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Abstract: 
       In this paper, a fixed point theorem of nonexpansive mapping is established to study the existence and 

sufficient conditions for the controllability of nonlinear fractional control systems in reflexive Banach 

spaces. The result so obtained have been modified and developed in arbitrary space having Opial’s condition 

by using fixed point theorem deals with nonexpansive mapping defined on a set has normal structure. An 

application is provided to show the effectiveness of the obtained result. 
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Introduction:     
     Many systems in physics, chemistry, biology, 

stochastic, and control theory are represented by 

fractional control systems (FCS). For more details 

on (FCS) in the control theory one can see, 

Balachandran and Kokila (1), AL-Jawari and 

Shaker (2), Li Ding and Nieto (3), Lizzy and 

Balachandran (4). 

     One of the important topics in the study (FCS) in 

the control theory is controllability and it means that 

it is possible to transfer a (FCS) from an arbitrary 

initial state to an arbitrary final state by using the 

admissible controls. Thus controllability plays an 

important role in the analysis and design of these 

systems, see references (1- 6). 

     To study the result of the controllability of 

(FCS), some techniques of nonlinear functional 

analysis are used such as, fixed point theorems. 

Lizzy and Balachandran in (4) studied the 

controllability of stochastic fractional system in 

Hilbert spaces (HS) by using the Banach 

contraction mapping theory. Li Ding and Nieto in 

(3) discussed the controllability of (FCS) using 

Schauder’s fixed point theory. 

     Since every (HS) are reflexive Banach space 

(RBS) and the contraction mapping is nonexpansive 

mapping, but the converse in general is not true (7) 

(also see section 2 of this paper), thus the purpose 

of this paper is to study the controllability of (FCS) 

in arbitrary (RBS) by using fixed point theorem that 

deals with nonexpansive mapping. The rest of this 

article is organized as follows. In section 2, 

preliminaries are given to study the solutions of 

(FCS) and then to prove the main result (theorem 4) 

in section 3. In section 4, an application is presented 

to illustrate the value of the obtained results.  

 

Preliminaries and (FCS): 

     In this section, the solution of linear and 

nonlinear (FCS) is explored and present some 

definitions with theorems that will be used in the 

prove the main result of controllability (theorem 4) 

in section 3.  

Definition 1 (8): Let 𝑌 be a self mapping on a 

normed space 𝑋, such that                                         :  

‖𝑌(𝑥1) − 𝑌(𝑥2)‖ ≤ 𝜆‖𝑥1 − 𝑥2‖ for all  𝑥1 , 𝑥2  ∈
𝑋. Then 𝑌 is contraction if 𝜆 < 1, and 𝑌 is 

nonexpansive  if  𝜆 ≤ 1. 

It can be shown that, a contraction mapping is 

nonexpansive and isometry mapping is 

nonexpansive but not contraction, see (8). 

Definition 2 (9): Let X be a Banach space such 

that, if  ∀  𝑥 ∈ 𝑋 and ∀sequence {𝑥𝑛} converges 

weakly to 𝑥,then  

lim𝑛→∞ 𝑖𝑛𝑓‖𝑥𝑛 − 𝑧‖ > lim𝑛→∞ 𝑖𝑛𝑓‖𝑥𝑛 −
𝑥‖, holds ∀𝑧 ≠ 𝑥. Thus the space  𝑋 satisfies 

Opial’s condition. 

Every finite dimensional Banach space, (Hilbert 

space) 𝐿𝑝 for 𝑝 = 2 and  𝑙𝑝 spaces for 1 < 𝑝 < ∞  

are satisfies Opial’s condition, see (9). 
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Definition 3 (7): A subset 𝑊 of a normed space 𝑋 

is called weakly compact if every sequence 
{𝑥𝑛} in 𝑊 contains a subsequence which converges 

weakly in  𝑊. 

For example, every nonempty, closed, convex and 

bounded subset of (RBS) is weakly compact see  

(8-9). 

Definition 4 (8): Let 𝑊 be nonempty, closed, 

convex and bounded subset of the Banach space 𝑋. 

Let a point   x ∈ 𝑊, such that  𝑠𝑢𝑝 { ‖𝑥 − 𝑤‖ ∶
 𝑤 ∈ 𝑊} = 𝑑𝑖𝑎𝑚 𝑊, then 𝑥 is called a diametral. 

Also, 𝑊 has normal structure, if for each nonempty, 

convex 𝐾 ⊆ 𝑊 with diam 𝐾 > 0, there exist a point  

𝑥 ∈ 𝐾 which is not diametral. 

Example 1 (8): Every compact convex set in a 

Banach space has normal structure. And every 

nonempty, closed, convex and bounded subset of 

uniformly convex Banach space has normal 

structure.  

Also Opial’s condition implies normal structure, see 

(10). 

Theorem 1 (7): Every contraction mapping of a 

Banach space into itself has a unique fixed point. 

Theorem 2 (8, 11): Let 𝑌 be nonexpansive from 

𝑊into 𝑊, where 𝑊 is a nonempty weakly compact 

convex subset having a normal structure in a 

Banach space 𝑋, then 𝑌 has fixed point in 𝑊.  

Remark 1: The convexity assumption in theorem 2, 

is very important, because the nonexpansive map on 

a non-convex set in Banach space may be has no 

fixed point. For example:  

Take 𝑊 = [−2, −1] ∪ [1, 2] ⊂ 𝑅 and 𝑌: 𝑊 → 𝑊 

by 𝑌(𝑥) = −𝑥, 𝑥 ∈ 𝑊, then 𝑌 is nonexpansive, but  

𝑌  has no fixed points in 𝑊, 𝑠𝑒𝑒 (11). 
     Here, the solutions of linear and nonlinear (FCS) 

are discussed. Suppose that, 𝜂, 𝛼 > 0, with 𝑛 − 1 <
𝜂 < 𝑛, 𝑛 − 1 < 𝛼 < 𝑛 and 𝑛 ∈ 𝑁, [0, ℎ] ⊂ 𝑅. Let 

𝐹 = 𝑅𝑛 and 𝐻 = 𝑅𝑚 be the 𝑛 and m-dimensional 

Euclidean spaces. 

Throughout this paper, the fractional derivative is 

taken in the Caputo sense and for brevity let us 

denote the Caputo fractional derivative by 𝐷𝜂, for 

more details of properties to 𝐷𝜂, see (12). 

Now, consider the linear control system represented 

by a (FCS) of the form 

 

𝐷𝜂𝑧(𝑡) = 𝑂𝑧(𝑡) + 𝐵𝑢(𝑡), 𝑡 ∈ 𝐼 = [0, ℎ], 
               𝑧(0) = 𝑧0                                                 (1) 
 

where 0 < 𝜂 < 1, the state vector 𝑧(𝑡) ∈ 𝐹, the 

control vector 𝑢(𝑡) ∈ 𝐻 and 𝑂 with 𝐵 are matrices 

of dimensions 𝑛 × 𝑛 , 𝑛 × 𝑚 respectively. 

The solution of the system Eq.1 can be obtained by 

using the method of successive approximation, see 

(12) and given by the following formula 

𝑧(𝑡) =  𝐸𝜂(𝑂𝑡𝜂)𝑧0 + ∫ (𝑡 − 𝑠)𝜂−1𝑡

0
𝐸𝜂,𝜂(𝑂(𝑡 −

               𝑠)𝜂)𝐵𝑢(𝑠)𝑑𝑠,                                         (2) 

where 𝐸𝜂,𝜂(𝑂𝑡𝜂)=∑
𝑂𝑖𝑡𝜂𝑖

Γ(𝜂𝑖+𝜂)
∞
𝑖=0   is the Mittag-Leffler 

function for a square matrix 𝑂 ∈ 𝑅𝑛×𝑛, with  

          𝐸𝜂,1(𝑂𝑡𝜂) = 𝐸𝜂(𝑂𝑡𝜂). 

The function 𝐸𝜂,𝜂(𝑂𝑡𝜂) is continuous and it satis-

fies ‖𝐸𝜂,𝜂(𝑂𝑡𝜂)‖ ≤ 𝑚 for all 𝑡 ∈ [0, ℎ]. 

Definition 5 (2) : If  ∀ 𝑧0, 𝑧1 ∈ 𝐹, ∃ a control 

𝑢 ∈ 𝐿2([0, ℎ], 𝐻) such that the solution of the Eq.1 

with        

 𝑧(0) = 𝑧0 also satisfies 𝑧(ℎ) =  𝑧1, then saying 

that the control system Eq.1 is controllable over 

[0, h]. 
The control 𝑢(t) is said to be admissible control, 

i.e., 𝑢(t) is transfer the trajectory from 𝑧0 to the 

final state 𝑧1. Thus the controllability of the control 

system Eq.1 is equivalent to finding 𝑢(𝑡) such that  

  𝑧1 = 𝑧(ℎ) = 𝐸𝜂(𝑂ℎ𝜂)𝑧0 + ∫ (ℎ − 𝑠)𝜂−1ℎ

0
 

           𝐸𝜂,𝜂(𝑂(ℎ − 𝑠)𝜂)𝐵𝑢(𝑠)𝑑𝑠.  

Equivalently, the system Eq.1 is controllable  ⟺ ∃ 

a control 𝑢 such that 

  𝑧1 − 𝐸𝜂(𝑂ℎ𝜂)𝑧0 = ∫ (ℎ − 𝑠)𝜂−1ℎ

0
𝐸𝜂,𝜂(𝑂(ℎ −

                                      𝑠)𝜂)𝐵𝑢(𝑠)𝑑𝑠                        (3) 

The above explanation leads to the following 

theorem. 

Theorem 3 (2): (Controllability Condition) The 

control system Eq.1 is controllable on [0, h] ⟺ the 

controllability Grammian 𝑤(0, ℎ) = ∫ (ℎ − 𝑠)𝜂−1 
ℎ

0
 

𝐸𝜂,𝜂(𝑂(ℎ − 𝑠)𝜂)𝐵𝐵∗𝐸𝜂,𝜂(𝐴∗(ℎ − 𝑠)𝜂)𝑑𝑠 is a non-

singular, where * denotes the matrix transpose. 

Now, consider the nonlinear control system 

represented by a (FCS) of the form 

𝐷𝜂𝑧(𝑡) = 𝑂𝑧(𝑡) + 𝐵𝑢(𝑡) + 𝐿(𝑡, 𝑃(𝑡, 𝑧(𝑡))) ,  
                        𝑡 ∈  𝐼 = [0, ℎ], 𝑧(0) = 𝑧0                 (4) 

where 𝜂 , 𝑧(t) , 𝑢(t) , O and 𝐵 be as defined in the 

control system Eq.1. The nonlinear operators 𝑃 and 

𝐿 are continuous from 𝐼 × 𝐹 into 𝐹 = 𝑅𝑛 and 

satisfy Lipschitz condition on the second argument.  

For 1 < 𝑛 ∈ 𝑁, suppose that 𝑄𝑛 a (RBS) of 

continuous functions defined from 𝐼 into 𝐹, with 

norm ‖. ‖. Thus, as above for the control system 

Eq.1, the solution to control system Eq.4 is given by 

the following form 

  𝑧(𝑡)= 𝐸𝜂(𝑂𝑡𝜂)𝑧0+∫ (𝑡 − 𝑠)𝜂−1𝑡

0
𝐸𝜂,𝜂(𝑂(𝑡 − 𝑠)𝜂) 

            × 𝐵𝑢(𝑠)𝑑𝑠+∫ (𝑡 − 𝑠)𝜂−1𝑡

0
𝐸𝜂,𝜂(𝑂(𝑡 − 𝑠)𝜂) 

            × 𝐿(𝑠, 𝑃(𝑠, 𝑧(𝑠))) ds                                  (5) 

 

Controllability of Nonlinear (FCS): 

       In this section, the controllability of solution to 

the nonlinear (FCS) Eq.4 in (RBS) by using fixed 

point theorem are discussed. 
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Definition 6: The control system Eq.4 is called 

controllable on I=[0,h] if  ∀ 𝑧0, 𝑧1 ∈ 𝑄𝑛, ∃ a control 

𝑢 ∈ 𝐿2([0, ℎ], 𝐻) such that the solution 𝑧(𝑡) in Eq.5 

satisfies 𝑧(0) = 𝑧0 and z(h)  =  z1. 
 

Here, suppose that 𝑤(𝑟) = {𝑧: 𝑧 ∈ 𝑄𝑛, 𝑧(0) =  z0,  
‖𝑧(𝑡)‖ ≤ 𝑟, ∀𝑡 ∈ 𝐼} where 𝑟 is a positive constant.  

Then 𝑤 is a closed, convex and bounded subset of 

𝑄𝑛. 

Since 𝑤(𝑟) is closed subset of a (RBS), then 𝑤(𝑟) 

is a (RBS), see (7).  

 

In order that control system Eq.4 makes sense 

throughout this paper, let 

    𝑚1 = 𝑠𝑢𝑝‖𝐸𝜂(𝑂𝑡𝜂)𝑧0‖, 

    𝑚2 = 𝑠𝑢𝑝‖𝐸𝜂,𝜂(𝑂(ℎ − 𝑡)𝜂)‖ 

and assume the following condition: 

[𝑎1] The nonlinear 𝑃 and 𝐿 in Eq.4 are continuous 

and there exist  positive constants 𝑚3 , 𝑚4  and 𝑚5 

such that for all 𝑧1 , 𝑧2 ∈ 𝑤(𝑟)  the following 

inequality hold 

‖𝐿(𝑡, 𝑃(𝑡, 𝑧1(𝑡))) − 𝐿(𝑡, 𝑃(𝑡, 𝑧2(𝑡)))‖ ≤
𝑚3‖𝑃(𝑡, 𝑧1(𝑡)) − 𝑃(𝑡, 𝑧2(𝑡))‖ ≤  

𝑚3𝑚4  ‖𝑧1(𝑡) − 𝑧2(𝑡)‖, 
also, let 𝑚5 = max𝑡∈𝐼‖𝐿(𝑡, 𝑃(𝑡, 0))‖ and   

               𝑚6 = max𝑡∈𝐼‖𝑧(𝑡)‖. 

 

Theorem 4 : Let 𝑄𝑛 be a (RBS) which satisfying 

Opial‘s condition and suppose that the condition 

[a1] is satisfied for the nonlinear control system 

Eq.4, with the control system Eq.1 is controllable 

on I. Further assume that  

 [𝑎2] Let 𝑟 = (𝑚1 + 𝑚2‖𝐵‖𝑘 + 𝑚2[𝑚3𝑚4𝑚6 +

𝑚5])(
ℎ𝜂

𝜂
),  

where, 𝑘 = ‖𝐵∗‖𝑚2‖𝑤−1‖{‖𝑧1‖𝑚1 +

                      𝑚2[𝑚3𝑚4𝑚6 + 𝑚5](
ℎ𝜂

𝜂
)} 

 [𝑎3] Let 𝜆 = 𝑚2(
ℎ𝜂

𝜂
)𝑚3𝑚4, such that 0 ≤ 𝜆 ≤ 1.  

Then the nonlinear control system Eq.4 is 

controllable on the interval I = [0, ℎ]. 
Proof: Define the operator 𝑌: 𝑄𝑛 → 𝑄𝑛 as follows    

(𝑌𝑧)(𝑡) = 𝐸η(𝑂𝑡𝜂)𝑧0+∫ (𝑡 − 𝑠)𝜂−1𝑡

0
𝐸𝜂,𝜂(𝑂(𝑡 −

                𝑠)𝜂)𝐵𝑢(𝑠)𝑑𝑠  +∫ (𝑡 − 𝑠)𝜂−1𝑡

0
𝐸𝜂,𝜂(𝑂(𝑡𝑠)𝜂) 

              × 𝐿(𝑠, 𝑃(𝑠, 𝑧(𝑠))) ds.                                (6) 

 

where the control function 𝑢(𝑡) is defined by  

𝑢(𝑡) = 𝐵∗𝐸𝜂,𝜂(𝑂∗(ℎ − 𝑡)𝜂)𝑤−1[𝑧1 − 𝐸𝜂(𝑂ℎ𝜂)𝑧0 

            − ∫ (ℎ − 𝑠)𝜂−1ℎ

0
𝐸𝜂,𝜂(𝑂(ℎ − 𝑠)𝜂) 

            × 𝐿(𝑠, 𝑃(𝑠, 𝑧(𝑠))) 𝑑𝑠].                               (7)                                                                                                        

The idea of the proof, first to prove that the 

nonlinear operator 𝑌 in Eq.6 is continuous and maps 

𝑤(𝑟) into itself. Second, to prove 𝑌 is nonexpansive 

mapping from 𝑤(𝑟) into 𝑤(𝑟) and then by using 

theorem 2 the fixed point of the operator 𝑌 could 

obtained. 

Thus, by taking the norm of Eq.7 is obtained that 

‖𝑢(𝑡)‖ ≤ ‖𝐵∗‖‖𝐸𝜂,𝜂(𝑂∗(ℎ − 𝑡)𝜂)‖‖𝑤−1‖{‖𝑧1‖ 

+‖𝐸𝜂(𝑂ℎ𝜂)𝑧0‖ + ∫ (ℎ − 𝑠)𝜂−1ℎ

0
‖𝐸𝜂,𝜂(𝑂(ℎ − 𝑠)𝜂)‖ 

× [‖𝐿(𝑠, 𝑃(𝑠, 𝑧(𝑠))) − 𝐿(𝑠, 𝑃(𝑠, 0))‖ 

+‖𝐿(𝑠, 𝑃(𝑠, 0))‖]𝑑𝑠}. 
Then by using condition [𝑎1] and 𝑚6 =
max𝑡∈𝐼‖𝑧(𝑡)‖  

is gotten that  

‖𝑢(𝑡)‖ ≤ ‖𝐵∗‖𝑚2‖𝑤−1‖{‖𝑧1‖+𝑚1 +

∫ (ℎ − 𝑠)𝜂−1ℎ

0
𝑚2[𝑚3𝑚4‖𝑧(𝑡)‖ + 𝑚5]𝑑𝑠}  

and  

‖𝑢(𝑡)‖ ≤ ‖𝐵∗‖𝑚2‖𝑤−1‖{‖𝑧1‖+𝑚1 +

𝑚2[𝑚3𝑚4𝑚6 + 𝑚5](
ℎ𝜂

𝜂
)} = 𝑘 

Now, define the operator  𝑌: 𝑄𝑛 → 𝑤(𝑟) as in Eq.6 

and taking the norm 

‖(𝑌𝑧)(𝑡)‖ ≤ ‖𝐸𝜂(𝑂𝑡𝜂)𝑧0‖+∫ (𝑡 − 𝑠)𝜂−1𝑡

0
 

× ‖𝐸𝜂,𝜂(𝑂(𝑡 − 𝑠)𝜂)‖‖𝐵‖‖𝑢(𝑠)‖𝑑𝑠 

 + ∫ (𝑡 − 𝑠)𝜂−1𝑡

0
‖𝐸𝜂,𝜂(𝑂(𝑡 −  𝑠)𝜂)‖ 

× [‖𝐿(𝑠, 𝑃(𝑠, 𝑧(𝑠))) − 𝐿(𝑠, 𝑃(𝑠, 0))‖ 

+‖𝐿(𝑠, 𝑃(𝑠, 0))‖] 𝑑𝑠 

and then 

‖(𝑌𝑧)(𝑡)‖ ≤ 𝑚1 + 𝑚2‖𝐵‖𝑘(
ℎ𝜂

𝜂
) + 𝑚2[𝑚3𝑚4𝑚6 

                         +𝑚5](
ℎ𝜂

𝜂
) = 𝑟  

    Since 𝑃 and 𝐿 are continuous and ‖(𝑌𝑧)(𝑡)‖ ≤ 𝑟, 

it follows that the operator 𝑌 is also continuous and 

maps 𝑤(𝑟) into itself.  

    Second, to show that 𝑌 is nonexpansive mapping 

from 𝑤(𝑟) into 𝑤(𝑟). Thus  for 𝑧1(𝑡) , 𝑧2(𝑡) ∈
𝑤(𝑟) and from the definition 𝑜𝑓 (𝑌𝑧) (𝑡) in Eq.6 is 

gotten that 

 

 ‖(𝑌𝑧1)(𝑡) − (𝑌𝑧2)(𝑡)‖ = ‖𝐸𝜂(𝑂𝑡𝜂)𝑧0 

+ ∫ (𝑡 − 𝑠)𝜂−1
𝑡

0

𝐸𝜂,𝜂(𝑂(𝑡 − 𝑠)𝜂)𝐵𝑢(𝑠)𝑑𝑠 

+ ∫ (𝑡 − 𝑠)𝜂−1
𝑡

0

𝐸𝜂,𝜂(𝑂(𝑡 − 𝑠)𝜂) 

× 𝐿(𝑠, 𝑃(𝑠, 𝑧1(𝑠)))ds − 𝐸𝜂(𝑂𝑡𝜂)𝑧0 

− ∫ (𝑡 − 𝑠)𝜂−1
𝑡

0

𝐸𝜂,𝜂(𝑂(𝑡 − 𝑠)𝜂)𝐵𝑢(𝑠)𝑑𝑠 

− ∫ (𝑡 − 𝑠)𝜂−1
𝑡

0

𝐸𝜂,𝜂(𝑂(𝑡 − 𝑠)𝜂) 

× 𝐿(𝑠, 𝑃(𝑠, 𝑧2(𝑠)))𝑑𝑠‖ 

 

 

 

 

therefore, 
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        ‖(𝑌𝑧1)(𝑡) − (𝑌𝑧2)(𝑡)‖ ≤ ∫ (𝑡 − 𝑠)𝜂−1𝑡

0
 

‖𝐸𝜂,𝜂(𝑂(𝑡 − 𝑠)𝜂)‖‖𝐿(𝑠, 𝑃(𝑠, 𝑧1(𝑠)))

− 𝐿(𝑠, 𝑃(𝑠, 𝑧2(𝑠)))‖𝑑𝑠  
thus, by condition [a1] 

‖(𝑌𝑧1)(𝑡) − (𝑌𝑧2)(𝑡)‖ ≤ 𝑚2 (
ℎ𝜂

𝜂
) 𝑚3𝑚4 

                                       × ‖𝑧1(𝑡) −  𝑧2(𝑡)‖  

Then condition [𝑎3] implies that 

        ‖(𝑌𝑧1)(𝑡) − (𝑌𝑧2)(𝑡)‖ ≤ ‖𝑧1(𝑡) − 𝑧2(𝑡)‖. 

Thus 𝑌 is nonexpansive mapping. Since 𝑤(𝑟) is 

closed, convex, bounded subset of (RBS)  𝑄𝑛 and 

𝑤(𝑟) is weakly compact having normal structure 

(see example of  Definition 3 and example 1), then 

by theorem 2, there exists a fixed point 𝑧 ∈ 𝑤(𝑟) 

such that (𝑌𝑧)(𝑡) = 𝑧(𝑡) and hence this fixed point 

is a solution of  Eq.4 on 𝐼, which satisfied 𝑧(ℎ) =
𝑧1, therefore the nonlinear control system Eq.4 is 

controllable on 𝐼. ∎ 

Now, from the obtained results in this work, the 

following important results can deduce. 
Remark 2 : In this paper, the controllability of the 

solution 𝑧(𝑡) ∈ 𝑅𝑛, 𝑡 ∈ [0, ℎ] of the nonlinear 

control system Eq.4, where 𝑅𝑛 is (RBS) and has 

Opial’s condition (see Definition 2 with example ) 

have been discussed. Thus, the previous results for 

control system Eq.4 when it is defined on arbitrary 

(RBS) having Opial’s condition can extend by using 

the same manner in the proof of theorem 4. 

Remark 3 : Let 𝑄𝑛 be only a Banach space with 

0 ≤ 𝜆 < 1 in condition [𝑎3], then by using the same 

manner of theorem 4, the operator 𝑌 being a 

contraction mapping. Thus, by theorem 1 a unique 

fixed point which is a solution to the control system 

Eq.4 on I = [0, ℎ] is obtained.  

Application:   

    In this section, theorem 4 is applied to obtain the 

result. Let 𝐾 ∈ 𝐿1((𝑜, ℎ)),  

𝑂 =  (
0 1

−1 0
) and  =  (

0
1

) , 0 <  𝜂 < 1,  

 𝑡 ∈ [0, ℎ] and 𝐿 is given as follows 

𝐿(𝑡, 𝑧(𝑡), ∫ 𝐾(𝑡, 𝑠, 𝑧(𝑠))𝑑𝑠) =
𝑡

0
 (

0
∫ 𝑒−𝑧1(𝑠)𝑑𝑠

𝑡

0

1+𝑧1
2(𝑡)+𝑧2

2(𝑡)
 
) 

Now, consider the system 

𝐷𝜂𝑧(𝑡) =
𝑂𝑧(𝑡) + 𝐵𝑢(𝑡) +

                     𝐿(𝑡, 𝑧(𝑡), ∫ 𝐾(t, s, z(s))ds)
𝑡

0
, z(0)=𝑧0 (8) 

 

Solution: Here 𝑧(𝑡)  =  (𝑧1(𝑡), 𝑧2(𝑡))∗  

with 𝑧1(𝑡) = 𝑧(𝑡), 𝐷
𝜂

2𝑧1(𝑡) = 𝑧2(𝑡). 

Let, 𝑛1 = ∑
−1𝑖(ℎ−𝑠)2𝑖𝜂

Γ((2𝑖+1)𝜂)
∞
𝑖=0  , 𝑛2 ∑

(−1)𝑖(ℎ−𝑠)(2𝑖+1)𝜂

Γ(2𝜂(𝑖+1))
∞
𝑖=0  . 

Then Mittag-Leffler matrix function is 

         

𝐸𝜂(0𝑡𝜂) =

(

∑
(−1)𝑖𝑡2𝑖𝜂

Γ(2𝑖𝜂+1)
∞
𝑖=0 ∑

(−1)𝑖𝑡(2𝑖+1)𝜂

Γ((2𝑖+1)𝜂+1)

∞
𝑖=0

− ∑
(−1)𝑖𝑡(2𝑖+1)𝜂

Γ((2𝑖+1)𝜂+1)

∞
𝑖=0 ∑

(−1)𝑖𝑡2𝑖+𝜂

Γ(2𝑖𝜂+1)
∞
𝑖=0

) 

Also, 

         

𝐸𝜂,𝜂(𝑂(ℎ − 𝑠)𝜂) =

(
∑

(−1)𝑖(ℎ−𝑠)2𝑖𝜂

Γ((2𝑖+1)𝜂)
∞
𝑖=0 ∑

(−1)𝑖(ℎ−𝑠)(2𝑖+1)𝜂

Γ(2𝜂(𝑖+1))

∞
𝑖=0

− ∑
(−1)𝑖(ℎ−𝑠)(2𝑖+1)𝜂

Γ(2𝜂(𝑖+1))

∞
𝑖=0 ∑

(−1)𝑖(ℎ−𝑠)2𝑖𝜂

Γ((2𝑖+1)𝜂)
∞
𝑖=0

) 

 

It is easy to calculate the controllability matrix 

which defined in theorem 3  

            𝑊 = ∫ (ℎ − 𝑠)𝜂−1 (
𝑛2

2 𝑛1𝑛2

𝑛1𝑛2 𝑛1
2 ) 𝑑𝑠

ℎ

0
  

Thus 𝑊 is a positive defined for any ℎ > 0.  
Therefore by theorem 3, the linear (FCS) Eq.1 is 

controllable on [0, ℎ].  

Now, let 𝑃 = (𝑡, 𝑧(𝑡)) = ∫ 𝐾(𝑡, 𝑠, 𝑧(𝑠))𝑑𝑠
𝑡

0
, then 𝐿 

satisfies the condition [a1], and hence by theorem 4, 

the nonlinear control system Eq.8 is controllable. 

 

Conclusion: 
The controllability of (FCS) in arbitrary 

(RBS) by using fixed point theorem that deals with 

nonexpansive mapping is examined. For this 

purpose, then some preliminaries related to the 

solutions of (FCS) and to prove the main result 

which guarantees the sufficient condition for the 

controllability of considered system are given. An 

application is presented to illustrate the value of the 

obtained results.  
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في فضاءات بناخ الإنعكاسية باستخدام نظرية  الكسرية  نظمة السيطرةلأ نتائج الوجود وإمكانية السيطرة

 الصامدةالنقطة 
 

 نصيف جاسم الجواري
 

 قسم الرياضيات ، كلية العلوم ، الجامعة المستنصرية ، بغداد ، العراق

 

  الخلاصة :
تم عرض نظرية النقطة الصامدة للتطبيق غير الممدد وذلك لدراسة الوجود للحل والشروط الكافية لإمكانية السيطرة لأنظمة  

السيطرة الكسرية غير الخطية والمعرفة على فضاءات بناخ الانعكاسية. كذلك تم تعديل وتطوير النتيجة التي تم الحصول عليها اعلاه وذلك 

باستخدام نظرية النقطة الصامدة التي تتعامل مع التطبيق غير المدد  Opialعرف على اي فضاء يمتلك شرط عندما يكون النظام م

 يوضح فعالية النتائج التي تم الحصول عليها. تطبيقوالمعرف على مجموعة تمتلك البنية العمودية. ثم تم إعطاء 

 
 .Opial، بنية عمودية ،  شرط رة كسريسيطصامدة، ، نظام امكانية السيطرة، نقطة  :الكلمات المفتاحية

 


