝑈 = 𝐵 

(𝜑 is an epimorphism). Hence 𝜑(𝐿) ≼𝑠 𝐵.        □ 

       Recall that a maximal Ş-subsemimodule of a 

semimodule 𝐴 is a proper subsemimodule of 𝐴 that 

is not contained properly in any other proper 

subsemimodule of 𝐴. 

Definition 3.1.3(8). Let 𝐴 be an Ş-semimodule, the 

Jacobson radical of 𝐴 is denoted by 𝐽(𝐴) and 

defined as 

𝐽 (𝐴)

= ⋂{𝐾

𝐾⊆𝐴

∶ 𝐾 𝑖𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑠𝑢𝑏𝑠𝑒𝑚𝑖𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝐴}. 
Proposition 3.1.4(8). Let 𝐴 be an Ş-semimodule, 

then 

∑ 𝐿

𝐿≼𝑠𝐴

= ⋂{𝐾: 𝑖𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑠𝑢𝑏𝑠𝑒𝑚𝑖𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝐴 }

𝐾⊆𝐴

 . 

Proposition 3.1.5. Let 𝐴 be an Ş-semimodule then: 

1- 𝐽(𝐴) ↪ 𝐴. 
2- Let 𝐴 and 𝐵 be subtractive Ş-semimodules 

and 𝜑 ∈  𝐻𝑜𝑚Ş(𝐴, 𝐵) be ҽҟ-regular Ş-

homomorphism, then 𝜑(𝐽(𝐴)) ⊆ 𝐽(𝐵). 
Proof: (1) it is obvious by Definition(3.1.3). 

(2) by Proposition(3.1.4)  𝐽(𝐴) = ∑ 𝐿𝐿≼𝑠𝐴 . 

Then 𝜑(𝐽(𝐴)) = 𝜑(∑ 𝐿𝐿≼𝑠𝐴 ) = ∑ 𝜑(𝐿𝐿≼𝑠𝐴 ), 

Since 𝜑 is ҽҟ-regular, so by the Lemma(3.1.2). 

𝜑(𝐽(𝐴)) = 𝜑(∑ 𝐿𝐿≼𝑠𝐴 ) = ∑ 𝜑(𝐿𝜑(𝐿)≼𝑠𝐵 ) ⊆

∑ 𝐾 = 𝐽(𝐵).𝐾≼𝑠𝐵          □ 

       Note that the previous result (2), was proved in 

(8), with condition on 𝜑, ҟ-quasiregular, but we 

proved the result with the weaker condition ҟ-

regular. 

Lemma 3.1.6. Let 𝐴 be an Ş-semimodule, Ũ is 

maximal in 𝐴/𝐶 if and only if 𝑈 = 𝜈−1(Ũ) is 

maximal in 𝐴. 

Proof: ⇛ Assume that 𝜈: 𝐴 ⟶ 𝐴/𝐶 be an Ş-
homomorphism and. Ũ is maximal in 𝐴/𝐶, then 

𝑈 = 𝜈−1(Ũ) ⟷ Ũ = 𝑈/𝐶. To prove 𝑈 is maximal 

in 𝐴. 

Now, let  𝑈 ⊆ 𝑉 ⊆ 𝐴 ⟹ Ũ ⊆ 𝑉/𝐶 ⊆ 𝐴/𝐶 for some 

subsemimodule 𝑉 of 𝐴 containing 𝐶. 

Then 𝑉/𝐶 =  Ũ or  𝑉/𝐶 = 𝐴/𝐶   (since Ũ is 

maximal ),  That is 𝑉 = 𝑈    or  𝑉 = 𝐴. 

Hence 𝑈 is a maximal in 𝐴. 

⇚ Assume that 𝑈 = 𝜈−1(Ũ) is maximal in 𝐴 and let 

Ũ ⊆ �̃� ⊆ 𝐴/𝐶, but �̃� = 𝑉/𝐶 for some 

subsemimodule 𝑉 of 𝐴 containing 𝐶. 

So, 𝑈/𝐶 ⊆ 𝑉/𝐶 ⊆ 𝐴/𝐶, which implies 𝑈 ⊆ 𝑉 ⊆ 𝐴. 

Since 𝑈 is maximal in 𝐴, 

Thus 𝑉 = 𝑈  or  𝑉 = 𝐴, that is  Ũ = �̃�    or   �̃� =
𝐴/𝐶. 

Hence Ũ is a maximal in 𝐴/𝐶.         □ 

Proposition 3.1.7. Let 𝐴 be an Ş-semimodule and 𝐽 
is a Jacobson radical of 𝐴 then 𝐽(𝐴/𝐽(𝐴)) = 0. 

Proof: Let  

𝐽(𝐴/𝐽(𝐴)) =  

⋂{Ũ|Ũ  is maximal subsemimodule in 𝐴/𝐽(𝐴)} 
and 𝐽(𝐴) = 𝐶. 
Since Ũ  is maximal subsemimodule in 𝐴/𝐽(𝐴) ⟹
Ũ = 𝑈/𝐶, (where 𝑈 is a maximal subsemimodule in 

𝐴 and containing 𝐶 by  Lemma (3.1.6)). 

Then 

𝐽(𝐴/𝐽(𝐴)) =
⋂{Ũ|Ũ  𝑖𝑠 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑠𝑢𝑏𝑠𝑒𝑚𝑖𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓  𝐴/𝐽(𝐴)} 
                           

=

⋂
{
𝑈

𝐽(𝐴)
| 𝑈  𝑖𝑠 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑠𝑢𝑏𝑠𝑒𝑚𝑖𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝐴 𝑎𝑛𝑑 

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐽(𝐴)}
 

                           = ⋂𝑈/𝐽(𝐴) 
                           = 𝐽(𝐴)/𝐽(𝐴) = 0.         □ 

Socle Radical of Semimodule 

       Recall that a non-zero Ş-semimodule 𝐴 is called 

simple if it has no proper non-zero Ş-
subsemimodule. 

Definition 3.2.1(5). Let 𝐴 be an Ş-semimodule. The 

Socle radical of 𝐴 is denoted by 𝒮𝜊𝒸(𝐴) and defined 

as 

𝒮𝜊𝒸(𝐴) = ∑{𝐿 ∶ 𝐿 is a simple Ş-subsemimodule of 

𝐴}. 

Lemma 3.2.2. Let 𝐴 and 𝐵 be subtractive Ş-
semimodules and 𝜑 ∈ 𝐻𝑜𝑚Ş (𝐴, 𝐵) be ҽҟ-regular 

Ş-homomorphism, if L is a simple Ş-subsemimodule 

of 𝐴 then 𝜑(𝐿) is simple Ş-subsemimodule of  𝐵. 

Proof: Let 𝐿 be simple Ş-subsemimodule of 𝐴 . 

If 0 ≠ 𝑈 ↪ 𝜑(𝐿) ⟹ either 𝜑−1(𝑈) = 0 ⟹ 𝑈 = 0 

(which is a contradiction). 

Or 𝜑−1(𝑈) = 𝐿 ⟹ 𝑈 = 𝜑(𝐿) (since 𝜑 is an 

epimorphism). 

Then 0 ≠ 𝜑−1(𝑈) ↪ 𝜑−1(𝜑(𝐿)). 

Now, since 𝜑 is ҟ-regular, so by Proposition (2.9) 

we have 

𝜑−1(𝑈) ↪ 𝐿 + 𝐾𝑒𝑟𝜑 ⟹ 𝜑−1(𝑈) ↪ 𝐿  (which is a 

contradiction).         □ 

Proposition 3.2.3. Let 𝐴 be an Ş-semimodule then: 

1- 𝒮𝜊𝒸(𝐴) ↪ 𝐴. 
2- Let 𝐴 and 𝐵 be subtractive Ş-semimodules and 

𝜑 ∈ 𝐻𝑜𝑚Ş(𝐴, 𝐵),if 𝜑 is ҽҟ-regular then  

𝜑(𝒮𝜊𝒸(𝐴)) ⊆ 𝒮𝜊𝒸(𝐵). 
Proof: (1) it is clear by Definition(3.2.1). 
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(2) by Definition(3.2.1), 𝒮𝜊𝒸(𝐴) = ∑{𝐿 ∶
𝐿 is a simple Ş-subsemimodule of 𝐴}. 

Then,𝜑(𝒮𝜊𝒸(𝐴)) = 𝜑(∑𝐿 )= ∑𝜑(𝐿) 
(𝐿 is a simple Ş-subsemimodule of 𝐴). 

Since 𝜑 is ҽҟ-regular, so by Lemma (3.2.2), we 

have 

𝜑(𝒮𝜊𝒸(𝐴)) = ∑{𝜑(𝐿) : 𝐿 is a simple Ş-

subsemimodule of 𝐴 } 
               = ∑{𝜑(𝐿): 𝜑(L) is a simple Ş-

subsemimodule of 𝐵} 

               ⊆ ∑{𝐾:𝐾 is a simple Ş-subsemimodule 

of 𝐵} = 𝒮𝜊𝒸(𝐵) .         □ 

Second Radical of Semimodule: 

       Recall that a left annihilator of 𝓍 in Ş  is 

defined by 𝑎𝑛𝑛Ş(𝓍) = {𝑠 ∈ Ş|𝑠𝓍 = 0 }, it is clear 

that 𝑎𝑛𝑛Ş(𝓍) is a left ideal of  Ş. Also if 𝐿 is a 

subsemimodule of 𝐴, then 𝑎𝑛𝑛Ş(𝐿) =
{𝑠 ∈ Ş|𝑠𝓍 = 0 ∀ 𝑥 ∈ 𝐿}. 
Definition 3.3.1 An Ş-semimodule 𝐴 is called a 

second semimodule where 𝐴 ≠ 0 and 𝑎𝑛𝑛Ş(𝐴) =

𝑎𝑛𝑛Ş(𝐴/𝐿) ∀𝐿 ⊆ 𝐴. Any subsemimodule of 𝐴 is 

said to be second if it is a second semimodule. 

Definition 3.3.2. Let 𝐴 be an Ş-semimodule. The 

Second radical of 𝐴 is denoted by 𝒮ℯ𝒸(𝐴) and 

defined as 
𝒮ℯ𝒸(𝐴) = ∑{𝐿 ∶ 𝐿 is a secondŞ-subsemimodule of 

𝐴}. 

Lemma 3.3.3. Let 𝐴 and 𝐵 be subtractive Ş-
semimodules and 𝜑 ∈ 𝐻𝑜𝑚Ş (𝐴, 𝐵) be ҟ-regular, if 

𝐿 is a second Ş-subsemimodule of 𝐴 then 𝜑(𝐿) is 

second Ş-subsemimodule of 𝐵. 

Proof: Let 𝐿 be second Ş-subsemimodule of 𝐴 ⟹
𝑎𝑛𝑛Ş(𝐿) ⊇ 𝑎𝑛𝑛Ş(𝐿/𝐾),            ∀𝐾 ↪ 𝐿  ∧  𝐾 ≠ 𝐿. 

And let 𝐾′ ↪ 𝜑(𝐿)  ∧  𝑠𝜑(𝐿) ⊆ 𝐾′    ∀𝑠 ∈ Ş. 
Now 𝑠𝜑(𝐿) ⊆ 𝐾′  ⟹ 𝜑(𝑠𝐿) ⊆ 𝐾′    ∀𝑠 ∈ Ş. 
So, 𝜑−1(𝜑(𝑠𝐿)) ⊆ 𝜑−1(𝐾′) ⟹ 𝑠𝐿 + 𝑘𝑒𝑟𝜑 ⊆
𝜑−1(𝐾′)      (by  Proposition(2.9)). 

We have 𝑠𝐿 ⊆ 𝐾 ⟹ 𝑠𝐿 = 0        ∀𝑠 ∈ Ş. 
Thus 𝑠𝐿 ⊆ 𝜑−1(𝐾′) ⟹ 𝑠𝐿 = 0 ⟹ 𝑠𝜑(𝐿) = 0. 

Hence 𝜑(𝐿) is second Ş-subsemimodule of 𝐵.           

□ 

Proposition 3.3.4. Let 𝐴 be an Ş-semimodule then: 

1- 𝒮ℯ𝒸(𝐴) ↪ 𝐴. 
2-  Let 𝐴 and 𝐵 be subtractive Ş-semimodules 

and 𝜑 ∈  𝐻𝑜𝑚Ş(𝐴, 𝐵), if 𝜑 is ҟ-regular then 

𝜑(𝒮ℯ𝒸(𝐴)) ⊆ 𝒮ℯ𝒸(𝐵). 
Proof: (1) it is clear by Definition(3.3.2). 

(2) by Definition(3.3.2), 𝒮ℯ𝒸(𝐴) = ∑{𝐿 ∶
𝐿 is a secondŞ-subsemimodule of 𝐴} 

Then,𝜑(𝒮ℯ𝒸(𝐴)) = 𝜑(∑𝐿 )= ∑𝜑(𝐿) (  is a 𝑠econd  

Ş-subsemimodule of 𝐴) 

Since 𝜑 is ҟ-regular, so by Lemma (3.3.3), we have 
𝜑(𝒮ℯ𝒸(𝐴)) = ∑{𝜑(𝐿): 𝐿 is a secondŞ-
subsemimodule of 𝐴} 

                   = ∑{𝜑(𝐿): 𝜑(L) is a secondŞ-
subsemimodule of 𝐵} 

                   ⊆ ∑{𝐾: 𝑖𝑠 a secondŞ-subsemimodule 

of 𝐵} = 𝒮ℯ𝒸(𝐵).         □ 

Singular and Torsion of Semimodule 

       In this section, we study two concepts  singular 

subsemimodule and torsion subsemimodule and 

some characterization of them. 

Singular of Semimodule 

Definition 4.1.1(9): An ideal 𝐼 of a semiring Ş is 

said to be an essential ideal of Ş if for every ideal 𝐾 

of Ş , 𝐼⋂𝐾 = 0 implies 𝐾 = 0. Then we shall 

denote an essential ideal 𝐼 of a semiring Ş-
semimodule by 𝐼 ⊵ℯ Ş.  
Definition 4.1.2(9): Let 𝐴 be an Ş-semimodule, a 

singular subsemimodule of 𝐴 is denoted by 𝒵(𝐴) 

and defined as 𝒵(𝐴) = {𝑎 ∈ 𝐴|𝑎𝑛𝑛Ş(𝑎) ⊵ℯ Ş}.We 

say that 𝐴 is singular if 𝒵(𝐴) = 𝐴 and nonsingular 

if 𝒵(𝐴) = 0. 
 

Proposition 4.1.3. Let 𝐴 be an Ş-semimodule and  

𝐿 be Ş-subsemimodule of 𝐴 then: 

1- 𝒵(𝐴) ↪ 𝐴. 
2- 𝒵(𝐿) = 𝐿 ∩ 𝒵(𝐴). 
3- 𝒵(𝒵(𝐴)) = 𝒵(𝐴). 
4- Let 𝐴 and 𝐵 be Ş-semimodules, if 𝜑 ∈

 𝐻𝑜𝑚Ş(𝐴, 𝐵) then  𝜑(𝒵(𝐴)) ⊆ 𝒵(𝐵). 

Proof: (1),(2) and (3) they are clear by 

Definition(4.1.2). 

(4) let 

𝑎 ∈ 𝒵(𝐴) ⟹ 𝑎𝑛𝑛Ş(𝜑(𝑎)) ⊇ 𝑎𝑛𝑛Ş(𝑎) ⊵ℯ Ş ⟹

𝑎𝑛𝑛Ş(𝜑(𝑎)) ⊵ℯ Ş. Thus 𝜑(𝑎) ∈ 𝒵(𝐵). 

Hence 𝜑(𝒵(𝐴)) ⊆ 𝒵(𝐵).         □ 

Torsion of Semimodule 

Definition 4.2.1(10): Let 𝐴 be an Ş-semimodule. 

An element 𝑎 ∈ 𝐴 is said to be torsion element if 

there exists 0 ≠ 𝑠 ∈ Ş such that 𝑠𝑎 = 0. A torsion 

subsemimodule of 𝐴 is denoted by 𝒯(𝐴) and define 

as  𝒯(𝐴) = {𝑎 ∈ 𝐴|
𝑠𝑎 = 0 

for some 0 ≠ 𝑠 ∈ Ş  
}.We say 

that 𝐴 is torsion if 𝒯(𝐴) = 𝐴 and torsion free if 

𝒯(𝐴) = 0. 
       In order to have 𝒯(𝐴) a subsemimodule of 𝐴. 

We need to convert Definition (4.2.1) to the 

following:   

Definition 4.2.2. Let 𝐴 be a semimodule over a 

commutative semiring Ş. An element 𝑎 ∈ 𝐴 is said 

to be torsion element if 𝑠𝑎 = 0, for some nonzero 

divisor 𝑠 ∈ Ş. then  

                                         

𝒯(𝐴) =
{𝑎 ∈ 𝐴|𝑠𝑎 = 0 for some nonzero divisor 𝑠 ∈ Ş  }. 
Proposition 4.2.3. Let 𝐴 be an Ş-semimodule and  

𝐿 be Ş-subsemimodule of 𝐴 then: 

1- 𝒯(𝐴) ↪ 𝐴. 
2- 𝒯(𝐿) = 𝐿 ∩ 𝒯(𝐴). 



Baghdad Science Journal                      Vol.15(4)2018 

 

476 

3- 𝒯(𝒯(𝐴)) = 𝒯(𝐴). 
4- 𝒯(𝐴/𝒯(𝐴)) = 0. 

5- Let 𝐴 and 𝐵 be Ş-semimodules, if 𝜑 ∈
 𝐻𝑜𝑚Ş(𝐴, 𝐵) then  𝜑(𝒯(𝐴)) ⊆ 𝒯(𝐵). 

Proof: (1),(2) and (3) they are clear by 

Definition(4.2.1). 

(4) Let 0 ≠ 𝑎 + 𝒯(𝐴) ∈ 𝐴/𝒯(𝐴) ⟹ 𝑎 ∉ 𝒯(𝐴) 

Now, if 𝑠(𝑎 + 𝒯(𝐴)) = 0,  then 𝑠𝑎 + 𝒯(𝐴) = 0, so  

𝑠𝑎 ∈ 𝒯(𝐴) for some nonzero divisor 𝑠 ∈ Ş.   
Hence 𝑡(𝑠𝑎) = 0, for some nonzero divisor 𝑡 ∈ Ş 
implies (𝑡𝑠)𝑎 = 0, that is, 𝑎 ∈ 𝒯(𝐴)  a 

contradiction. 

Therefore 𝑎 + 𝒯(𝐴) is not torsion. Thus 𝒯(𝐴/
𝒯(𝐴)) = 0.    

 (5) By Definition (4.2.1), 

𝒯(𝐴) =
{𝑎 ∈ 𝐴|𝑠𝑎 = 0 for some nonzero divisor 𝑠 ∈ Ş}. 
Now, let 

𝑎 ∈ 𝒯(𝐴) ⟹ 𝑠𝑎 =
0 for some nonzero divisor 𝑠 ∈ Ş. 
⟹ 𝜑(𝑠𝑎) = 0, for some nonzero divisor 𝑠 ∈ Ş. 
⟹ 𝑠𝜑(𝑎) = 0 for some nonzero divisor 𝑠 ∈ Ş. 
Thus 𝜑(𝑎) ∈ 𝒯(𝐵). 
Hence 𝜑(𝒯(𝐴)) ⊆ 𝒯(𝐵).     □         

 

Reject and Inject of Semimodule 
       In the following we need to define 

subcategories of the category of Ş-semimodule and 

Ş-homomorphism. 

1- The category of subtractive Ş-semimodules and 

Ş-homomorphism, which will be denoted by 𝑀Ş. 

2- The category of subtractive  Ş-semimodules and 

ҽҟ-regular (see Lemma 2.10), which will be 

denoted by 𝑀ҽҟ−Ş. 

Definition 5.1 (1)(p.54). Let ∆ be a class of 

semimodules. The reject of an Ş-semimodule 𝐴 

denoted by Ɽ∆(𝐴) is defined by  Ɽ∆(𝐴) =∩

ker 𝑓 {𝑓 ∈ 𝐻𝑜𝑚Ş(𝐴, 𝐵), 𝐵 ∈ ∆ }. 

Proposition 5.2 (1)(p.58). Let ∆ be a class of all Ş-
semimodules. If 𝐴, 𝐵 ∈ ∆   and  𝑓 ∈ 𝐻𝑜𝑚Ş (𝐴, 𝐵), 

then 𝑓(Ɽ∆(𝐴)) ⊆ Ɽ∆(𝐵). 
The following operator has an analogous in 

modules with abbreviation "Trace", we will define 

it for semimodules using another name and symbol 

convenient to Definition(5.1). 

Definition 5.3. Let ∆ be a class of semimodules and 

𝐴 an Ş-semimodule. The inject of 𝐴 denoted by 

ȴ∆(𝐴) and defined as ȴ∆(𝐴) = ∑ 𝐼𝑚𝑓 {𝑓 ∈

𝐻𝑜𝑚Ş(𝐵, 𝐴), 𝐵 ∈ ∆ }. 

Proposition 5.4. Let  ∆ be a class of all subtractive 

Ş -semimodules. If 𝐴, 𝐵 ∈ ∆ and  𝑓 ∈ 𝐻𝑜𝑚Ş (𝐴, 𝐵), 

then 𝑓(ȴ∆(𝐴)) ⊆ ȴ∆(𝐵). 
Proof: Suppose 𝑥 ∈ ȴ∆(𝐴)and ℎ ∈ 𝐻𝑜𝑚ʂ(𝐿, 𝐵) , 𝐿 ∈

∆then  ℎ𝑓 ∈ 𝐻𝑜𝑚ʂ(𝐿, 𝐴) 

⟹ 𝑓(𝑥) ∈ 𝐼𝑚ℎ. (Note that in 𝑀𝑐Ş 𝐼𝑚ℎ= h(L), see 

2.7(2)) 

Hence 𝑓(ȴ∆(𝐴)) ⊆ ȴ∆(𝐵).         □ 

Preradical on Semimodules 

       This section consists of  definitions and 

examples about preradicals on semimodules 

analogous to the cases in modules (see (2)), also 

some results, to solve the problems arises through 

the extension of the category of modules to that of 

semimodules, are proved in the category of 

semimodules or some subcategories of it. 

Definition 6.1. A functor Ᵽ:𝑀Ş⟶𝑀Ş is called 

preradical on 𝑀Ş if the following two conditions are 

satisfied: 

1- Ᵽ(𝐴) ↪ 𝐴,  ∀ 𝐴 ∈ 𝑀ʂ. 

2-  ∀ 𝜑 ∈  𝐻𝑜𝑚Ş(𝐴, 𝐵)  𝜑(Ᵽ(𝐴)) ⊆ Ᵽ(𝐵). 

      In this definition (and what follow) the 

category𝑀Ş, can be replaced by 𝑀𝑐Ş (The 

subcategory of subtractive Ş-semimodules and Ş-
homomorphism) or by 𝑀ҽҟ−Ş (the subcategory of 

subtractive Ş-semimodules and ҽҟ-regular 

homomorphisms). 

Examples 6.2. 

6.2.1 By Propositions (3.1.5), (3. 2.3) and (3.3.4) 

the functors J, 𝒮𝜊𝒸 and 𝒮ℯ𝒸 are preradicals on the 

category 𝑀ҽҟ−Ş. 

6.2.2 By Propositions (4.1.3(1,4)) and (4.2.3(1,5)) 

the functors 𝒵 and 𝒯 are preradicals on the category 

𝑀Ş. 

6.2.3 By Proposition (5.2) a functor Ɽ∆  is preradical 

on the category 𝑀Ş and by Proposition (5.7) the 

functor ȴ∆ is preradical on the category 𝑀𝑐Ş. 

Definitions 6.3. ∀ 𝐴 ∈ 𝑀Ş , a  Preradical Ᵽ is 

called, 

1- Radical if  Ᵽ(𝐴/Ᵽ(𝐴)) = 0. 

2- Idempotent  if Ᵽ(Ᵽ(𝐴)) = Ᵽ(𝐴). 
3- Hereditary if Ᵽ(𝐿) = 𝐿 ∩ Ᵽ(𝐴)  , with 𝐿 ↪ 𝐴. 

Examples 6.4. 

6.4.1 The preradicals J and 𝒯 are radicals by 

Proposition ((3.1.7),(4.2.2)(4))) . 

6.4.2 The preradical 𝒮𝜊𝒸 is hereditary and 

idempotent  (by (5), Corollary 3.11), and also the 

preradicals 𝒵,𝒯 are hereditary and idempotent by 

Propositions (4.1.3(2,3), (4.2.3(2,3))). 

Note 6.5. Let Ᵽ  be a preradical ∀ 𝐴 ∈ 𝑀ʂ. If 

{ Ᵽ𝑖 ∶ 𝑖 ∈ 𝐼} is a collection of preradicals then 

1- ⋂  Ᵽ𝑖𝑖∈𝐼 , is defined as (⋂  Ᵽ𝑖𝑖∈𝐼 )(𝐴) =
 ⋂  Ᵽ𝑖𝑖∈𝐼 (𝐴), is preradical. 

2- ∑  Ᵽ𝑖𝑖∈𝐼 , is defined as (∑  Ᵽ𝑖𝑖∈𝐼 ) (𝐴) =
∑  Ᵽ𝑖𝑖∈𝐼 (𝐴), is preradical. 

3- Let Ᵽ , Ƚ  be two preradicals, then Ᵽ ≤ Ƚ, 

if Ᵽ(𝐴)) ⊆ Ƚ(𝐴), ∀ 𝐴 ∈ 𝑀ʂ. 

Definition 6.6. Let ℳ be a class of 

semimodules, ℳ is said to be, 
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1- Hereditary if ℳ is closed under isomorphisms 

and subsemimodules. 

2- Cohereditary if ℳ is closed under epimorphic 

images. 

Definition 6.7.  Let Ᵽ  be a preradical, an Ş-
semimodule  𝐴 ∈ 𝑀Ş  is said to be , 

1- Ᵽ-torsion if   Ᵽ(𝐴) = 𝐴. A class of all Ᵽ-torsion 

semimodules is denoted by ƬⱣ . 
2- Ᵽ-torsionfree if Ᵽ(𝐴) = 0.  A class of all Ᵽ-

torsionfree semimodules is denoted by  ƑⱣ . 

Proposition 6.8. Let 𝐴 ∈ 𝑀Ş and Ᵽ  be a 

preradical  , ∀ 𝐾 ↪ 𝐴 ,then: 

1- Ᵽ(𝐾) ⊆ 𝐾 ∩ Ᵽ(𝐴). 
2- (Ᵽ(𝐴) + 𝐾)/𝐾 ⊆ Ᵽ(𝐴/𝐾). 
3- If Ᵽ(𝐴/𝐾) = 0 𝑡ℎ𝑒𝑛 Ᵽ(𝐴) ⊆ 𝐾. 

4- If Ᵽ(𝐾) = 𝐾 𝑡ℎ𝑒𝑛 𝐾 ⊆ Ᵽ(𝐴). 
Proof: (1) and (2) by definition of preradical. (3) by 

(2) and (4) by (1).    □ 

Proposition 6.9. Let Ᵽ  be a preradical. If { 𝐴𝑖 ∶ 𝑖 ∈
𝐼} is a collection of Ş˗𝑠𝑒𝑚𝑖𝑚𝑜𝑑𝑢𝑙𝑒𝑠 then: 

1- Ᵽ(⊕𝑖∈𝐼 𝐴𝑖) =⊕𝑖∈𝐼 Ᵽ(𝐴𝑖). 
2- Ᵽ(∏ 𝐴𝑖𝑖∈𝐼 ) ⊆ ∏ Ᵽ(𝐴𝑖)𝑖∈𝐼 . 

Proof: Since Ᵽ is a subfunctor of the identity 

functor.   □  

Proposition 6.10. Let Ᵽ be a preradical, then: 

1- ƬⱣ is a cohereditary class closed under arbitrary 

direct sums. 

2- ƑⱣ is a hereditary class closed under arbitrary 

direct products. 

Proof: (1). Let 𝐴 ∈ ƬⱣ⟹ Ᵽ(𝐴) = 𝐴, 𝜑: 𝐴 ⟶ 𝐵 be 

an epimorphism. 

Then 𝜑(Ᵽ(𝐴)) ⊆ Ᵽ(𝐵) ⟹ 𝜑(𝐴) ⊆ Ᵽ(𝐵)       
(since Ᵽ(𝐴) = 𝐴) 

⟹ 𝐵 ⊆ Ᵽ(𝐵)                 (since 𝜑is onto)              

….(i). 

But Ᵽ(𝐵) ⊆ 𝐵     (by definition)            ….(ii). 

So, from (i) and (ii) we have Ᵽ(𝐵) = 𝐵 ⟹ 𝐵 ∈ ƬⱣ. 
Now, let {𝐴𝑖 ∶ 𝑖 ∈ 𝐼} ⊆ ƬⱣ⟹ Ᵽ(𝐴𝑖) =  𝐴𝑖 ∀ 𝑖 ∈ 𝐼. 
Then Ᵽ(⊕𝑖∈𝐼 𝐴𝑖) =⊕𝑖∈𝐼 Ᵽ(𝐴𝑖) =⊕𝑖∈𝐼 𝐴𝑖 ⟹
⊕𝑖∈𝐼 𝐴𝑖 ∈ ƬⱣ. 
Hence ƬⱣ is a cohereditary class closed under 

arbitrary direct sums. 

(2). Let 𝐴 ∈ ƑⱣ⟹ Ᵽ(𝐴) = 0. 

So, if 𝐾 ⊆ 𝐴 ⟹ Ᵽ(𝐾) ⊆ 𝐾 ∩ Ᵽ(𝐴)  ⟹ Ᵽ(𝐾) ⊆
𝐾 ∩ 0 = 0 ⟹ Ᵽ(𝐾) = 0. 

Thus 𝐾 ∈ ƑⱣ. 

Now, let 𝜑:𝐴 ⟶ 𝐾 be an isomorphism and 𝐴 ∈ ƑⱣ. 

Then 𝜑−1(Ᵽ(𝐾)) ⊆ Ᵽ(𝐴) = 0 ⟹ Ᵽ(𝐾) ⊆

𝑘𝑒𝑟𝜑−1 = 0, So 𝐾 ∈ ƑⱣ. 

Now, let { 𝐴𝑖 ∶ 𝑖 ∈ 𝐼} ⊆ ƑⱣ⟹ Ᵽ(𝐴𝑖) = 0 ∀ 𝑖 ∈ 𝐼. 
Since Ᵽ(∏ 𝐴𝑖𝑖∈𝐼 ) ⊆ ∏ Ᵽ(𝐴𝑖)𝑖∈𝐼 = 0 ⟹∏ 𝐴𝑖𝑖∈𝐼 ∈
ƑⱣ 

Hence ƑⱣ is a hereditary class closed under arbitrary 

direct products.      □  

Proposition 6.11. Where Ᵽ  is a preradical, then 

1- HomŞ(𝑇, 𝐹) = 0 , ∀ 𝑇 ∈ ƬⱣ and 𝐹 ∈ ƑⱣ. 

2- ƬⱣ ∩ ƑⱣ = 0. 

Proof: (1). Let 𝑇 ∈ ƬⱣ , 𝐹 ∈ ƑⱣ and 𝜑: 𝑇 ⟶ 𝐹, then 

𝜑(𝑇)= 𝜑(Ᵽ(𝑇))  ⊆  Ᵽ(𝐹)=0. So 𝜑 = 0. 

(2). Let N∈ ƬⱣ ∩ ƑⱣ, then N= Ᵽ(𝑁)=0.         □ 

Proposition 6.12. Let Ᵽ be a radical, then: 

1- 𝑇 ∈ ƬⱣ if and only if  𝐻𝑜𝑚Ş(𝑇, 𝐹) = 0 , ∀ 𝐹 ∈

ƑⱣ. 

2- ƬⱣ is closed under extensions. 

Proof: (1). By Proposition (6.11), it is enough to 

prove the sufficiency. 

Let 𝐻𝑜𝑚Ş(𝑇, 𝐹) = 0 , ∀ 𝐹 ∈ ƑⱣ. 

Since 𝑇/Ᵽ(𝑇) ∈ ƑⱣ (Ᵽ is a radical), then the natural 

map 𝑇 ⟶ 𝑇/Ᵽ(𝑇) is zero, hence Ᵽ(𝑇) = 𝑇 ∈ ƬⱣ. 
2. Follows from 1.      □ 

Proposition 6.13. Let Ᵽ  be an 

idempotent Preradical, then: 

1- 𝐹 ∈ ƑⱣ if and only if 𝐻𝑜𝑚Ş(𝑇, 𝐹) = 0 , ∀ 𝑇 ∈

ƬⱣ. 
2- ƑⱣ  is closed under extensions. 

Proof: (1). By Proposition (6.11), it is enough to 

prove the sufficiency. 

Now, let 𝐻𝑜𝑚Ş(𝑇, 𝐹) = 0 , ∀ 𝑇 ∈ ƬⱣ. 

Since Ᵽ(𝐹) ∈ ƬⱣ(Ᵽ  is an idempotent) , then the 

inclusion map  Ᵽ(𝐹) ⟶ 𝐹 is a zero map, hence 

Ᵽ(𝐹)=0. 

That is 𝐹 ∈ ƑⱣ. 

(2). Follows from 1.      □ 

Proposition 6.14.  Let { 𝐴𝑖 ∶ 𝑖 ∈ 𝐼} be a collection 

of Ş-semimodules then: 

1- If 𝐴𝑖 ∈ ƬⱣ ∀ 𝑖 ∈ 𝐼, then ∑  𝐴𝑖𝑖∈𝐼 ∈ ƬⱣ. 
2- If 𝐴/𝐴𝑖 ∈ ƑⱣ ∀ 𝑖 ∈ 𝐼 , then  𝐴/⋂  𝐴𝑖𝑖∈𝐼 ∈ ƑⱣ. 

Proof: (1) since   𝐴𝑖 ∈ ƬⱣ⟹ Ᵽ(𝐴𝑖) =  𝐴𝑖 
Then Ᵽ(∑  𝐴𝑖𝑖∈𝐼 ) = ∑ Ᵽ( 𝐴𝑖)𝑖∈𝐼 = ∑  𝐴𝑖𝑖∈𝐼 . 

Hence ∑  𝐴𝑖𝑖∈𝐼 ∈ ƬⱣ. 
(2) since  𝐴/𝐴𝑖 ∈ ƑⱣ⟹ Ᵽ(𝐴/𝐴𝑖) = 0. 

For each 𝑗 ∈ 𝐼, let 𝜑𝑗: 𝐴/∩ 𝐴𝑖 ⟶𝐴/𝐴𝑗 be a natural 

epimorphism (a+∩ 𝐴𝑖 ⟼ 𝑎 + 𝐴𝑗), then 

𝜑𝑗(Ᵽ(𝐴/∩ 𝐴𝑖)) ⊆ Ᵽ(𝐴/𝐴𝑗) = 0, so Ᵽ(𝐴/∩ 𝐴𝑖) ⊆ 

ker 𝜑𝑗= 𝐴𝑗/∩ 𝐴𝑖 for each j, hence 

Ᵽ(𝐴/∩ 𝐴𝑖) ⊆ ∩ker 𝑓𝑗 = ∩ 𝐴𝑗/∩ 𝐴𝑖=0.  Hence 𝐴/∩

𝐴𝑖 ∈ ƑⱣ.        □ 

       Recall that a functor ℱ is said to be left exact, if 

from a given exact sequence 

0⟶ A
𝜑
→ M 

𝛼
→ W⟶ 0 we get a left exact sequence 

0⟶ ℱ(A)
ℱ(𝜑)
→    ℱ (M) 

ℱ(𝛼)
→   ℱ (W). 

Proposition 6.15. Let Ᵽ be a preradical on 𝑀𝑐Ş, 

then the following are equivalent: 

1- Ᵽ is left exact as a functor 

2- Ᵽ is hereditary 

3- Ᵽ is idempotent and ƬⱣ is hereditary. 

Proof: (1)⟹(2) let N  be a subsemimodule of M 

then by (1), the sequence 

0⟶  Ᵽ(𝑁) ⟶  Ᵽ(𝑀) ⟶  Ᵽ(𝑀/𝑁) is exact, so 

Ᵽ(𝑁)= 𝑁 ∩ Ᵽ(𝑀). 
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(2)⟹(3) let Ᵽ be hereditary, then we have 

Ᵽ(Ᵽ(𝑀)) = Ᵽ(𝑀) ∩ Ᵽ(𝑀)= Ᵽ(𝑀). So Ᵽ is an 

idempotent. 

Now, if 𝐾 ⊆ 𝑀 and  𝑀 ∈ ƬⱣ ⟹ Ᵽ(𝐾) = 𝐾 ∩
Ᵽ(𝑀) = 𝐾 ∩𝑀 = 𝐾. 

Hence 𝐾 ∈ ƬⱣ and ƬⱣ is hereditary. 

(3)⟹(1) let  0⟶ N
𝜑
→ M 

𝛼
→ W⟶ 0  be an exact 

sequence. 

Then the sequence 0⟶ Ᵽ(N)
Ᵽ(𝜑)
→   Ᵽ (M) 

Ᵽ(𝛼)
→   Ᵽ (W), 

where Ᵽ(𝜑) and Ᵽ(𝛼) are restrictions of 𝜑 and 

𝛼. The exactness in  Ᵽ(𝑁) is clear also the inclusion 

𝐼𝑚Ᵽ(𝜑) ⊆ 𝑘𝑒𝑟Ᵽ(𝛼). 

Since Ᵽ(𝐼𝑚𝜑 ∩ Ᵽ(𝑀)) = (𝐼𝑚𝜑 ∩ Ᵽ(𝑀)) ∩
Ᵽ(Ᵽ(𝑀)) = 𝐼𝑚𝜑 ∩ Ᵽ(𝑀)       …(i). 

And Ᵽ(𝐼𝑚𝜑 ∩ Ᵽ(𝑀)) ⊆ Ᵽ(𝐼𝑚𝜑) = 𝐼𝑚Ᵽ(𝜑)                      
…(ii). 

From (i) and (ii) ⟹ 𝐼𝑚𝜑 ∩ Ᵽ(𝑀) ⊆ 𝐼𝑚Ᵽ(𝜑)         
…(iii). 

Now let 𝑎 ∈ 𝑘𝑒𝑟Ᵽ(𝛼) be an arbitrary element ⟹  

𝑎 ∈ Ᵽ(𝑀) ∧ 𝛼(𝑎) = 0 ⟹  𝑎 ∈ Ᵽ(𝑀) ∧ 𝑎 ∈ 𝐼𝑚𝜑. 

Thus 𝑎 ∈ 𝐼𝑚𝜑 ∩ Ᵽ(𝑀). 
So by (i) 𝑎 ∈ 𝐼𝑚Ᵽ(𝜑) ⟹ 𝑘𝑒𝑟Ᵽ(𝛼) ⊆ 𝑘𝑒𝑟Ᵽ(𝜑) as 

required.         □ 

Theorem 6.16. If  Ᵽ is a Preradical on 𝑀𝑐Ş, then 

the following are equivalent 

1- Ᵽ  is an idempotent radical. 

2- ∀𝐴 ∈ 𝑀Ş(𝑀𝑐Ş) there exists a uniquely 

determined (up to isomorphism ) proper exact 

sequence(exact sequence)  0 → 𝑇 → 𝐴 → 𝐹 →
0,  𝐹 ∈ ƑⱣ, 𝑇 ∈ ƬⱣ. 

3- ∀𝐴 ∈ 𝑀𝑐Ş there exists an exact sequence(proper 

exact sequence)0 → 𝑇 → 𝐴 → 𝐹 → 0 ,  𝐹 ∈ ƑⱣ,  
𝑇 ∈ ƬⱣ. 

4- Ᵽ is an idempotent radical  and ƬⱣ , ƑⱣ are 

closed under extensions. 

Proof:(1)⟹(2). Let 0 ⟶ Ᵽ(𝐴) ⟶ (𝐴) ⟶
𝐴/Ᵽ(𝐴) ⟶ 0 be an exact sequence. 

Since Ᵽ be an idempotent radical ⟹ Ᵽ(𝐴) ∈ ƬⱣ. 
(2)⟹(3). It is obvious. 

(3)⟹(4). Since there is an exact sequence 0 ⟶
𝑇 ⟶ 𝐴⟶ 𝐹 ⟶ 0, 

Then Ᵽ(Ᵽ(𝐴)) = Ᵽ(𝑇) = 𝑇 = Ᵽ(𝐴) ⟹ Ᵽ is an 

idempotent preradical with 𝑇 ∈ ƬⱣ. 
Also 𝐹 = 𝐴/Ᵽ(𝐴) ∈ ƑⱣ⟹ Ᵽ(𝐹) = 0 ⟹
Ᵽ(𝐴/Ᵽ(𝐴)) = 0 ⟹ Ᵽ is a radical. 

(4)⟹(1). It is obvious.        □ 
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ه المقاساتحول الجذر الابتدائي لشب  
 

 أسعد محمد علي الحسيني   ساره حسين عبد السعبري        

 
 قسم الرياضيات, كلية التربية للعلوم الصرفة, جامعة بابل, بابل, العراق.

 

 الخلاصة:
 في هذا البحث درسنا مفهوم الجذر الابتدائي على بعض الأصناف الجزئية من صنف شبه المقاسات مع تشاكلات شبه المقاسات.

عند توسيع صنف المقاسات الى صنف -بما ان بعض الجذور الابتدائية المعرفة على صنف المقاسات تفشل في تحقيق شروط الجذر الابتدائي 

فقد كان من الضروري أن نبحث في أصناف جزئية تتحقق فيها شروط الجذر الابتدائي من قبيل صنف شبه المقاسات  -شبه المقاسات

 المنتظمة. ekه المقاسات او صنف شبه المقاسات المطروحة مع تشاكلات شبه المقاسات من النوع المطروحة مع تشاكلات شب

 

 ҽҟ -مطروح, تشاكل منتظم -Ş الجذر الابتدائي, شبه المقاس, شبه مقاس الكلمات المفتاحية:

 


