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Abstract: 
In this paper, the first integrals of Darboux type of the generalized Sprott ET9 chaotic system will be 

studied. This study showed that the system has no polynomial, rational, analytic and Darboux first integrals 

for any value of 𝑎 and 𝑏. All the Darboux polynomials for this system were derived together with its 

exponential factors. Using the weight homogenous polynomials helped us prove the process. 
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Introduction: 
In recent decades, there have been reports 

in the literature of several chaotic differential 

systems such as 
1-4

 and many others. Recently, even 

differential systems with only one equilibrium 

points to have chaotic behavior also have been 

demonstrated 5–8.  

In 1994, Sprott 9 displayed 19 distinct 

simple three-dimensional autonomous ordinary 

differential equations of chaotic flows and quadratic 

non-linearities, based on two real parameters, and 

then described their properties.  These examples are 

simpler than Lorenz and Rössler system. Among 

these 19 systems, Case A is the simplest one that 
10,11 used to describe a one-dimensional Nose-

Hoover mechanical system exhibiting chaos. Some 

systems attracted much attention see 12–14. Twenty 

one years later, in 2015, Sprott 15 made 

generalization of Nose-Hoover oscillator, revealing 

11 cases with strange attractors (hidden or self-

excited) among these he introduced a chaotic 

system ET9 with only one non-hyperbolic 

equilibrium point. This equilibrium is nonlinearity 

unstable and strange attractor is self-excited. Self-

excited attractor are examples such as van der Pol, 

Belousov-Zhabotinskii, Lorenz, Rössler, Chen, 

Chua, Lu, Jerk or Sprott’s system (case B-S). 

Various studies of systems with self-excited 

attractors have been conducted in different science 

areas especially in engineering applications, like in 

the design electronic circuits, communications, 

control systems, and artificial intelligence 16–19, 

Nevertheless, in these systems with the self-excited 

attractors, there are still various issues that invite 

further research. 

This research modifies the Sprott ET9 

system 15 by considering two parameters in the 

nonlinear portion, which are prospective to a more 

chaotic system of behavior. More specifically, the 

following generalized system will be studied 

𝑥̇ = 𝑦,  
𝑦̇ = −𝑥 + 𝑦𝑧,                      (1)  
𝑧̇ = −𝑧 − 𝑎𝑥𝑦 − 𝑏𝑥𝑧,  
where 𝑎 and 𝑏 are nonzero real parameters. In 15, 

Sprott presented system (1) with 𝑎 = 4 and  

𝑏 = −1 as ET9 (Fig. 1) among eleven different 

autonomous systems having chaotic conduct. 

To the best of our knowledge, this rich 

dynamical system (1) has never been investigated 

from the integrability perspective. The key 

objective of this work involves the characterization 

of the rational and Darboux first integrals. For this, 

the invariant algebraic surfaces need to be fully 

characterized based on their parameters.  To achieve 

invariant algebraic surfaces as such, the theory of 

Darboux integrability needs to be utilized, for 

further details on this theory  see 
20–27

. 

In 1878 Darboux 28 demonstrated how the 

first integrals of 2D differential system could have 

been formed with enough invariant algebraic 

curves. In particular, he had shown that if a 

polynomial autonomous system with degree 𝑛 
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possess a first integral if it has at least [
𝑚(𝑚+1)

2
+ 1] 

invariant algebraic curves that has a simple 

expressions, according to its invariant algebraic 

curves. 

This research provides the invariant of 

system (1) which consists of the rational and 

Darboux first integral. The analytic and polynomial 

first integrals are also provided. For our system, one 

first integral reduces the complexity of its 

dynamics, and the presence of two irreducible first 

integrals solves entirely the issue of determining its 

phase portraits. 

1. Some Definitions and Preliminary Results  

This section begins with a brief overview of 

the integrability problem, the Darboux method, and 

the auxiliary results. To prove the main results of 

this paper, few basic definitions and theorems are 

given as a background to this study. 

Let 𝑓 = 𝑓(𝑥, 𝑦, 𝑧)  be a real polynomial 

defined as a Darboux polynomial for the system (1) 

if 

𝑦 
𝜕𝑓

𝜕𝑥
+  (𝑦𝑧 − 𝑥)

𝜕𝑓

𝜕𝑦
− (𝑧 + 𝑎𝑥𝑦 + 𝑏𝑥𝑧)

𝜕𝑓

𝜕𝑧
=  𝐾𝑓,       (2) 

for a real polynomial 𝐾(𝑥, 𝑦, 𝑧), that is a cofactor of 

𝑓 with a degree of almost one. As a result, the 

cofactor form can be assumed as follow 

𝐾(𝑥, 𝑦, 𝑧) = 𝑘0 + 𝑘1𝑥 + 𝑘2𝑦 + 𝑘3𝑧,           (3) 
where 𝑘𝑖 ∈ ℂ for 𝑖 = 0, . . ,3 if 𝑓(𝑥, 𝑦, 𝑧) is a 

Darboux polynomial of the differential system (1), 

then the invariant algebraic surface in ℝ3 is 𝑓 = 0. 

It is called as such because of the fact that when a 

solution of system (1) includes a point on the 

invariant algebraic surface, then the entire solution 

is contained in it 20. 

It is known if a Darboux polynomial 𝐻 is 

with zero cofactor then it is defined as a polynomial 

first integral of system (1). i.e. 

𝑦 
𝜕𝐻

𝜕𝑥
+  (𝑦𝑧 − 𝑥)

𝜕𝐻

𝜕𝑦
− (𝑧 + 𝑎𝑥𝑦 + 𝑏𝑥𝑧)

𝜕𝐻

𝜕𝑧
=  0.       (4) 

Once the function 𝐻 is satisfying Eq. (4) and is also 

rational (analytic) then it is a rational (analytic) first 

integral.  

Definition 
29

 A nonconstant polynomial 𝑓(𝑥) ∈
𝐹[𝑥] is irreducible over the field 𝐹 or is an 

irreducible polynomial in 𝐹[𝑥] if 𝑓(𝑥) cannot be 

expressed as a product 𝑔(𝑥) ∗ ℎ(𝑥) of two 

polynomials 𝑔(𝑥) and ℎ(𝑥) in 𝐹[𝑥] both of lower 

degree than the degree of 𝑓(𝑥). If 𝑓(𝑥) ∈ 𝐹[𝑥] is a 

nonconstant polynomial that is not irreducible over 

𝐹, then 𝑓(𝑥) is reducible over 𝐹. 

First, depending on the following two Propositions 

that have been proved in 20,30,31: 

Proposition 1.1. Let 𝑓 be a polynomial and 

𝑓 = ∏ 𝑓
𝑗

𝛼𝑗𝑠
𝑗=1 its decomposition into irreducible 

complex factors in 𝐶[𝑥, 𝑦, 𝑧]. Next, 𝑓 is a Darboux 

polynomial if and only if all the 𝑓𝑗 are Darboux 

polynomials. Furthermore, if 𝐾 and 𝐾𝑗  denote the 

cofactors of 𝑓 𝑎𝑛𝑑 𝑓𝑗, then 𝐾 = ∑ 𝛼𝑗𝐾𝑗
𝑠
𝑗=1 . 

It is noticeable that it is enough to search 

the irreducible Darboux polynomials of system (1), 

in view of Proposition 1.1. 

Proposition 1.2. The presence of a rational first 

integral for a polynomial autonomous system (1) 

indicates the occurrence of either a polynomial first 

integral or two Darboux polynomials with the 

identical non-zero cofactor. 

To validate system (1) that does not have 

analytic first integral in the neighborhood of the 

origin, the following result is necessary which is 

due to Li, Llibre and Zhang in 32. 

Theorem 1.3. Take the autonomous system         

ẋ = f(x),    x = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℂ𝑛,          (5) 

where the vector valued function f  of dimension 𝑛 

matches f(0) = 0. 

If the eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛 of the Jacobian 

matrix 𝐴 of system (5) at x = 0 do not match any 

resonance situations like 

∑ 𝑘𝑖

𝑛

𝑖=1

𝜆𝑖 = 0,       𝑘𝑖 ∈ ℤ+ ,      ∑ 𝑘𝑖

𝑛

𝑖=2

≥ 1, 

then system (5) does not admit any analytic first 

integral in a neighborhood of x = 0. 

It is obvious to us that an exponential factor 

𝐸 of system (1) is defined as an exponential 

function of the form 𝐸 = 𝑒𝑥𝑝(𝑔/ℎ) ∉  ℂ with 

𝑔, ℎ ∈ ℂ[𝑥, 𝑦, 𝑧] and let 𝑓 and 𝑔 are coprime in the 

ring ℂ[𝑥, 𝑦, 𝑧], and satisfying 

𝑦 
𝜕𝐸

𝜕𝑥
+  (𝑦𝑧 − 𝑥)

𝜕𝐸

𝜕𝑦
− (𝑧 + 𝑎𝑥𝑦 + 𝑏𝑥𝑧)

𝜕𝐸

𝜕𝑧
=  𝐿𝐸,       (6) 

for certain polynomials 𝐿 = 𝐿(𝑥, 𝑦, 𝑧) having 

degree at most 1, is said to be the cofactor of 𝐸. 

The result below provides a geometrical meaning of 

the exponential factor concept, which can be found 

in 30
 for the plane and 24,33 for higher dimension 

systems. 

Proposition 1.4. The following statements hold. 

(a) If 𝐸 = 𝑒𝑥𝑝(𝑔/ℎ) is an exponential factor for the 

polynomial differential system (1), then ℎ =  0 is an 

invariant algebraic surface, where ℎ is not a 

constant polynomial. 

(b) Finally, 𝑒𝑥𝑝(𝑔) coming from the multiplicity of 

the infinite invariant planes, could be an 

exponential factor. 

Proposition 1.5. Assume that 

𝑒𝑥𝑝 (
𝑔1

ℎ1
) , … , 𝑒𝑥𝑝(𝑔𝑟/ℎ𝑟) are exponential factors of 

some polynomial differential system 
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 𝑥′ = 𝑃(𝑥, 𝑦, 𝑧), 𝑦′ = 𝑄(𝑥, 𝑦, 𝑧), 𝑧′ = 𝑅(𝑥, 𝑦, 𝑧), 

with 𝑃, 𝑄, 𝑅 ∈ ℂ[𝑥, 𝑦, 𝑧] with cofactors 𝐿𝑗 for 

𝑗 = 1, … , 𝑟. Then 𝑒𝑥𝑝(𝐺) = 𝑒𝑥𝑝 (
𝑔1

ℎ1
+ ⋯ +

𝑔𝑟

ℎ𝑟
) is 

also an exponential factor of system (1) with 

cofactor 𝐿 = ∑ 𝐿𝑗
𝑟
𝑗=1 . 

For the proof of the above result, see 
5
.  

The first integral of system (1) can be 

considered a Darboux type when expressed as: 

𝑓1
𝜆1 … 𝑓𝑝

𝜆𝑝
𝐸1

𝜇1 … 𝐸𝑞

𝜇𝑞
 ,  

where 𝑓1, … , 𝑓𝑝 are Darboux polynomials, 𝐸1, … , 𝐸𝑞 

are exponential factors, and 𝜆𝑖  and 𝜇𝑗 are complex 

numbers, for 𝑖 = 1, … , 𝑝 and 𝑗 = 1, … , 𝑞. 

Theorem 1.6. A polynomial system (1) of degree 𝑚 

is assumed to incorporate 𝑝 invariant algebraic 

surfaces𝑓𝑖 = 0 combined with cofactors 𝑘𝑖 for 

𝑖 = 1, . . . , 𝑝 𝑎𝑛𝑑 𝑞 exponential factors 𝐸 =
𝑒𝑥𝑝(𝑔𝑗/ℎ𝑗) with cofactors 𝐿𝑗  𝑓𝑜𝑟 𝑗 = 1, . . . , 𝑞. 

Then, there exist 𝜆𝑖  𝑎𝑛𝑑 𝜇𝑗 ∈ ℂ not all zero such 

that 

∑ 𝜆𝑖𝐾𝑖

𝑝

𝑖=1

 + ∑ 𝜇𝑖𝐿𝑖

𝑞

𝑗=1

= 0,         (7) 

if and only if the function of Darboux type 

𝑓1
𝜆1 … 𝑓𝑝

𝜆𝑝
𝐸1

𝜇1 … 𝐸𝑞

𝜇𝑞
  

is a first integral of system (1). 

For proof of Theorem 1.6 and more information, 

refer to 20,33. 

The weight homogeneous polynomials can 

now be defined, which is used in the proof of 

Theorem 2.3. The invariant algebraic surfaces of 

many popular systems, such as Lorenz system 34,  

Chen system 35, Moon-Rand system 5, and et al. 

have been commonly used in this procedure. 

A polynomial 𝑔(𝑥) with 𝑥 ∈  ℝ𝑛 is 

considered as weight homogeneous if there was any 

 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ ℕ𝑛 and 𝑚 ∈ ℕ such that for all 

𝛼 > 0,  

𝑔(𝛼𝑠1𝑥1, 𝛼𝑠2𝑥2, … , 𝛼𝑠𝑛𝑥𝑛) = 𝛼𝑚𝑔(𝑥), 
where ℕ signifies the set of positive integers. The 

variable s refers to the weight exponent of 𝑔, and 𝑚 

denotes the weight degree of 𝑔 with the weight 

exponent 𝑠. 

 

 
Figure 1.   Phase portraits of system (1) when 

𝒂 =  𝟒 and 𝒃 = −𝟏: 3D view and 2D projections 

on 𝒙𝒚, 𝒙𝒛, and 𝒚𝒛 planes. 

 

2. Main Results and their Proofs of the 

Chaotic ET9 System  
The study of Darboux integrability is 

presented in this section. These results are expected 

to prove that system (1) has only one irreducible 

Darboux polynomial, where the parameter 𝑎 is zero. 

It is also anticipated to demonstrate that the system 

has neither a polynomial first integral nor a rational 

first integral. Subsequently, it can be proven that the 

system contains only one exponential factor when 𝑏 

is not zero. Finally, the system will be proven that is 

not Darboux integrable. 3D and 2D projections of 

system (1) were plotted for a given set of initial 

conditions by selecting the parameters 𝑎 =
4 and 𝑏 = −1 with initial condition [0, 1, 0.4]. 
These projections were subjected to detailed 

numerical and theoretical analysis (Fig. 1). 

Firstly, the study begins with the following two 

lemmas: 

Lemma 2.1. 𝑘2 = 0. 

Proof. 𝑓 = ∑ 𝑓𝑖(𝑥, 𝑧)𝑦𝑖𝑛
𝑖=0  can be written, where 

each 𝑓𝑖 is a polynomial of 𝑥 and 𝑧 only. Then from 

substituting into Eq. (2), it becomes 

𝑦 
𝜕 ∑ 𝑓𝑖(𝑥, 𝑧)𝑦𝑖𝑛

𝑖=0

𝜕𝑥
+  (𝑦𝑧 − 𝑥)

𝜕 ∑ 𝑓𝑖(𝑥, 𝑧)𝑦𝑖𝑛
𝑖=0

𝜕𝑦
− (𝑧 + 𝑎𝑥𝑦

+ 𝑏𝑥𝑧)
𝜕 ∑ 𝑓𝑖(𝑥, 𝑧)𝑦𝑖𝑛

𝑖=0

𝜕𝑧

=  𝐾 ∑ 𝑓𝑖(𝑥, 𝑧)𝑦𝑖

𝑛

𝑖=0

,       (8) 

The terms of 𝑦𝑛+1 in Eq. (8) match 
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𝜕𝑓𝑛

𝜕𝑥
− 𝑎 𝑥 

𝜕𝑓𝑛

𝜕𝑧
=  𝑘2 𝑓𝑛. 

Solving this partial differential equation results in 

𝑓𝑛 = 𝐺 (
1

2
 𝑎 𝑥2 + 𝑧) 𝑒𝑘2 𝑧,  

where 𝐺 denotes any polynomial function of 

𝑥 and 𝑧. 

One of either k2 or 𝐺 has to be zero, so 𝑓𝑛 is a 

polynomial. 

If 𝐺 (
1

2
 𝑎 𝑥2 + 𝑧) = 0 and k2 ≠ 0 then 𝑓𝑛(𝑥, 𝑧) = 0 

and consequently 𝑓 = 𝑓(𝑥, 𝑧) 

Then, Eq. (8) leads to 

𝑦 
𝜕𝑓(𝑥, 𝑧)

𝜕𝑥
− (𝑧 + 𝑎 𝑥𝑦 + 𝑏 𝑥 𝑧)

𝜕𝑓(𝑥, 𝑧)

𝜕𝑧
= (𝑘0 + 𝑘1𝑥 + 𝑘2𝑦 + 𝑘3𝑧) 𝑓(𝑥, 𝑧) 

Taking the terms of 𝑦 from the above partial 

differential equation, results in 

𝑦 
𝜕𝑓(𝑥, 𝑧)

𝜕𝑥
− 𝑎 𝑥𝑦 

𝜕𝑓(𝑥, 𝑧)

𝜕𝑧
= 𝑘2𝑦 𝑓(𝑥, 𝑧) 

Then 𝑓 = 𝐺 (
1

2
 𝑎 𝑥2 + 𝑧) 𝑒𝑘2 𝑥, 

for some function 𝐺 of the variables 𝑥 and 𝑧. For 𝑓 

to be a polynomial, results in k2 = 0.  

Thus, completing the proof of this lemma. □ 

Lemma 2.2. 𝑘0 = −𝑛 and 𝑘1 = −𝑛 𝑏 , 𝑘3, 𝑛 ∈ ℕ. 

Proof. 𝑓 = ∑ 𝑓𝑖(𝑥, 𝑦)𝑧𝑖𝑛
𝑖=0  can be written, where 

each 𝑓𝑖 is a polynomial in 𝑥 and 𝑦. Then 

substituting 𝑓 into Eq. (2), it becomes 

𝑦 
𝜕 ∑ 𝑓𝑖(𝑥, 𝑦)𝑧𝑖𝑛

𝑖=0

𝜕𝑥
+  (𝑦𝑧 − 𝑥)

𝜕 ∑ 𝑓𝑖(𝑥, 𝑦)𝑧𝑖𝑛
𝑖=0

𝜕𝑦
− (𝑧 + 𝑎𝑥𝑦

+ 𝑏𝑥𝑧)
𝜕 ∑ 𝑓𝑖(𝑥, 𝑦)𝑧𝑖𝑛

𝑖=0

𝜕𝑧

=  𝐾 ∑ 𝑓𝑖(𝑥, 𝑦)𝑧𝑖

𝑛

𝑖=0

,       (9) 

 

The terms of 𝑧𝑛+1 in Eq. (9) match 

𝑦
𝜕𝑓𝑛

𝜕𝑦
=  𝑘3 𝑓𝑛, 

Solving this partial differential equation results in 

𝑓𝑛 = 𝐺𝑛(𝑥)𝑦𝑘3 . 

Since 𝑓𝑛 is polynomial then 𝐺𝑛(𝑥) must be a 

polynomial, and 𝑘3 ∈ ℕ ∪ {0}. 

The computation of the terms of 𝑧𝑛 in Eq. (9) leads 

to 

𝑦 
𝜕𝑓𝑛−1

𝜕𝑦
+ 𝑦 

𝜕𝑓𝑛

𝜕𝑥
− 𝑥 

𝜕𝑓𝑛

𝜕𝑦
+ (−1 − 𝑏 𝑥) 𝑛 𝑓𝑛

= 𝑘3 𝑓𝑛−1 +  (𝑘0 + 𝑘1 𝑥)𝑓𝑛. 
Substituting 𝑓𝑛 in the above equation it makes 

𝑦 
𝜕𝑓𝑛−1

𝜕𝑦
+ (𝑦𝑘3+1)

𝑑𝐺𝑛(𝑥)

𝑑𝑥
+ 𝑘3(−𝑥)𝐺𝑛(𝑥)𝑦𝑘3−1

+ (−1 − 𝑏 𝑥) 𝑛 𝐺𝑛(𝑥)𝑦𝑘3

= 𝑘3 𝑓𝑛−1 + (𝑘0 + 𝑘1 𝑥)𝐺𝑛(𝑥)𝑦𝑘3 , 

the solution of the above partial equation for 𝑓𝑛−1 

derives 

𝑓𝑛−1 =  (−𝑦 
𝑑𝐺𝑛(𝑥)

𝑑𝑥
−

𝑘3 𝑥 𝐺𝑛(𝑥)

𝑦

+ (𝑘0 + 𝑛
+ (𝑏 𝑛 + 𝑘1)𝑥)𝐺𝑛(𝑥)𝑙𝑛𝑦 

+ 𝐺𝑛−1(𝑥)) 𝑦𝑘3 , 

where  𝐺𝑛−1(𝑥) is a polynomial function of 𝑥. 

Since 𝑓𝑛−1 must be a polynomial then 
(𝑘0 + 𝑛 + (𝑏 𝑛 + 𝑘1)𝑥)𝐺𝑛(𝑥) ≡ 0. 

If 𝐺𝑛(𝑥) = 0, and (𝑘0 + 𝑛 + (𝑏 𝑛 + 𝑘1)𝑥) ≠ 0 

then 𝑓𝑛 = 0 so 𝑓 = 𝑓0(𝑥, 𝑦), then Eq. (2) leads to  

𝑦 
𝜕𝑓0

𝜕𝑥
+ (𝑦𝑧 − 𝑥)

𝜕𝑓0

𝜕𝑦
=  (𝑘0 + 𝑘1𝑥 + 𝑘3𝑧) 𝑓0 

Compute the coefficients of 𝑧𝑖  , 𝑖 = 0,1  results in 

the following equations: 

𝑖 = 1:    𝑦 
𝜕𝑓0

𝜕𝑦
=  𝑘3𝑧 𝑓0                                        (10) 

𝑖 = 0:    𝑦 
𝜕𝑓0

𝜕𝑥
− 𝑥 

𝜕𝑓0

𝜕𝑦
=  (𝑘0 + 𝑘1𝑥)𝑓0             (11)  

Eq. (10) derives 𝑓0 = 𝐺0(𝑥) 𝑦𝑘3 , where 𝐺0 denotes 

a polynomial of 𝑥 only. 

After substituting 𝑓0 = 𝐺0(𝑥) 𝑦𝑘3  from Eq. (11) and 

solving it results in 

𝐺0(𝑥) = 𝑐 𝑒
𝑥 (2 𝑦 𝑘0+𝑥 𝑦 𝑘1+𝑥 𝑘3)

2 𝑦2 . 
Which is a contradiction as 𝐺0(𝑥) signifies a 

polynomial function of 𝑥 only, then must be 
(𝑘0 + 𝑛 + (𝑏 𝑛 + 𝑘1)𝑥) ≡ 0. 

Hence the conclusion can be 

𝑘0 = −𝑛 and 𝑘1 = −𝑛 𝑏, 𝑘3, 𝑛 ∈ ℕ. 

Thus, completing the proof of lemma. □ 

Theorem 2.3. System (1) has only one irreducible 

Darboux polynomial expressed as 𝑧 with the 

cofactor  −1 − 𝑏𝑥  only when 𝑎 = 0. 

Proof. Lemmas 2.1 and 2.2, reaches to 𝑘2 = 0, 

𝑘0 = −𝑛 and 𝑘1 = −𝑛 𝑏, then the cofactor in Eq. 

(3) becomes  

𝐾 = −𝑛 − 𝑛 𝑏 𝑥 + 𝑘3𝑧,   𝑘3, 𝑛 ∈ ℕ.    (12) 

Now presenting the weight change of variables for 

simplicity in the computation: 

𝑥 = 𝑋 , 𝑦 = 𝑌 , 𝑧 = 𝜆−1𝑍 , 𝑡 = 𝜆𝑇, and 𝜆 ∈ ℝ\{0}, 

then system (1) becomes 

𝑋̇ = 𝜆𝑌 , 𝑌̇ = −𝜆𝑋 + 𝑌𝑍, 
𝑍̇ = −𝜆𝑍 − 𝑎𝜆2𝑋𝑌 − 𝑏𝜆𝑋𝑍,   (13) 

where the primes denote the derivative relating to 𝑇. 

Based on the assumption that 𝑓 is a Darboux 

polynomial of system (1) with cofactor 𝐾 given in 

Eq. (12). By using the transformation (13) and 

setting 

𝐹(𝑋, 𝑌, 𝑍) = 𝜆𝑛𝑓(𝑋, 𝑌, 𝜆−1𝑍), where 𝑛 is the 

degree of 𝑓 and 

 𝐾 = 𝜆𝐾(𝑋, 𝑌, 𝜆−1𝑍) = −𝜆𝑛 − 𝜆𝑛𝑏𝑋 + 𝑘3𝑍 . 
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The equation 𝐹 = ∑ 𝜆𝑖𝐹𝑛−𝑖
𝑛
𝑖=0  is assumed, where 𝐹𝑖 

denotes a homogenous polynomial depends on the 

variables 𝑋, 𝑌 and 𝑍 with degree 𝑛 − 𝑖 for 𝑖 =
0,1, … , 𝑛. 

The definition of Darboux polynomial can derive 

𝜆𝑌  ∑ 𝜆𝑖
𝜕𝐹𝑖

𝜕𝑋

𝑛

𝑖=0

+ (−𝜆𝑋 + 𝑌𝑍) ∑ 𝜆𝑖
𝜕𝐹𝑖

𝜕𝑌

𝑛

𝑖=0

+ (−𝜆𝑍 − 𝑎𝜆2𝑋𝑌

− 𝑏𝜆𝑋𝑍) ∑ 𝜆𝑖
𝜕𝐹𝑖

𝜕𝑍

𝑛

𝑖=0

= (−𝜆𝑛 − 𝜆𝑛𝑏𝑋

+ 𝑘3𝑍) ∑ 𝜆𝑖𝐹𝑖

𝑛

𝑖=0

.                  (14) 

Equating the terms with 𝜆𝑖 for 𝑖 = 0,1, … , 𝑛 + 2. 

Computing the coefficients of 𝜆0 in Eq. (14) leads 

to 

(𝑌𝑍)
𝜕𝐹0

𝜕𝑌
= (𝑘3𝑍)𝐹0. 

From solving the above differential equation results 

in 

𝐹0 = 𝑊0(𝑋, 𝑍)𝑌𝑘3 ,                (15) 

where 𝑊0 is a polynomial function. 

Now computing the coefficients of 𝜆 in Eq. (14) 

results in 

(𝑌𝑍)
𝜕𝐹1

𝜕𝑌
+ (𝑌)

𝜕𝐹0

𝜕𝑋
+ (−𝑋)

𝜕𝐹0

𝜕𝑌

+ (−𝑍 − 𝑏𝑋𝑍)
𝜕𝐹0

𝜕𝑍
= 𝑘3𝑍𝐹1 + (−𝑛 − 𝑛𝑏𝑋)𝐹0. 

Solving the above differential equation results in 

𝐹1 = ((𝑍 
𝜕𝑊0(𝑋, 𝑍)

𝜕𝑍

− 𝑛 𝑊0(𝑋, 𝑍))
(𝑏𝑋 + 1)

𝑍
𝑙𝑛(𝑌)

−
𝑌

𝑍

𝜕𝑊0(𝑋, 𝑍)

𝜕𝑋
−

𝑘3 𝑋

𝑌𝑍
𝑊0(𝑋, 𝑍)

+ 𝑊1(𝑋, 𝑍)) 𝑌𝑘3 , 

where 𝑊1 is a polynomial function of 𝑋 and 𝑍. 

So, since 𝐹1(𝑋, 𝑌, 𝑍) is a homogenous polynomial 

of degree 𝑛 − 1, then must be 

𝑍 
𝜕𝑊0(𝑋,𝑍)

𝜕𝑍
− 𝑛 𝑊0(𝑋, 𝑍) = 0. 

Solving the above differential equation results in     

𝑊0(𝑋, 𝑍) = 𝑊0(𝑋)𝑍𝑛. 

Substitute 𝑊0(𝑋, 𝑍) = 𝑊0(𝑋)𝑍𝑛 from Eq. (15) 

leads to 

𝐹0 = 𝑊0(𝑋)𝑍𝑛𝑌𝑘3 . 
But 𝐹0 is of degree 𝑛 then must be 𝑘3 = 0   and   

𝑊0(𝑋) = 𝑐, where 𝑐 is a constant.  

So 𝐹0 = 𝑐𝑍𝑛 and 𝐹1 = 𝑊1(𝑋, 𝑍). 

Now computing the terms of 𝜆2 in Eq. (14) leads to 

(𝑌𝑍)
𝜕𝐹2

𝜕𝑌
+ (𝑌)

𝜕𝐹1

𝜕𝑋
+ (−𝑋)

𝜕𝐹1

𝜕𝑌

+ (−𝑍 − 𝑏𝑋𝑍)
𝜕𝐹1

𝜕𝑍
− 𝑎𝑋𝑌

𝜕𝐹0

𝜕𝑍
 

= (−𝑛 − 𝑛𝑏𝑋)𝐹1. 
So  

𝐹2 = (𝑍 
𝜕𝐹1(𝑋, 𝑍)

𝜕𝑍
− 𝑛 𝐹1(𝑋, 𝑍))

(𝑏𝑋 + 1)

𝑍
𝑙𝑛(𝑌)

−
𝑌

𝑍

𝜕𝐹1(𝑋, 𝑍)

𝜕𝑋
− 𝑐 𝑛 𝑎𝑋𝑌𝑍𝑛−2

+ 𝑊2(𝑋, 𝑍). 
Since 𝐹2 is a polynomial of degree 𝑛 − 2, then must 

𝑎 = 0 and  𝑍 
𝜕𝐹1(𝑋,𝑍)

𝜕𝑍
− 𝑛 𝐹1(𝑋, 𝑍) = 0,  

hence   𝐹1(𝑋, 𝑍) = 𝑊1(𝑋)𝑍𝑛. 

But 𝐹1(𝑋, 𝑍) is a polynomial of degree 𝑛 − 1 then 

must be 𝑊1(𝑋) = 0. 

Then  𝐹1(𝑋, 𝑍) = 0 

By mathematical induction suppose that  𝐹𝑚−1 =
𝐹𝑚−1(𝑋, 𝑍), where 0 < 𝑚 − 1 < 𝑛  

Now computing the terms of 𝜆𝑚 in Eq. (14) leads to 

(𝑌𝑍)
𝜕𝐹𝑚

𝜕𝑌
+ (𝑌)

𝜕𝐹𝑚−1

𝜕𝑋
+ (−𝑋)

𝜕𝐹𝑚−1

𝜕𝑌

+ (−𝑍 − 𝑏𝑋𝑍)
𝜕𝐹𝑚−1

𝜕𝑍
 

= (−𝑛 − 𝑛𝑏𝑋)𝐹𝑚−1. 
So  

𝐹𝑚 = (𝑍 
𝜕𝐹𝑚−1(𝑋, 𝑍)

𝜕𝑍

− 𝑛 𝐹𝑚−1(𝑋, 𝑍))
(𝑏𝑋 + 1)

𝑍
𝑙𝑛(𝑌)

−
𝑌

𝑍

𝜕𝐹𝑚−1(𝑋, 𝑍)

𝜕𝑋
+ 𝑊𝑚(𝑋, 𝑍). 

Since 𝐹𝑚 is a polynomial of degree 𝑚, then must be 

𝑍 
𝜕𝐹𝑚−1(𝑋, 𝑍)

𝜕𝑍
− 𝑛 𝐹𝑚−1(𝑋, 𝑍) = 0, 

hence   𝐹𝑚−1(𝑋, 𝑍) = 𝑊𝑚−1(𝑋)𝑍𝑛. 

But 𝐹𝑚−1(𝑋, 𝑍) is a polynomial of degree 𝑚 − 1 

then must be 𝑊𝑚−1(𝑋) = 0. 

Then  𝐹𝑚−1(𝑋, 𝑍) = 0. 

Hence mathematical induction 𝐹𝑖(𝑋, 𝑌, 𝑍) =
𝑊𝑖(𝑋)𝑍𝑛 = 0 for 𝑖 = 1, … , 𝑛 

Hence   𝐹 = 𝑐𝑧𝑛 with the cofactor  𝐾 = −𝑛 − 𝑛𝑏𝑥. 

The proof of Theorem 2.3 is completed here. □ 

 

Theorem 2.4. System (1) has no first integrals of 

polynomials. 

Proof. Here, 𝐻 is assumed to be a polynomial first 

integral of system (1). Without the loss of generality 

it can be supposed that it has no constant term. Then 

𝐻 satisfies Eq. (4). 𝐻 can be written as 

 𝐻(𝑥, 𝑦, 𝑧) = ∑ ℎ𝑖(𝑥, 𝑦)𝑧𝑖𝑛
𝑖=0 , where each ℎ𝑖 

denotes a polynomial depends on 𝑥 and 𝑦 only. 

From Eq. (4), the terms of 𝑧𝑛+1 match 
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𝑦
𝜕ℎ𝑛

𝜕𝑦
=  0, that is ℎ𝑛 = ℎ𝑛(𝑥), where ℎ𝑛(𝑥) 

denotes a polynomial depends on 𝑥.  

Through computation of the terms of 𝑧𝑛 in Eq. (4), 

the following can be generated: 

𝑦 
𝜕ℎ𝑛−1

𝜕𝑦
+ 𝑦 

𝜕ℎ𝑛

𝜕𝑥
− 𝑥

𝜕ℎ𝑛

𝜕𝑦
− (1 + 𝑏𝑥)𝑛 ℎ𝑛 = 0, 

Solving the above partial differential equation for 

ℎ𝑛−1 leads to 

ℎ𝑛−1 =  −𝑦 
𝑑ℎ𝑛

𝑑𝑥
+ (1 + 𝑏𝑥)𝑛 ℎ𝑛 𝑙𝑛𝑦

+ 𝐺𝑛−1(𝑥),   (16) 

where 𝐺𝑛−1(𝑥) denotes a polynomial in the variable 

𝑥. 

Since ℎ𝑛−1 signifies a polynomial then from Eq. 

(16) must be   𝑛 ℎ𝑛(𝑥) = 0. 

The following cases can be considered. 

Case 1. If 𝑛 = 0, that is   𝐻 = ℎ0(𝑥, 𝑦). Imposing 

that 𝐻 = ℎ0(𝑥, 𝑦) satisfies Eq. (4) and computing 

the coefficients of   𝑧𝑖, for 𝑖 = 0,1 in Eq. (4) results 

in 

for i=1 

𝑦  
𝜕ℎ0(𝑥, 𝑦)

𝜕𝑦
= 0. 

Solving the above equation leads to ℎ0(𝑥, 𝑦) =
ℎ0(𝑥). 

For i=0 

𝑦 
𝜕ℎ0(𝑥)

𝜕𝑥
= 0. 

Solving the above equation leads to ℎ0(𝑥) = 𝑐, 

where 𝑐 is a constant. This is contradiction.  

This completes the proof. 

Case 2. If ℎ𝑛(𝑥) = 0 , then ℎ𝑛 = 0, this means that 

𝐻 = ℎ0(𝑥, 𝑦). 

The arguments of the proof for this case is similar 

also to case 1.□  

 

Theorem 2.5. For System (1) there is no first 

integrals of rational type. 

Proof. Based on the Propositions 1.1 and 1.2. 

system (1) has a rational first integral if it has a 

polynomial first integral or it has two Darboux 

polynomials with the same cofactor. But by 

Theorems 2.3 and 2.4, system (1) does not have any 

polynomial first integrals and it has only one 

Darboux polynomial. 

Thus system (1) has no rational first integral. This 

completes the proof.□ 

 

Theorem 2.6. The next two statements hold for 

system (1). 

a) For 𝑎 ≠ 0, the distinctive independent 

exponential factors of the autonomous 

system (1) is 𝑒𝑥 , with the cofactor 𝑦, with 

an exception if 𝑏 = 0 an extra exponential 

factor 𝑒−
𝑎

2
𝑥2−𝑧

 can be derived with cofactor 

𝑧.  

b) For 𝑎 = 0, the exclusive independent 

exponential factors of system (1) is 𝑒𝑥 ,  with 

the cofactor 𝑦, with the exception of 𝑏 = 0 

then an extra exponential factor 𝑒−𝑧 can be 

derived with cofactor 𝑧. 

Proof. (a) Let 𝐹 = 𝑒
𝑔

ℎ be an exponential factor of 

system (1) with cofactor 𝐿, where 𝑔, ℎ ∈ ℂ[𝑥, 𝑦, 𝑧] 
with (𝑔, ℎ) = 1.  

Now, taking into consideration Theorem 

2.3 and Proposition 2.4, ℎ is a constant, put ℎ = 1. 

Thus 𝐹 = 𝑒𝑔 and 𝑔 satisfies Eq. (6) 

𝑦 
𝜕𝑒𝑔

𝜕𝑥
+ (𝑦 𝑧 − 𝑥)

𝜕𝑒𝑔

𝜕𝑦

+ (−𝑧 − 𝑎 𝑥 𝑦 − 𝑏 𝑥 𝑧)
𝜕𝑒𝑔

𝜕𝑧
=  𝐿𝑒𝑔. 

The above equation becomes 

𝑦 
𝜕𝑔(𝑥,𝑦,𝑧)

𝜕𝑥
+ (𝑦 𝑧 − 𝑥)

𝜕𝑔(𝑥,𝑦,𝑧)

𝜕𝑦
− (𝑧 + 𝑎 𝑥 𝑦 +

𝑏 𝑥 𝑧)
𝜕𝑔(𝑥,𝑦,𝑧)

𝜕𝑧
=  𝐿,    (17)  

where 𝐿 = 𝑑0 + 𝑑1𝑥 + 𝑑2𝑦 + 𝑑3𝑧    (18). 

Here, 𝑔 is written by way of a polynomial in the 

variable of 𝑧 in the formula 𝑔(𝑥, 𝑦, 𝑧) =
∑ 𝑔𝑖(𝑥, 𝑦)𝑧𝑖𝑛

𝑖=0 , where each 𝑔𝑖 denotes a 

polynomial only in 𝑥 and 𝑦. 

First, assume that 𝑛 > 1. 

Compute the coefficients in Eq. (17) of 𝑧𝑛+1 leads 

to 

𝑦 
𝜕𝑔𝑛

𝜕𝑦
= 0 that is 𝑔𝑛(𝑥, 𝑦) = 𝐺𝑛(𝑥), where 𝐺𝑛(𝑥) 

denotes a polynomial of 𝑥. 

Now compute the coefficients in Eq. (17) of 𝑧𝑛 

results in 

𝑦 
𝜕𝑔𝑛−1

𝜕𝑦
+

𝑑𝑔𝑛

𝑑𝑥
+ (−1 − 𝑏 𝑥)𝑛 𝑔𝑛 = 0. 

The solution of above equation is  

𝑔𝑛−1 = −𝑦
𝑑𝑔𝑛

𝑑𝑥
+ (1 + 𝑏 𝑥) 𝑛 𝑔𝑛𝑙𝑛𝑦 + 𝐺𝑛−1(𝑥), 

where 𝐺𝑛−1(𝑥) denotes a polynomial of 𝑥. 

Since 𝑔𝑛−1 is a polynomial then must be 𝑔𝑛 = 0. 

Therefore  𝑔(𝑥, 𝑦, 𝑧) = 𝑔0(𝑥, 𝑦) + 𝑔1(𝑥, 𝑦)𝑧. 

Equation (17) becomes 

𝑦 
𝜕(𝑔0 + 𝑔1𝑧)

𝜕𝑥
+ (𝑦 𝑧 − 𝑥)

𝜕(𝑔0 + 𝑔1𝑧)

𝜕𝑦
+ (−𝑧

− 𝑎𝑥𝑦 − 𝑏 𝑥 𝑧) 
𝜕(𝑔0 + 𝑔1𝑧)

𝜕𝑧
=  𝐿 

Compute the coefficients of  𝑧𝑖 , 𝑖 = 0,1,2 , the 

following equations will obtain: 

i=2: 𝑦 
𝜕𝑔1(𝑥,𝑦)

𝜕𝑦
= 0,                                               (19)   

i=1: 𝑦 
𝑑𝑔1

𝑑𝑥
+ 𝑦 

𝜕𝑔0

𝜕𝑦
+ (−1 − 𝑏 𝑥) 𝑔1 = 𝑑3,     (20)  
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i=0: 𝑦 
𝜕𝑔0

𝜕𝑥
+ (−𝑥)

𝜕𝑔0

𝜕𝑦
+ (−𝑎𝑥𝑦) 

𝜕𝑔0

𝜕𝑧
− 𝑏 𝑥 𝑔1 =

𝑑0 + 𝑑1𝑥 + 𝑑2𝑦.                                           (21)  

From Eq. (19) results   𝑔1(𝑥, 𝑦) = 𝑔1(𝑥), where 

𝑔1(𝑥) is a polynomial of 𝑥. 

Solving Eq. (20) leads to 

𝑔0(𝑥, 𝑦) = −𝑦 
𝑑𝑔1

𝑑𝑥
+ (𝑔1 + 𝑏 𝑥 𝑔1 + 𝑑3)𝑙𝑛𝑦 +

𝐹(𝑥), where 𝐹(𝑥) is a polynomial of 𝑥. 

Since 𝑔0 is a polynomial then must be 𝑔1 +
𝑏 𝑥 𝑔1 + 𝑑3 = 0. 

Then 𝑔1(𝑥) =
−𝑑3

1+𝑏 𝑥
     (22) 

Case 1. If 𝑏 ≠ 0 then from Eq. (22) must be 

𝑔1(𝑥) = 𝑑3 = 0 , so 𝑔0(𝑥, 𝑦) = 𝑔0(𝑥). 

Now from solving the differential equation (21) 

leads to 

 𝑔0(𝑥) =
𝑑1𝑥2

2 𝑦
+ 𝑑2𝑥 +

𝑑0𝑥

𝑦
+ 𝑐. 

Since 𝑔0 must be a polynomial, then must be  

𝑑0 = 𝑑1 = 0. 

Hence 𝑔(𝑥, 𝑦, 𝑧) = 𝑐 + 𝑑2𝑥 with the cofactor   

 𝐿 = 𝑑2𝑦. 

Case 2. For the case of 𝑏 = 0 then from Eq. (22),  

𝑔1(𝑥) = −𝑑3, so 𝑔0(𝑥, 𝑦) = 𝑔0(𝑥). 

Solving Eq. (21) leads to 

 𝑔0(𝑥) =
−1

2
𝑎 𝑑3𝑥2 +

𝑑1𝑥2

2 𝑦
+ 𝑑2𝑥 +

𝑑0𝑥

𝑦
+ 𝑐. 

Since 𝑔0 must be a polynomial, then must be 

𝑑0 = 𝑑1 = 0. 

Hence 𝑔(𝑥, 𝑦, 𝑧) =
−1

2
𝑎 𝑑3𝑥2 + 𝑑2𝑥 − 𝑑3𝑧 + 𝑐 

with the cofactor 𝐿 = 𝑑2 𝑦 + 𝑑3 𝑧. 

This conclude the proof. □ 

Proof. (b) It can be noted that in view of 

Proposition 1.4 and Theorem 2.3, when 𝑎 = 0 the 

exponential factors of system (1) has the form 

𝐸 = 𝑒
𝑔

𝑧𝑠 for some non-negative integer 𝑠, and 

𝑔 ∈ ℂ[𝑥, 𝑦, 𝑧] is a polynomial of 𝑥, 𝑦, and 𝑧, such 

that 𝑔 and 𝑧𝑠 are prime. Then from Theorem 2.3 

and that 𝐸 satisfies the following partial differential 

equations depending on the definition of 

exponential factor  

𝑦 
𝜕

𝜕𝑥
(𝑒

𝑔
𝑧𝑠) + (𝑦 𝑧 − 𝑥)

𝜕

𝜕𝑦
(𝑒

𝑔
𝑧𝑠)

+ (−𝑧 − 𝑏 𝑥 𝑧)
𝜕

𝜕𝑧
(𝑒

𝑔
𝑧𝑠) =  𝐿 𝑒

𝑔
𝑧𝑠 , 

where 𝐿 defined in Eq. (18). 

After simplifying the above equation, it becomes 

𝑦 
𝜕𝑔(𝑥,𝑦,𝑧)

𝜕𝑥
+ (𝑦 𝑧 − 𝑥)

𝜕𝑔(𝑥,𝑦,𝑧)

𝜕𝑦
− 𝑧(1 +

𝑏 𝑥)
𝜕𝑔(𝑥,𝑦,𝑧)

𝜕𝑧
+ 𝑠 (1 + 𝑏 𝑥) 𝑔(𝑥, 𝑦, 𝑧) =

 𝐿 𝑧𝑠         (23)  

Case 1. for 𝑠 ≥ 1, in this situation, denoting the 

restriction of 𝑔 to 𝑧 = 0 by 𝑔̃ in Eq. (23), it can be 

derived that 𝑔̃ ≠ 0 (if not, 𝑔 would become 

divisible by 1 + 𝑏𝑧, which is impossible or 

illogical) and 𝑔̃ satisfies  

𝑦 
𝜕𝑔̃(𝑥,𝑦)

𝜕𝑥
+ (−𝑥)

𝜕𝑔̃(𝑥,𝑦)

𝜕𝑦
+ 𝑠 (1 + 𝑏 𝑥) 𝑔̃(𝑥, 𝑦) = 0.             

Solving the above linear differential equation results 

in 

𝑔̃(𝑥, 𝑦) = 𝐹(𝑥2 + 𝑦2)𝑒
−𝑠(−𝑏 𝑦+tan−1𝑥

𝑦
)
  

but 𝑠 ≠ 0 that is 𝑔̃(𝑥, 𝑦) = 0 which is contradiction 

and this case is illogical. 

Case 2. For 𝑠 = 0, thus 𝐸 = 𝑒𝑔, where 𝑔 ∈
ℂ[𝑥, 𝑦, 𝑧] is a polynomial of degree 𝑛 ∈ ℕ. 

From Theorem (2.6.a) put 𝑎 = 0 results in 

𝑔(𝑥, 𝑦, 𝑧) = (𝑐 + 𝑑2𝑥) − 𝑑3𝑧 with the cofactor 

𝐿 = 𝑑2 𝑦 + 𝑑3𝑧 . 

This completes the proof. □ 

 

Theorem 2.7. For System (1) there is no Darboux 

first integrals for any arbitrary values of 𝑎 𝑎𝑛𝑑 𝑏. 

Proof. Based on Theorem 1.6, the system (1) 

contains a Darboux first integral if and only if 

𝜆𝑖  and 𝜇𝑗 ∈ ℂ exists and not all zero where Eq. (7) 

is satisfied, and where 𝑝  represents the numbers of 

Darboux polynomials, and 𝑞 represents the number 

of exponential factors.  

It is consistent with Theorems 2.3 and 2.6 the 

following cases: 

1) When 𝑎, 𝑏 ≠ 0, by Theorem 2.3 system (1) 

has no Darboux polynomial and by 

Theorem 2.6.a there is only one cofactor of 

the form 𝐿1 = 𝑑2 𝑦. Thus Eq. (7) becomes 

𝜇1𝑦 = 0. Solving this equation, 𝜇1 = 0 was 

obtained. 

2)  When 𝑎 ≠ 0, and 𝑏 = 0 by Theorem 2.3 

system (1) has no Darboux polynomial and 

by Theorem 2.6.a there are two cofactors of 

the form 𝐿1 = 𝑑2 𝑦 and 𝐿2 = 𝑑3 𝑧 . Thus 

Eq. (7) becomes 𝜇1𝑦 + 𝜇2𝑧 = 0. Solving 

this equation leads to 𝜇1 = 𝜇2 = 0. 

3) When 𝑎 = 0, and 𝑏 ≠ 0 by Theorem 2.3 

system (1) has one Darboux polynomial 

with cofactor 𝐾1 = −1 − 𝑏𝑥 and by 

Theorem 2.6.b there is one cofactor of the 

form 𝐿1 = 𝑑2 𝑦. Thus Eq. (7) becomes 

𝜆1(−1 − 𝑏𝑥) + 𝜇1𝑧 = 0. Solving this 

equation leads to 𝜆1 = 𝜇1 = 0. 

4) When 𝑎 = 𝑏 = 0 by Theorem 2.3 system 

(1) has one Darboux polynomial with 

cofactor 𝐾1 = −1 and by Theorem 2.6.b 

there are two cofactors of the form 𝐿1 =
𝑑2 𝑦 and 𝐿2 = 𝑑3 𝑧 . Thus Eq. (7) becomes 

𝜆1(−1) + 𝜇1𝑦 + 𝜇2𝑧 = 0. Solving this 

equation leads to 𝜆1 = 𝜇1 = 𝜇2 = 0. 

This completes the proof. □ 

 

Theorem 2.8. System (1) has no analytic first 

integrals for any arbitrary values of 𝑎 and 𝑏 in a 

neighborhood located at the origin. 
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Proof. Since the origin is a unique equilibrium 

point of system (1), then the Jacobian matrix at 

(0,0,0) of system (1) is  

𝐽 = [
0 1 0

−1 0 0
0 0 −1

]. 

A characteristic equation of 𝐽 is 

𝑝(𝜆) = 𝜆3 + 𝜆2 + 𝜆 + 1 = 0. 
Then the eigenvalues of 𝐽 are 𝜆1 = −1, 𝜆2 =
𝑖, and 𝜆3 = −𝑖. 
Since there is not exist 𝑘1, 𝑘2, and 𝑘3 positive 

integers such that 

𝑘1𝜆1 + 𝑘2𝜆2 + 𝑘3𝜆3 = 0 and 𝑘1 + 𝑘2 + 𝑘3 > 0, 
hence by Theorem 1.3 it follows the result of 

Theorem 2.8. □ 

 

Conclusion: 
By the end of this paper the following 

conclusions are achieved; first is that the system (1) 

has only one invariant algebraic surface −1 − bx =
 0 only when a = 0 (refers to Theorem 2.3). 

Secondly, the system (1) does not have polynomial, 

rational and Darboux first integral (refer to 

Theorem 2.4, 2.5 & 2.7). Finally, it has been shown 

that it has no analytic first integral in the 

neighborhood of the origin (refers to Theorem 2.8). 
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 الخلاصة:
ان  وضحنا. حيث  Sprott ET9 بوكس لتعميم النظام الفوضوي الثلاثي الابعادرفي هذا البحث تم دراسة التكامل الاول من نوع دا

وكس بدارحدود  . كما استطعنا ابجاد متعددة b و aللتكامل الاول لاي قيمتين بوكس روالدا ةكسرية, تحليلي متعددة حدود . دالة لايمتلك نظامال

 المتجانسة التي ساعدتنا في برهان الطريقة. لهذا النظام بقرب المفكوك الاسي. باستخدام وزن متعددة الحدود
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