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Abstract:

Several attempts have been made to modify the quasi-Newton condition in order to obtain rapid
convergence with complete properties (symmetric and positive definite) of the inverse of Hessian matrix
(second derivative of the objective function). There are many unconstrained optimization methods that do
not generate positive definiteness of the inverse of Hessian matrix. One of those methods is the symmetric
rank 1( H-version) update (SR1 update), where this update satisfies the quasi-Newton condition and the
symmetric property of inverse of Hessian matrix, but does not preserve the positive definite property of the
inverse of Hessian matrix where the initial inverse of Hessian matrix is positive definiteness. The positive
definite property for the inverse of Hessian matrix is very important to guarantee the existence of the
minimum point of the objective function and determine the minimum value of the objective function.

Keywords: Hessian matrix, Positive definite, Quasi-Newton condition, Symmetric rank 1Update,
Unconstrained optimization

Introduction:

Symmetric Rank 1 (SR1 H-version) update Mahmood and S °® proposed a modified Broyden
is important in theoretical research and practical update based on the positive definite property of
computing. However, the drawback that SR1 (H- Hessian matrix, via updating the vector y ( the
version) update does not retain the positive difference between the next gradient of the
definiteness of updates hurts its performance in objective function and the current gradient of the
computing *. Fortunately, the drawback can be  objective function) and provided the global and
avoided if the modified quasi-Newton condition superlinear convergence of the proposed method.
has been employed to modify the SR1 (H-version) Razieh, B and H ' introduced the modified BFGS
update. method for solving the system of non-linear

Zhang and Ch ? introduced the modified equations by using Taylor theorem, this proposed
guasi-Newton equation which uses both gradient method is derivative-free, so the gradient
and function value information in order to yield a information is not needed at each iteration. Razieh, B
higher order accuracy for approximating the second  and H ®  proposed a modified quasi-Newton
curvature of an objective function. Yabe, Hand M ®  equation to get a more accurate approximation of
considered a modified Broyden family which the second curvature of the objective function by
includes the BFGS (Broyden-Fletcher—Goldfarb—  using Chain rule. Then, based on this modified
Shanno) update. Guo and J * modified the BFGS secant equation, they present a new BFGS method
update based on the new quasi-Newton equation, for solving unconstrained optimization problems.
Bri1Sk = Vi + Ay Sk ,where A; is a matrix. Bojari and R ° proposed a new family of modified

Mahmood and H ° Introduced the modified BFGS wupdate to solve the unconstrained
DFP (Davidon-Fletcher—Powell) update based on optimization problem for nonconvex functions
Zhang-Xu’s condition and provided the global and  based on a new modified weak Wolfe — Powell line
superlinear convergence of the proposed method. search technique. Yuan '° proposed a modified
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BFGS algorithm which requires that the function
value is matched, instead of the gradient value, at
the previous iterate. This new algorithm preserves
the global and local superlinear convergence
properties of the BFGS algorithm.

In this research a modified update for the
SR1 (H-version) update has been proposed to
guarantees the positive definite property and
preserves the symmetry property for the inverse of
Hessian matrix via updating the vector s which
represents the difference between the next solution
and the current solution. The proof of convergence
for the proposed method is given, and then tow
numerical examples has been solved by the original
SR1 (H-version) update and also solved by the
proposed method.

Modified SRI (H-version) Update:
In this section the positive definite property

for the inverse of Hessian matrix has been

guarantee by updating the vector s,. Then for this

purpose let us consider the objective function

f:R™ - R with the following assumptions:

i. f is twice continuously differentiable.

ii. f is uniformly convex, i.e. 3m,,m, € R*

dmy|lall* < aT V3f a<my|lal|*> Va€R"

SR1 update (7) try to update the Hessian matrix by

using the formula

Vk=BiSk) Wi—=Biesi)”

Bivr = By + (Vi=Bisi) sk

, and by using

Sherman-Morrison-Woodbury ~ formula !, the
inverse of the Hessian matrix can be write as
— _ T
Hypq = Hy, + (Sk—Hryi) (Sk—HrYx) (1)

(Sk—Hryi)Tyi
Which represent the solution of the quasi-Newton
condition *2
Hyt1 Yk = Sk 2

Where By, is the next Hessian matrix, By, is the
current Hessian matrix, Hy,4 is the next inverse of
Hessian matrix, Hj is the current Hessian matrix,
sy Is the difference between the current solution
and the next solution(s, = x4 — xx), and y, is
the difference between the current gradient and the
next gradient of the objective function (y, =
Vf (Xke1) = VF (i)

Eg. 1 does not preserve the positive
definite property because if (s — H,yi)Tye <0
then, ZTH,,,Z is not always positive for all Z €
R™, that means there is no guarantee to minimize
the objective function at each iteration, so if the
current inverse of Hessian matrix is positive definite
then, the next inverse of Hessian matrix may be not
positive definite and hence this iteration must be
deleted.

Now define:
Sk = Ay Sk

©)
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where a;, € R, and form Eq. 2
Hyp1 Vi = Si = aieS 4)

This is called the modified quasi-Newton condition.
The formula of inverse of Hessian matrix

for the SR1 (H-version) update has been considered

with replacing each s, by as; , in Eg. 1, and

hence:

(@rSk—Hiyi) (@rsk—Hiyi) ™

Hicrr = Hi + (@xsk—Hryi) Ty )
Set

Wy = (arSk — Hiyi)
(6)
and by substitution Eq. 6 in Eq. 5, then

Wka

Hirs = i+ ™
Now, set wly, >0 and by Eq 6, (apsi—
Hyyi)Ty, > 0and then, oy > Vi ’S‘y"

Yi Sk

Now set

_ ZkakYk

Vs (8)
Note that, one can choose another value of a; but
kakYk

must be satisfies the inequality a;, >

Now to show that % is posmve, where
k°k

Sk = Xg4+1 — Xg» Xp41 = X + Akpk , and the
direction p, = —HVf(xy), and A, > 0, where 4,
is the step size ™%, x; is the current solution, x4 is
the next solution, and Vf(x;) = Vf; is the current
gradient of the objective function f.
skBisk _ _ —MeSkVfk
visk  SkUfre=Vi)
where H, = Bt and yl's, = skyy.
Since sLVfi41 = 0 (conjugate direction property) *
sTBksk —/’lksTka
then, ’;}{Sk = —s,fl\;fk = A;>0,
and since By, = Hi! is positive definite (s] Bysy >
0and yfHyy, > 0), then yls, >0 and then
kakYk & HiYk
Vi Sk

— s VS k

Now '
S,fvfkﬂ—slfvfk

> 0 which means that a;, = 222Kk > ¢,

ykk

In addition, by more simplifying from Eq. 5
and Eq. 8, Hy,4 can be write as follows:

Hipr =
yEHRy ’
<(2kT—kk)5k_HkYk><(2 Yk y, — HkJ’k)
YkSk k Sk
H, +
kak)’k
9)

This is called the modified SR1(H-version) update.
The sequence of inverse Hessian matrix produced
by Eq. 9, never go to a near singular matrix which
make the computation never break before get the
minimizer of the objective function.
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Theorem 1
The modified SR1(H-version) update generate a
positive definite inverse of Hessian matrix if the
current inverse of Hessian matrix is positive
definite.
Proof:
Let 0 # z € R™, then

z"Hy412 =

T
ViHiy y
<(2—§T§kk)5k—HkJ’k><(2 ’; KTk Y s — Hk)’k)
zT(Hy + k %k

T

)Z
yiHiyk
2" Hy12 =
zTHyz +
T
((Zyk 24 R Kk Y g~ Hk)’k)((z ik R KTk Y g~ Hk)’k)
T yk k k Sk 7
YEHKYK
(10)
By substitution Eq. 6 in Eq 10,
zZ TZ TZ 2
zTHyi1z = zTHyz + yy;:;"k =zTHyz + ﬂz‘gflkll/k

Since yTHyy, > 0, and zTH,z > 0 by the positive
definiteness of Hy, and ||wlz|| is always positive,
therefore, zTHy,,z>0and Hy,, is positive
definite.

SR1 (H-version) update algorithm:

1. Choose the starting point x, and the initial
approximation Hy = I, error = € > 0, setk = 0.
2. Compute Vf(x)

3. I IV (x)|l < € then, stop and x;, is the optimal
solution, else continue to the next step.

3. Solve the system p,, = —H, Vf (x},) for py.

4. Do line search to find A, > 0,3 f(xy + Axpr) <
f(xie)-

5. Set Xk+1 = Xg + Akpk

6. Set s = Xpr1 — X, Vi = Vf (k1) — VF (k).
7. Compute Hy, 4 from Eq. 9.

8. Set k = k + 1 and go back to the step 2.

Convergence of the method:

In this section, the convergence of the
modified SR1 (H-version) update is provided. The
following assumptions are needed.

Assumption 1, °

(A): f: R™ - R is twice continuously differentiable
on convex set D € R™.

(B): f (x) is uniformly convex, i.e., there exist
positive constants ¢ and C such that for all
x €Lx)={x|f (x) < f(xp)}, where x, is
starting point, we have c |[u]|? < uTV2f(x)u <
C|lul|?>, Yu € R™
The assumption (B) implies that V2f(x)

positive definite on L(x), and that f has a unique

minimizer x* in L(x).
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Lemma 2, ¥
Let f:R™ — R satisfy Assumption 1, then

T T 2
s s s

[Iskll ’ lyll , k}’}; ’ kykz , ||);k|| are bounded .
el " skl ™ lsell® " llyell*™ spyx

Note that, from Assumption 1, and since
ST Bysk, Vi sy are bounded, and by lemma 2 then
Iyell Narsell yieersk  Yirse llawsil?
Newsill” Myell ” Myel? ” laesel?” vi axsi’

T T 2.T
Ve HrYre YiBrYk QkSkVk d Sk BrSk
, , —&k X% are bounded.
lyell? ” lyel? * lyel? lyill?
Lemma3,’

Under exact line search, Y||sxll?> and X ||yk|I?
are convergent.
Note that, from lemma 2 and lemma 3, clearly that
sk ll*

Yllagskll? is convergent, which gives Tl is

convergent and bounded.
Theorem 4
For modified SR1 (H-version) update, the
determinant of the next inverse of Hessian matrix is
given by:
|Hk+1 - |Hk | [W"r"
ksk

(HiYk — axSk), T = Yk
Proof:
From 5 Set Wk = (HkYk - aksk) then |Hk+1 |

], where wy =

— Bpwy

|Hk ‘ since Hy, is positive definite then,
k

exist a trlangular matrix L, € R™" 3 H, = L, L%,

and therefore
_ -1
P O P PO B PR
L' wi (Lt wi)T | i
wlyg

and apply Sherman-Morrison-Woudbury formula
for the last Eq. 6, then

| Hig | = |Hk|[1—%] _
|Hk | [1 - —WIILE:TT;EWI(] = ‘Hk | [1 - —Wéi’;t"],
ke k

Where B), = Lj TL,; , and |Hk+1 | =
|H | [kak :’kBka] |H | [Wk(S"dllckj(ka)
Set Tw = Yk — Bka, then

[Hyys _
nd 5]

(11)

One can use Eg. 11 to compute the
determinant of the inverse of Hessian matrix at
every iteration which must be always positive to
ensure that the matrix is positive definite.
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Theorem 5

Suppose that f(x) satisfies Assumption 1,
then the sequence {x,} generated by Egq. 5, is
converges.
Proof:
Consider Eq. 5
(axsk—Hryi) (@rsk—Hiyi) ™
H =H
ke+1 kTt (“k;k_HkYk)TYk ;
(HieYie—aresie) Hiyre—ese)” _ Hy, — W;;Wk, where w,, as

Wir Yk

Hy, —

) (Heyk—iesi)Tye
in theorem 4.

T
Define 7, = % where wy, and r, are as in
kYk
theorem 4, therefore
Witk _ wi (Yk—=Biewi)
J’EYk yl{yk
YeHKYkSkBSK
(Skyk)
YiVi
(12)
which is bounded by lemma 2 and lemma 3.

Define @ (Hy) = tr(ty) — in (|1, [) > 0
By replacing Hy, by Hy,1 ing(Hy), then
0 < @(Hgsn) = trtien) = tn (s )

Nk =

y}:HkZVk_

- erci ==l 35%)
= i) =
in IH, |) — InWlr) + Inwly)
0<@Her)  =p(H) — i — InWwind +
nwiyi) . (13)
were q;, = l‘&j’; and cos9;, = ”W"Ii’l‘lﬁ' }’jk”, by add and

subtract in(y,” y,) to the right hand side of Eq. 13,
therefor

_ _ak
0 < @(Hiy1) = @(Hy) cos?oy
T T
In(wir) + In(wi yi) + (i’ yi) — ln();k Vi)
_ _ 4% 3, Wik
- (p(Hk) (,‘05219]( ylb’k +
T
Wir Yk
In VEYK
0< <P(Hk+}1) <
¢(Hi) = g — In(md) +in(q) + 1+

In(cos?9y) — In(cos?9y,)
0 < @(His1) < @(H) + (1 -

cos29y
COZZ?k) — In(ny) + In(cos?9y)

(14) Now consider the function f(t)=1—-t+
In(t)

dk

fl©)==1+:=0
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=t=1 is extreme
point.
" 1
f@®= 2
att=1
" 1
f(t)=—F——1<0

The function f(t) has a maximum value at t = 1,

thus, max f(t)=1-1+In(1) =0, Vt> 0,
Then, f)=1—-t+In(t) <0, vt >0, and
hence (1 —
dk dk Ak
cos29y coszﬁk) =0,V c0s29y >0
(15)

By substitution Eq. 15 in Eq. 14, then
0 < @(His1) < @(Hy) — In(mo) + ln(C(osz)ﬁk)
16

By summing Eq. 16 from j = O up to k
0< Z?zo ‘P(Hj+1) <
Yioow(H;) + Xz (_l"(nj)) + Xf=o In(cos?9))
0< XX op(Hj1) <

?:1 ‘P(Hj) + Z?:o C+ Zﬁo ln(coszﬁj),
C = —ln(nj)
0 <@(Hy) + -+ @Hps1) < @(Hp) + -+
@(Hi) + C(k + 1) + X¥_g In(cos?9))
0 < @(Hy+1) < @(Hp) +C(k+ 1)+

k_o In(cos®;)

(17)
Where the constant C is assumed to be positive
without loss of the generality. From Zoutendijk
condition (1) (if f satisfy assumption 1, then
Y cos?8||Vf||? < ) and hence
limy_ o ||Vf|lcosd, = 0. If 9 is bounded away
from 90°, 3u€R*YDcosd >u>0, for k
sufficient large and hence ||Vf|| — 0 and by the first

order necessary condition theorem (1), the prove is
complete.

where

Now, assume by contradiction that cos9; — 0,
then 3k; > 03 Vj > ky,
In(cos?¥;) < —2C (18)

From Eq.17, and since Y% ,in(cos?d;) =
Zﬁo In(cos?Y;) + Z;Lklﬂ In(cos?9;), then
0 < @(His1) <@(Hp) +C(k+ 1)+
Zﬁo In(cos?9;) + X¥_y 41 In(cos?9))
(19)
By substitution Eq.18 in Eq.19

0 < @(Hps1) <@(Hp) +C(k+1)+
Z;ZO In(cos®9;) + Xh_y, +1(—20)

0 < @(Hi+1) <@(Hp) +C(k+1) +
YL In(cos?9;) — 2C(k — ky)
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0 < @(Hpyq) < @(Hy) + Z;‘;O In(cos?9;) +
2C.ky+C—C.k <0, for k sufficiently large,
which is a contradiction, then coszﬁj - 0 is not
true and limy,_,,inf||Vf]| = 0 , and again by the
first order necessary condition theorem (1) and the
prove is complete.

Numerical Examples:

In this section, two numerical examples are
studied by modifying SR1 (H-version) update. The
results are compared with the results obtained by
the original method.

Example 1:
In this example the objective function

f(x) =1 —=x)%+ (x; —x;)? 1, has been solved

by using the original method firstly, and then also

solved by our method.

Min.  f(x) = (1 —x1)% + (2 — x1)?,

0

0 _ _ _

x° = [_0-5], Hy =1, error = 0.005
Iteration 1

4x, — 2x5 — 2 -1

Vf(x) = [ —12x1 +22x2 ],Vf(xo) - [—1]’
HoVf () =[]
xt=x0+ AP, = [_0.;:_ o) fixH) =
(1 - /10)2 + (_05 + ).0 - 10)2 = (1 - /10)2 +
0.25,
or(x!) _

a4

with

Py

1-2,=0,1, =1, and hence x! = [0?5],
Vi = [—11]

so=xt—x0= [ﬂ,

2
Yo = V) - VF(x®) =[], Hy = Ho +
(So—HoY0)(So—Hoy)” _ [0.5 0.5 .
(So—=HoY0)Tyo N [05 05], and since

IVF(xD)|| > error.

Iteration 2
po=-mvfe =[] w2 =[ 5] s=[]

vfa?) = [o] . vo = [o] and since vl =
0 < error, therefore the method is terminated at
the solution x* = [0?5], and the minimum value of
the objective function is f(x*) = 0.25.

Now the same example has been solved by our
method as follows:
Iteration 1

Vi) = [4f12;12f22;22]'vf @ =73

1
P0=_H0Vf(x0)=[1], x1=x0+10P0=

301

A0)? = (1 —29)%+0.25,

of(x") _ _ _ 1_[1
“on = 1-14,=0,4, =1, and hence x* = [0.5],
— a1 _ A0 1 1y — 1
so=at=x0 =[] Vf(xT)_ il
_ 1\ _ oy _ [2 _ o YoHoYo _
Yo =VFGN) = Vf(x¥) = [, @0 =220 =4,

(ctoSo—HoYo)(@oSo—HoYo)T 2 2
H,=H = and
L ot (@oSo—HoY0)T¥o [2 5]’
since ||Vf(x1)|| > error, and continue to the next
iteration

Iteration 2
R R H Rt | SO A

2y _ [0 -1 B
Vf(x)—[o], yl—[l], a, =12, H,
[; 52;] and since ||[Vf(x?)|| =0 < error,
therefore the method is terminated at the solution

x* = [ﬂ and the minimum value of the objective
functionis f(x*) = (1-1)2+ (1 —-1)2 =0.

Example 2:

In this example the Freudenstein and Roth
function (1),has been solved by using program
MATLAB, and the final results firstly by the original
method, and then by our method has been given
Min. f(x) = {13+ x; + [(5 — x3)x, — 2]x,}2 +
(=29 + x; + [(xy + Dx, — 14]x,}2,

with x0 = [ > Hy = 1, error=0.0005.

Maximum
exceeded:;
increase options.MaxFunEvals
X =
-3514897
8.2397
FVAL = 14596e+005
OUTPUT =
iterations: 43
funcCount: 202
stepsize: -3.6779e-032
algorithm: 'medium-scale: Quasi-Newton
search'
GRAD =
1.0e+005 *
-0.0105
5352
INVHESSIAN =
1.0e-005 *
0.0908 -0.1254
-0.1254 0.3665

number of function evaluations

line
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Now the same example has been solved by our
method:
X =
10.8384
3.8545
FVAL =
1.0383e-015
OUTPUT =
iterations: 24
funcCount: 202
stepsize: 2.9014e-016
algorithm: 'medium-scale:
line search’
GRAD =
-0.0008
-0.0416
INVHESSIAN =
1.0e+005 *
12018 0.7665
0.7665 0.1424

Quasi-Newton

From example 1, SR1 (H-version) update
cannot terminate successfully at the minimum (min.
f =0.25), because of the non-positive definite of
inverse of Hessian matrix H; generated in first
iteration (|H.| =0), and hence the method
terminated at a saddle point which is not minimizer
of the objective function, but clear that the modified
SR1 (H-version) update can terminate successfully
at the minimizer of the objective function.
Moreover, the inverse of Hessian matrix generated
by our method is positively definite at every
iteration. From example 2, the function evaluation
(FVAL) at the last iteration for the original method
is very far from the exact value (min. f = 0), but in
our method, it is clear that the function evaluation
(FVAL) at the last iteration is very closely to the
exact value ( min. f =0). This means that the
original method cannot successfully terminate at the
minimum because of the not positive definite of
inverse Hessian matrix generated by the method in
iteration number 43 where
INVHESSIAN=

1.0e-005 *

-0.1227 0.2728

0.2728 -0.3763

is very closely to zero (|H,3| = 0.0000000176)
or near singular matrix.

Conclusion:

In this paper, the SR1 (H-version) update
has been modified to preserve the positive definite
property for the next inverse of Hessian matrix at
each iteration if the current inverse of Hessian
matrix is positively definite which makes the
computation continue until the objective function
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terminates at the minimum of the objective
function. Moreover, theorem 1 proves the positive
definiteness property and theorem 5 proves the
convergence of our method and also two numerical
examples are established to support our method.
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