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Abstract:

This paper is concerned with introducing an explicit expression for orthogonal Boubaker polynomial
functions with some important properties. Taking advantage of the interesting properties of Boubaker
polynomials, the definition of Boubaker wavelets on interval [0,1) is achieved. These basic functions are
orthonormal and have compact support. Wavelets have many advantages and applications in the theoretical
and applied fields, and they are applied with the orthogonal polynomials to propose a new method for
treating several problems in sciences, and engineering that is wavelet method, which is computationally more
attractive in the various fields. A novel property of Boubaker wavelet function derivative in terms of
Boubaker wavelet themselves is also obtained. This Boubaker wavelet is utilized along with a collocation
method to obtain an approximate numerical solution of singular linear type of Lane-Emden equations. Lane-
Emden equations describe several important phenomena in mathematical science and astrophysics such as
thermal explosions and stellar structure. It is one of the cases of singular initial value problem in the form of
second order nonlinear ordinary differential equation. The suggested method converts Lane-Emden equation
into a system of linear differential equations, which can be performed easily on computer. Consequently, the
numerical solution concurs with the exact solution even with a small number of Boubaker wavelets used in
estimation. An estimation of error bound for the present method is also proved in this work. Three examples
of Lane-Emden type equations are included to demonstrate the applicability of the proposed method. The
exact known solutions against the obtained approximate results are illustrated in figures for comparison.

Keywords: Boubaker polynomial, Collocation method, Convergence criteria, Error analysis, Wavelet
polynomial

Introduction:

Wavelet theory is an emerging area in known that there are other types of wavelet

mathematical research and it has a wide range
application in engineering discipline, singular
analysis, and time frequency analysis (1-5). It
permits the accurate representation of different
functions and operators. Furthermore, wavelets
functions construct a connection with variety
numerical techniques. Many authors have
increasingly  considered the application of
Chebyshev wavelets and shifted Chebyshev
wavelets. For example, in (6), the modified
Chebyshev wavelets have been applied for solving
this film of non-Newtonian fluid problem while
Chebyshev  wavelets utilized for fractional
differential equations by (7) have been shifted, also
Chebyshev wavelets have been used for solving
problems in mathematics and physics. It is well

functions and all of them have been applied for
solving many practical problems arising in
numerous branches of science and engineering, that
require solving singular initial value problems and
boundary value problems of partial differential
equations, linear and nonlinear fractional
differential equations. Wavelet functions have been
previously applied for obtaining approximate
solutions for some of these problems. Authors in (8)
have constructed a fast algorithm for some linear
and nonlinear wave equations using Taylor
wavelets. In the two papers (9,10), the authors
treated weakly kernel integral equation of the
second kind and fractional delay differential
equation respectively using Hermit wavelets. In
(11-13), Legendre wavelets method have been
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introduced for solving respectively, optimal control
problem, fractional differential equations and partial
differential equations.

In this paper, first a new form of polynomials
is introduced, the orthogonal Boubaker polynomials
and derive many interest and useful properties, then
present the definition of Boubaker wavelet
depending on the orthogonal  Boubaker
polynomials.

The main goals of the present work are

¢ Introducing Boubaker wavelets functions and

deriving explicit forms of their  derivatives.

e Presenting the bounded of Boubaker wavelet
coefficients.

e Using Boubaker wavelets functions together

with their properties to solve Lane-Emden type

equation with the aid of collocation method.

Lane Emden equation is singular initial value

problem and many authors have studied them. The

solution of Lane Emden equation is numerically

found, for example (14-17).

The paper is organized as follows: In section
two, a new explicit formula for defining orthogonal
Boubaker polynomial is introduced with some
important properties. Then Boubaker wavelets are
constructed in section 3. Boubaker coefficients
discussion is given in section 4. In section 5 the
derivative of Boubaker wavelets in terms of
Boubaker wavelets is given while the introduced
Boubaker wavelets with the new property is applied
for solving Lane-Emden equation using collocation
method is included, in section 6. Some conclusion
remarks illustrating the validity of the suggested
basis functions are listed in section 7.

New Explicit Definition for
Boubaker Polynomials

The Boubaker polynomials were deals with in
physics studies that get a thermal model of the spray
pyrolysis disposal (18). They are merged from an
attempt to obtain a solution to heat equation in a
determination step through resolution process (19).
Definition 1 (20)
The expression of Boubaker polynomials B, (7)is
described as

By (7) = Zz[?:]o(—l)p (n—4p) (n—p) "—2p

Orthogonal

(n-p) \' P
(1)
and it can be defined with the recurrence relation
given below
Bp(t) =1 Bm—l(T)(Z_) Bp_5(7) n>2

with By(r) =1, B;(r) =7 and B,(7) =12+
2 Boubaker polynomials are not orthogonal but
when applying the Gram-Schmit process on sets of
Boubaker polynomials one can obtain orthogonal
Boubaker polynomials BO,,, ().

Orthogonal Boubaker polynomials are generated
using

1
< Tl',Tj >= f‘[i‘[jd‘[
0
Define BOy(t) =1

The first orthogonal Boubaker polynomial BO; (1)
is

BO ( ) _ [ < TBO(),BOO >]

N =" T < B0, BO, > 170
[ Jy tat ] _
- [T [ BOgBOydt BO, =

1 1
(r=2)/JJy BOoBOod T
In order to construct higher order orthogonal

Boubaker polynomial, the following recurrence
relation is used

<TBOi,BOi>
B0 (@ = [t - =2 Bo,

< BO;,BO; >
[ <BOL',BOL'>

<BO0,_,,BO;_; >

2=

Definition 2

The explicit representations of the orthogonal
Boubaker polynomials of mt" degree are defined on
the interval [0, 1] as

2
BOp(z) = T ym (—qym+k

(2m)!
©)
The first six BO,,(t) are given below and are
plotted in Fig. 1
BOy(7) =1

BO, (1) = 51(21 -1

_mtil ke
(m—I01(k1)2

1
BO,(7) = 3(612 —61+1)
1
BO;(7) = %(2013 —-30t%2+121-1)

1
B0, (1) = %(70 4 — 14073 + 9072 — 207 + 1)

BOs(7) = %(25215 — 63074 + 56073 —

21072 + 307 — 1)

1 6 5 4
BOy(7) = @(9241 —2772t°+ 31501

— 168073 + 42072 — 421+ 1)
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Figure 1. (a) Orthogonal Boubaker polynomials of orders 1, 2, 3,4, 5 (b) 6

A recursive definition also can be used to
generate orthogonal Boubaker polynomials over the
interval [0,1]

(m+D)* [em+D) @m)! )
BOm.1(7) = (2(m+1))! [ m+1 (m!)? (21
2 1
DBON) ~ i 2 B0, ()] (@)
m =2

with BO,(7) = 1 and BOy(7) = 5 (21 — 1)

The other property of the orthogonal Boubaker
polynomials is
(m)? (2m-4)!

Bom( ) (Zm)'(( 2)!)2 BOm—Z(T) +
mBOy,_1(7)(5)
Definition 3

The m™ degree of orthonormal Boubaker

polynomials are defined below over the interval
[0,1]
(2m)!

BOr,(7) = 2m+1( ')ZBOm(T)
(6)
Boubaker Wavelet
Wavelet functions are constructed from

dilation and translation of a definite function,
named mother wavelet. Wavelet functions may be
defined as

1
oap (1) = |a| 20 (?) a,be R,a # 0.
where a and b are dilation and translation
parameters respectively while 7 is the normalized
time.
Consider the Boubaker wavelets as 7, ,,(7) =
n(m,n,t) where

n=012., 2 (k =01223,..,), while m
represents the order of orthogonal Boubaker
polynomials.

Then the Boubaker wavelets can be defined as
below

Nnm (T) =

VIm+1 o 2 Bom(zkr—n) Zst<
o 0 otherwise

7

In Eq. 7, BO,,(7) describes orthogonal Boubaker
polynomial of order m.

Therefore, the total  Boubaker
approximation can be presented as below
u(t) = Xn=1 Xm=0 nm Nnm(7)

(8)

By truncating the infinite series in Eg. 8, then the
result can be written as

u(r) = 2121,;11 ZTAY/’IL;%) AnmNnm
C))

where apm = (u(t),1,m (7)), in which (0 , 0)
denoted the inner product in L2[0,1].
Eqg. 9 can be written in a matrix form as,
u(r) =

(10)

where a and 1(t) are 2k"Mx1 matrices given by
a =

wavelet

a"n(r)

[a_10,a_11,..,a_.1(M —1),a_20,..,a_2(M —
1,..,a_2"k-1)0),.., la (2 "k-1) (M-
D)) AT (11)

and

n() =

[n_10,n_11,..,n_.1(M - 1),n_20, ...,n_2(M —

1), .28k =1)0), ..., fn_@"k—-1) (M —

M/ AT (12)

Bounded of Boubaker Wavelet Coefficients
Theorem 1

Let x(t) be a continuous function defined on [0,1]
and a*(r) be the approximation of a(r) by
applying Boubaker wavelets. Also suppose that
x(t) is bounded by a positive constant, that is
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|x(7)| < €. Then the Boubaker wavelet coefficients
of x(7) are bounded and

e (2m)! 1
< EW m+§

M-12k-1

@= ) 2 Crmm (©)

m=0n=
= (X, Mpm) = f x(T) Ny (T)d7 =

2
( r?))z 22y/2m fz x(t) BOp (2%t — n)dt
Let 2kt —n=u then du = 2*dr

o = o PNEHT 27 j (-

_(2m)! _k 1 u+n
(m')zz 2v2m+1f0 ( )BO (wdu
Since |x(17)| < €

|Cnm |

(Zm)'
I)Z

|cnml

Proof

ok )BOm(u)du

1

\/i27j

(Zm)'

Gz 21 2 f|<

(Zm)'
I)Z
|BOm(u)| <1Vuc€]

IBOm(u)I du

ZL f |BO,,, (w)| du
0,1]

leOm(u)ldu <1

em) -~ em) ,-X
|cnm|_(m,)2 272V2m+1 =e (% 2 \/E
fm+5
_ - L 2m)
=€ 2 2 22 D2
m+ -
2
e (2m)! 1
|Cnm|— kl( N2 m 2

2
This is the required result.

The Derivative of Boubaker Wavelet in Terms of
Boubaker Wavelets

In the next theorem, a relation between
orthogonal Boubaker polynomials and their
derivatives is derived, which is very important in
deriving the derivative of Boubaker wavelets.

Theorem 2
Let BO,(tr) be the orthogonal Boubaker
polynomials into [0, 1], then the following relation

is satisfied
BOW() = 25 S S (2(m ) +
B0y (1) (13)
(m — k) isodd for meven, (m — k) is even for m
odd
wherem = 1,2, ...
Theorem 3

Let n(t) be the Boubaker wavelet into [0, 1],
then the following relation is satisfied

1
O = 2940 @m+ DT, S (25 +

Dns(7) (14)
s is odd for m even, s is even for m odd

,and BOy(7) =0

wheres=m—k,m=1,2,3,...and7,(7) = 0
Proof
Consider the vector Boubaker wavelet defined
in Eq.7
N (T) L
{\/2 m+1 ( ')2 ZZBOm(Z"T—n) %S T< n;{
0 otherwise

Differentiating n,,,,, () with respect to 7, yields
Nnm (T) =

VZm+1 (277))22 B0 (2% —n) H<T< o2

0 otherwise
(15)
Using the result in Eq. 13, one can get Eq. 15

Tnm (T)

=V2m+1 (277))2' -2k
(m')2 (Z(m — k)).
2 am), Z (o2 2on(2 =)
=241 @m+ )72 S ST 2(m — k) +
DNk (1)
Sinces=m—k
Therefore;

i ()= 2641 (2m +1)712 3 B (25 +
Dns(2)

Application of Solutions
Wavelets Basis

In this section, the solution of Lane-Emden
equations are obtained by applying Boubaker
wavelets collocation method based on making use
of the previously introduced derivative of
Boubaker wavelet.

in the Boubaker
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Consider the Lane-Emden of the form
y(@) + %y(r) +y(@ =g
(16)
where T € (0,1Jand a =0
with the conditions
y(0) =a, y(0)=0
(17)

Consider an approximate solution to Eg. 16
which is given in terms of Boubaker wavelets as

k- —

Ynm (r) = Z%zll Z%z%) an,mnn,m(T)
(18)
Then one can obtain the following residual after

Numerical Examples
Example 1
The first test example is
J@ +2y(M+1=0 ,0<7<1
with y(0) =1, y(0)=0
Applying the collocation technique with
Boubaker wavelet presented in section 6 to obtain

VYam (T) = ZZk ) ZM =0 4n, mnnm(T)

For M =5 and k =1 and by using Eq. 19 with
the collocation points 7, = 0.25, 7, = 0.5, and
T3 = 1, one can obtain

(22)

substituting of Eq. 18 into Eq. 16 6072 57
ﬂqul | 4v3a, — 6V5a, + 253 83+ =—025
R(t) =1 Z Z a T 2505
() = L L m:nnm( ) 4_\/_(11 -3 o, +;2;; — _02540
1
o 43a; + 12V5a, + ———az + —a, = —
ta z Z ApmTnm (T) 253 7
= L Applying the initial conditions from Eqns. 20-21 to

+x $250 T8 QT (1) — 79 (2)

(19)

Using the collocation method yields

R(t) =0, i=123,..,2M+1) -2,
Moreover uses of initial conditions Eq. 17 give

k-
22 ) Oanmnnm(o) =a
(20)

k- _ .
(251) ) %:%) anmnnm(o) =0

Additional 2%¥~1M equations are obtained in the
unknown expansion coefficients a,,, .

get
3 13 63
Ao __‘/_‘11 +_\/_a2 __\/_(13 =1

540
2V3a,; — 6\/_(12 +—\/_a3

—a, =0
After solving such system one can get
aop= 0.902777777777778, a;= -
0.072168783648703, a,=-0.018633899812498,
a;=0, a4=0.
Consequently, the solution presented in Eg. 22 can
be determined.

Table 1 gives the comparison between the
approximate solution and the exact solution

1
u(t) =1 —;TZ

Table 1. Results of Example 1

T Y appr (T) Yexact (T) error

0 1.000000000000000 1.000000000000000 0.000000000000000
0.1 0.998333333333334 0.998333333333333 0.000000000000001
0.2 0.993333333333334 0.993333333333333 0.000000000000001
0.3 0.985000000000000 0.985000000000000 0.000000000000000
04 0.973333333333334 0.973333333333333 0.000000000000000
0.5 0.958333333333334 0.958333333333333 0.000000000000000
0.6 0.940000000000000 0.940000000000000 0.000000000000000
0.7 0.918333333333333 0.918333333333333 0.000000000000000
0.8 0.893333333333334 0.893333333333333 0.000000000000000
0.9 0.865000000000000 0.865000000000000 0.000000000000000
1.0 0.833333333333334 0.833333333333333 0.000000000000001

Example 2 Applying the collocation technique with

The second test Lane-Emden differential

equation is

j}(x)+%y(x)+y(r) =0 ,0<7<1with

y(0)=1,

where the exact solution is y(7) =

sin(7)

Boubaker wavelet presented in section 6 to obtain

2k=1 -1

Yam(@ = ) Z il ()

1230
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For M=5and k =land by using Eq. 19 with 963 _
the collocation points 7; = 0.25, 7, = 0.5, and B _\/_al +_\/_a2 B % 7az + 7o &7 1
73 = 1, one can obtain _ 540
1 15 311 7126 1683 2V3a; ~ 6¥5a; + \/_a3 7 4 =0
3%+ V3a + ooty — s + o a, = 0 After solving such system one can get
1 N E@ B 3897 N 7126 B 2045 0 a,=0.905936447152376, a.=
30 i “1198%02 “28607243 “3240%49 e = 0.067954491278279, a,= - 0015573553854944
N o, + 3002 203, a;=0.001100514472143, 2,=0.000155220642522.
(Ging the i 73 | d22.5 p 70 -~ The comparison between the approximate
:;gp ying the initial conditions from Eqns. 20-21 10 ¢5),tion and the exact solution can be seen in Table
2.
Table 2. Results of Example 2 with M=5and k =1
M=5, k=1

T Yexact (T) yappr (T) error

0 1.000000000000000 1.000000000000000 0.000000000000000

0.1 0.998334166468282 0.998332108068162 0.000002058400119

0.2 0.993346653975306 0.993341139895023 0.000005514080283

0.3 0.985067355537799 0.985059567977624 0.000007787560175

0.4 0.973545855771626 0.973537746231033 0.000008109540593

0.5 0.958851077208406 0.958843909988337 0.000007167220069

0.6 0.941070788991726 0.941064176000641 0.000006612991084

0.7 0.920310981768130 0.920302542437070 0.000008439331060

0.8 0.896695113624403 0.896680888884764 0.000014224739639

0.9 0.870363232919426 0.870338976348886 0.000024256570540

1.0 0.841470984807897 0.841434447252614 0.000036537555283

The values of exact solution and approximate maximum absolute error has been listed in Table 4
solution at some points are reported in Table 3 with forM = 5,6and7and k = 1.
M =6, M =7 and k =1. In addition, the

Table 3. Results of Example 2 for M=6, M=7 and k =1

M=6, k=1 M=7, k=1
t YVexact(T) error Yappr (T) error
1 0 1 0

0.1 0.9983341664682 0.000000760382 0.9983341664682 0.00000000380

0.2 0.9933466539753 0.000001898197 0.9933466539753 0.00000000587

0.3 0.9850673553779 0.000002594718 0.9850673555378 0.00000000637

0.4 0.9735458557716 0.000002782978 0.9735458557716 0.00000000962

0.5 0.9588510772084 0.000002710436 0.9588510772084 0.00000001531

0.6 0.9410707889170 0.000002639264 0.9410707889917 0.00000001872

0.7 0.9203109817861 0.000002680435 0.9203109817681 0.00000001626

0.8 0.8966951136244 0.000002756771 0.8966951136244 0.00000001135

0.9 0.8703632391940 0.000002689089 0.8703632329194 0.00000001486

1.0 0.6411470984807 0.000002398682 0.8414709848078 0.00000003333
Table 4. Maximum absolute error of Example 2 0.00004
for M=56,7and k =1
Maximum error 000003
M=5, k=1 M=6, k=1 M=7, k=1

0.00002

0.000036537556  0.000002782978  0.00000003333

0.000015

It is clear from Table 3 that only a small
number of Boqbaker wavelej[s basis fur_1ct|ons are R R i ]
needed to obtain the approximate solution, which ’ 02 0 oo os )
agrees with the actual one. t

Figure 2. Comparison between the maximum
absolute error for Example 2 with M =
5,6 and7and k = 1.

Absolute Error
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Example 3
Consider the third Lane-Emden type equation:

¥ (x) +%5/(x)+y(r) =6+12t+1%2+13 ,0<
<1
Subjectto y(0) = 0, y(0) = 0 with exact solution
isy(t) =12 +13

This problem is solved with Boubaker wavelets
using M =5, and k=1 the linear system of 5-
equations is obtained

3 13 63 963
ao - E\/gal + ?\/656(12 - %\/574(;,)3 + Waq‘ = 0
2\/§a1 - 6\/§a2 +?\/7a3 +Ta4_ = 0

The following unknown parameters are obtained

a(=1.052083235111342, a;= 0.930977360202020,
a,=0.363361161797005,
as = 0.047245598838191,
0.000000000195274.

As it can be shown in Table 5 that only a few

dg=

1 +E\/§a Lo 7126 o 1683 99 number of Boubaker wavelets basis functions are
% 0 145 ! %ggg 2 7714236 3 2104405 * 8851 utilized to reach the approximate solution with a
Z i - - ——~—  satisfying result.
GO0t V3l St ¥ Tty — ey = ying
9\/§ N 1986 +8602 +2403 _,
A T T R
Table 5. Results of Example 3

t Yappr (T) Yexact (T) error

0 0.000000000000001 0 0.000000000000001

0.1 0.010999992538870 0.011000000000000 0.000000007461130

0.2 0.047999973416433 0.048000000000000 0.000000026583567

0.3 0.116999947540987 0.117000000000000 0.000000052459013

0.4 0.223999919843328 0.224000000000000 0.000000080156672

0.5 0.374999895276744 0.375000000000000 0.000000104723256

0.6 0.575999878817022 0.576000000000000 0.000000121182978

0.7 0.832999875462443 0.833000000000000 0.000000124537557

0.8 1.151999890233785 1.152000000000000 0.000000109766216

0.9 1.538999928174318 1.539000000000000 0.000000071825682

1.0 1.999999994349811 2.000000000000000 0.000000005650189
Conclusion: - Ethical Clearance: The project was approved by

In this paper, has presented for the first time the the local ethical committee in University of

exact expression for  orthogonal  Boubaker Technology.

polynomials and then defined the Boubaker wavelet.
The basic shapes of the first six orthogonal Boubaker
polynomials are plotted in Fig.1. These polynomials
can be used to present complicated functions. In
addition, some important properties are derived and
employed for obtaining the approximate solution of
Lane-Emden equations. Only a few number of
Boubaker wavelet basis is needed to achieve the high
accuracy. The approximate solutions obtained using
the collocation Boubaker wavelets are compared with
the exact solution and the agreement between them is
obtained. This method has reasonably shown good
performance for all of the Lane -Emden type
equations.
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