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Abstract:

In this paper, a fixed point theorem of nonexpansive mapping is established to study the existence and
sufficient conditions for the controllability of nonlinear fractional control systems in reflexive Banach
spaces. The result so obtained have been modified and developed in arbitrary space having Opial’s condition
by using fixed point theorem deals with nonexpansive mapping defined on a set has normal structure. An
application is provided to show the effectiveness of the obtained result.

Keywords: Controllability, Fixed point, Fractional control system, Normal structure, Opial’s condition.

Introduction:

Many systems in physics, chemistry, biology,
stochastic, and control theory are represented by
fractional control systems (FCS). For more details
on (FCS) in the control theory one can see,
Balachandran and Kokila (1), AL-Jawari and
Shaker (2), Li Ding and Nieto (3), Lizzy and
Balachandran (4).

One of the important topics in the study (FCS) in
the control theory is controllability and it means that
it is possible to transfer a (FCS) from an arbitrary
initial state to an arbitrary final state by using the
admissible controls. Thus controllability plays an
important role in the analysis and design of these
systems, see references (1- 6).

To study the result of the controllability of
(FCS), some techniques of nonlinear functional
analysis are used such as, fixed point theorems.
Lizzy and Balachandran in (4) studied the
controllability of stochastic fractional system in
Hilbert spaces (HS) by wusing the Banach
contraction mapping theory. Li Ding and Nieto in
(3) discussed the controllability of (FCS) using
Schauder’s fixed point theory.

Since every (HS) are reflexive Banach space
(RBS) and the contraction mapping is nonexpansive
mapping, but the converse in general is not true (7)
(also see section 2 of this paper), thus the purpose
of this paper is to study the controllability of (FCS)
in arbitrary (RBS) by using fixed point theorem that
deals with nonexpansive mapping. The rest of this

article is organized as follows. In section 2,
preliminaries are given to study the solutions of
(FCS) and then to prove the main result (theorem 4)
in section 3. In section 4, an application is presented
to illustrate the value of the obtained results.

Preliminaries and (FCS):

In this section, the solution of linear and
nonlinear (FCS) is explored and present some
definitions with theorems that will be used in the
prove the main result of controllability (theorem 4)
in section 3.

Definition 1 (8): Let Y be a self mapping on a
normed space X, such that:

1Y Cx1) = Y ()l < Allxy — x|l for all xy, x, €
X. Then Y is contraction if A<1, and Y is
nonexpansive if 4 < 1.

It can be shown that, a contraction mapping is
nonexpansive  and  isometry  mapping s
nonexpansive but not contraction, see (8).
Definition 2 (9): Let X be a Banach space such
that, if Vv x € X and vsequence {x,} converges
weakly to x,then

limy, oo infllxn — Il > limg o infllx, —
x||,holds Vz # x. Thus the space X satisfies
Opial’s condition.

Every finite dimensional Banach space, (Hilbert
space) L, for p = 2 and 1, spaces for 1 <p < oo
are satisfies Opial’s condition, see (9).
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Definition 3 (7): A subset W of a normed space X
is called weakly compact if every sequence
{x,}in W contains a subsequence which converges
weakly in W.

For example, every nonempty, closed, convex and
bounded subset of (RBS) is weakly compact see
(8-9).

Definition 4 (8): Let W be nonempty, closed,
convex and bounded subset of the Banach space X.
Let a point x € W, such that sup {||lx —w| :
w € W} =diam W, then x is called a diametral.
Also, W has normal structure, if for each nonempty,
convex K € W with diam K > 0, there exist a point
x € K which is not diametral.

Example 1 (8): Every compact convex set in a
Banach space has normal structure. And every
nonempty, closed, convex and bounded subset of
uniformly convex Banach space has normal
structure.

Also Opial’s condition implies normal structure, see
(10).

Theorem 1 (7): Every contraction mapping of a
Banach space into itself has a unique fixed point.
Theorem 2 (8, 11): Let Y be nonexpansive from
Winto W, where W is a nonempty weakly compact
convex subset having a normal structure in a
Banach space X, then Y has fixed point in W.
Remark 1: The convexity assumption in theorem 2,
is very important, because the nonexpansive map on
a non-convex set in Banach space may be has no
fixed point. For example:

Take W =[-2,—-1]JU[1,2] c RandY:W - W
by Y(x) = —x, x € W, then Y is nonexpansive, but
Y has no fixed points in W, see (11).

Here, the solutions of linear and nonlinear (FCS)
are discussed. Suppose that, n,a > 0, withn — 1 <
n<n,n—1<a<nand neN, [0,h] € R. Let
F =R™ and H = R™ be then and m-dimensional
Euclidean spaces.

Throughout this paper, the fractional derivative is
taken in the Caputo sense and for brevity let us
denote the Caputo fractional derivative by D", for
more details of properties to D7, see (12).

Now, consider the linear control system represented
by a (FCS) of the form

D"z(t) = 0z(t) + Bu(t),t € I = [0, h],
2(0) = z, €]

where 0 <n <1, the state vector z(t) € F, the
control vector u(t) € H and O with B are matrices
of dimensions n X n, n X m respectively.

The solution of the system Eq.1 can be obtained by
using the method of successive approximation, see
(12) and given by the following formula

2(t) = Ey(0tMzo + [, (t — s)1™" Ey , (0(t —
s)M)Bu(s)ds, (2)

where En.n(Otn):Z?o:O% is the Mittag-Leffler

function for a square matrix 0 € R™™, with

E,,(0t") = E,(0t").

The function E;, ,(Ot™) is continuous and it satis-

fies || E,, (0t™)|| < mfor all ¢ € [0, A].

Definition 5 (2) : If Vz,z, € F,3a control

u € L?([0, k], H) such that the solution of the Eq.1

with

z(0) = zy also satisfies z(h) = z;, then saying

that the control system Eq.1 is controllable over

[0, h].

The control u(t) is said to be admissible control,

i.e., u(t) is transfer the trajectory from z, to the

final state z;. Thus the controllability of the control

system Eq.1 is equivalent to finding w(t) such that

21 = 2(h) = E,(ORM)zo + [ (R — 5)7™*
Ey»(O(h — s)T)Bu(s)ds.
Equivalently, the system Eq.1 is controllable < 3
a control u such that
21 — Ey(OhM)zy = [ (h = )"~ Ey , (O(h —
s)MBu(s)ds 3
The above explanation leads to the following
theorem.
Theorem 3 (2): (Controllability Condition) The
control system Eq.1 is controllable on [0, h] < the
controllability Grammian w(0, h) = foh(h —s)n1
Eyn(0(h —s)T)BB*E; ,(A*(h — s)")ds is a non-
singular, where * denotes the matrix transpose.
Now, consider the nonlinear control system
represented by a (FCS) of the form
D"z(t) = 0z(t) + Bu(t) + L(t, P(t,z(t))),
te I =[0,h],z(0) =z 4)
where n,z(t),u(t),0 and B be as defined in the
control system Eq.1. The nonlinear operators P and
L are continuous from I X F into F =R"and
satisfy Lipschitz condition on the second argument.
For 1<n€N, suppose that Q,a (RBS) of
continuous functions defined from I into F,with
norm ||.||. Thus, as above for the control system
Eq.1, the solution to control system Eq.4 is given by
the following form

2(6)= E(0tMzo+ [, (¢ = $)1~* By, (Ot = 5)")
x Bu(s)ds+ [ (t — s)1™" Ey (0t — )
X L(s, P(s,z(s))) ds (5)

Controllability of Nonlinear (FCS):

In this section, the controllability of solution to
the nonlinear (FCS) Eq.4 in (RBS) by using fixed
point theorem are discussed.
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Definition 6: The control system Eq.4 is called
controllable on 1=[0,h] if V zy,2; € Q,, 3 a control
u € L2([0, h], H) such that the solution z(t) in Eq.5
satisfies z(0) = zy and z(h) = z;.

Here, suppose that w(r) = {z:z € Q,, z(0) = z,,
llz(t)|| < r,Vt € I} where r is a positive constant.
Then w is a closed, convex and bounded subset of
Qn.

Since w(r) is closed subset of a (RBS), then w(r)
is a (RBS), see (7).

In order that control system Eq.4 makes sense
throughout this paper, let

my = sup”En(Ot")zO”,

m, = sup||E,,(0(h — OO
and assume the following condition:
[a;] The nonlinear P and L in Eq.4 are continuous
and there exist positive constants m; ,m, and mg
such that for all z;, z, e w(r) the following
inequality hold
IL(t, P(t, 2,(£))) — L(t, P(t, ()l <
ms||P(t, 2, (t)) — P(t, 2z ()| <
mamy ||z, () — z (O,
also, let mg = max,¢;||L(t, P(¢t,0))|| and

me = maxee||z() .

Theorem 4 : Let Q, be a (RBS) which satisfying

Opial‘s condition and suppose that the condition

[a;1] is satisfied for the nonlinear control system

Eqg.4, with the control system Eq.1 is controllable

on L. Further assume that

[a;] Let r = (my+ m,||Bllk + my[mym,mg +

hn

m5])(7),

where, k = IIB*IImZIIW‘lll{Ilzlllm# +
my[mzmymeg + ms](%)}

[as] Let A =m, (f;—n)m3m4, suchthat0 <1< 1.

Then the nonlinear control system Eqg.4 is
controllable on the interval I = [0, h].
Proof: Define the operator Y: Q,, — Q,, as follows

(Y2)(t) = Eq(0tMzo+ [ (t — )11 Ey , (O(t —
s)MBu(s)ds +f0t(t —$)1LE, ,(0(ts)")
X L(s, P(s,z(s))) ds. (6)

where the control function u(t) is defined by
u(t) = B*Ep,(0*(h — )Mw ™[z, — E, (Oh")z,
— [ (h = )" Ey (O(h = $)T)
X L(s, P(s, z(s))) ds]. (7)
The idea of the proof, first to prove that the
nonlinear operator Y in Eq.6 is continuous and maps
w(r) into itself. Second, to prove Y is nonexpansive
mapping from w(r) into w(r) and then by using

theorem 2 the fixed point of the operator Y could
obtained.
Thus, by taking the norm of Eq.7 is obtained that

lu@Il < 1B ||| Eyy (0 (= OO || Ilw = I{ll 2 |
+|Ey (0hMzo ]| + f' (h = )72 [|Ey O Ch = )|
X [||L(S,P(S,Z(s))) — L(s,P(s, 0))”
+||L(s, P(s,0))||1ds}-

Then by wusing condition [a,]

maxqe;||lz(6)|
is gotten that

lu(®l < IIB* llmy llw =1 {l|z,lI+m,; +

[ (R = )77 my[mamyllz(D)|| + ms]ds)
and

(Il < IIB* llmy llw =1 {l|z,lI+m; +
ma[mamame + ms] ()} = k

and mg =

Now, define the operator Y:Q,, - w(r) as in EQ.6
and taking the norm

IY2)(OIl < ||E,(0tMz ||+ (¢ — 5)7~
X ||Eyn (0t = )D||IBIHIu(s)Ids

+ [t = )77 || Ey (0t — )M

X [||L(s, P(s,2(s))) — L(s, P(s, 0))|

+||L(s, P(s,0))||] ds
and then

n
1Y) (Ol <mq + m2||B||k(h_) + my[mazmymg
I 1
tms](0) =7

Since P and L are continuous and || (Y2) ()| < r,
it follows that the operator Y is also continuous and

maps w(r) into itself.
Second, to show that Y is nonexpansive mapping
from w(r) into w(r). Thus for z;(t) , z,(t) €

w(r) and from the definition of (Yz) (t) in Eq.6 is
gotten that

I(Yz) @) — (Yz) (Ol = ||E,(0t")z

t
+ f (t = )" Ep,(0(t = s)")Bu(s)ds
0

t
+ j (t =)' Ey,(0(t —s)")
X LO(s, P(s,z,(s)))ds — E,(0t")z,

- J (6= )T By (0( = ) Bu(s)ds
0

t
- f (t = )11 Ey 1 (0t — 5)7)
X Lo(s, P(s,z,(s)))ds]||

therefore,
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I(rz)(®) = (Yz) (O < fy (t— )"
1By (Ot = YDI|IIL(S, P (5, 21(5)))
= L(s, P(s,22(s)))llds
thus, by condition [ay]

h
I(Yz) (@) — Y z) DI < m, <T> Mm3my
X ||z (t) — zz (Ol

Then condition [a3] implies that
I(Yz) () — Yz)(OIl < Nz (1) — 2 (D).

Thus Y is nonexpansive mapping. Since w(r) is
closed, convex, bounded subset of (RBS) @, and
w(r) is weakly compact having normal structure
(see example of Definition 3 and example 1), then
by theorem 2, there exists a fixed point z € w(r)
such that (Yz)(t) = z(t) and hence this fixed point
is a solution of Eq.4 on I, which satisfied z(h) =
z,, therefore the nonlinear control system Eq.4 is
controllableon I. m
Now, from the obtained results in this work, the
following important results can deduce.
Remark 2 : In this paper, the controllability of the
solution z(t) € R™, t € [0,h] of the nonlinear
control system Eq.4, where R™ is (RBS) and has
Opial’s condition (see Definition 2 with example )
have been discussed. Thus, the previous results for
control system Eqg.4 when it is defined on arbitrary
(RBS) having Opial’s condition can extend by using
the same manner in the proof of theorem 4.
Remark 3 : Let Q,, be only a Banach space with
0 < A < 1in condition [a3], then by using the same
manner of theorem 4, the operator Y being a
contraction mapping. Thus, by theorem 1 a unique
fixed point which is a solution to the control system
Eqg.4 on 1 = [0, h] is obtained.
Application:

In this section, theorem 4 is applied to obtain the
result. Let K € L, ((o, b)),

0=(2 pad=(3)0<n<t,

t € [0,h] and L is given as follows

0
L(t,2(t), [, K(t, s, 2(s))ds) =< [fe16gs >
1+2z2(t)+22(t)
Now, consider the system
Dz(t) =
0z(t) + Bu(t) +

L(t,z(8), [, K(t5,2(5))ds), 2(0)=z, (8)

Solution: Here z(t) = (z,(t), z,(t))"

n
with z; (t) = z(t), D2z, (t) = z,(¢t).
—1i(h—s)*" o (ZDI(h-s)EHT
Let ny = X2 0 T(i+L)n) ’ 241=0" T2n(i+1)
Then Mittag-Leffler matrix function is

E,(0¢7) =
o (- 1) th . (_1)it(2i+1)n
LiZ0TGmin  H=O TG DnT)
(~1D)it@H+D7 ( 1)t ip2i+7
z‘ 0F((21+1)n+1) Zl 0 r(2in+1)

Also,

En,n(O(h —s)") =
o (=Di(r—s)?" o (=D)i(h—s)@HDn
ZiZo T((2i+1)n) =0 r(2n@+D)
o (=1)i(h—s)@HDn o (=1)i(h—s)2n
TIE ) 20 RGrn

It is easy to calculate the controllability matrix
which defined in theorem 3
1 22 mny
W= frt-sm (" T2 ds
nn, nyg

Thus W is a positive defined for any h > 0.
Therefore by theorem 3, the linear (FCS) Eq.1 is
controllable on [0, h].

Now, let P = (t,z(t)) = [, K(t,s,z(s))ds, then L

satisfies the condition [a;], and hence by theorem 4,
the nonlinear control system Eq.8 is controllable.

Conclusion:

The controllability of (FCS) in arbitrary
(RBS) by using fixed point theorem that deals with
nonexpansive mapping is examined. For this
purpose, then some preliminaries related to the
solutions of (FCS) and to prove the main result
which guarantees the sufficient condition for the
controllability of considered system are given. An
application is presented to illustrate the value of the
obtained results.
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