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Abstract:

Variable selection is an essential and necessary task in the statistical modeling field. Several studies have
triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a
researcher needs to ask himself/herself what are the most significant variables that should be used to describe
a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler
techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the
parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new
approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute
Shrinkage and Selection Operator (Lasso), and Tikhonov Regularization (Ridge). The simulation
studiesshow that the performance of our method is better than the othersaccording to the error and the time
complexity. Thesemethodsare applied to a real dataset, which is called Rock StrengthDataset.The new
approach implemented using the Gibbs sampler is more powerful and effective than other approaches.All the
statistical computations conducted for this paper are done using R version 4.0.3 on a single processor
computer.

Keywords: Bayesian, Gibbs, Lasso,Markov chain Monte Carlo,Posterior, Ridge, Variable selection.

Introduction:
The relationship between a set of variables,
X1, X2, s Xp, and a response, y, can be expressed by
the following linear regression model,
Vi = Bo + Bixix + BaXiz + - + Bpxip + €,
€ ~ N(0,0%) Vi
=1,..,n
The system of n equations (Eq.1) can be
expressed in matrix notation as follows,
y=XB+e¢ € ~ MVN(Oyp, Zyxn) (2
where y is a nx 1 vector, X isa nx(p+1)

difficult to build and interpret a model that uses all
the explanatory variables. In this case,variables
selection techniques can play an important role. The
set of coefficients, [, can express whether the
1) explanatory variablesare important for the model or
not. When the value of a coefficient is zero or very
close to zero, then its corresponding variable is not
significant to be chosen in the model.

Variable selection can be made using several

traditionalapproaches. For example, Chi-square *,

matrix, f is a (p+1)x 1 vector, € is a nx1
vector, 0 is a nx1 vector and ¥ is a nXn
matrix.Generally,  selectingcertain  explanatory
variables that can be used to describe the response
variable is called feature selection (shrinkage). The
feature selection is used to i) remove the
unimportant variables which do not add any
information; ii) reduce the computation time by
shrinking the data size; iii) avoid the overfitting. To
decide which variables are irrelevant is hard for
high dimensional datasets. On the other hand, it is

ANOVA? and Pearson correlations can compute
the variables’ impact. Depending onthe coefficient
values, itcan be determined whether the variable is
important or not. Moreover, forward and backward
selection methods are used to select the best subsets
of variables by following some steps®.These
methods are slow with large datasets®. In this paper,
variables are selected based onthe influence of their
coefficientson the model.

In general, the set of parameters, {B;:i =
1, ...,n},can be estimated from nof the observations
using the Ordinary Least Squares (OLS) criterion.
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The set of estimated parameters is denoted by Sy,
and defined as follows,

Bors = argminﬁeRp“Y - X,3||2
= argmingegp (Y 3)
- XB)' (Y — XB)

From Eq.3, o5 is the value of B that givesas
the minimum squared norm of error between the
observed value and estimated value. The first step
to derive B¢, let h = (Y — XB)T (Y — XB), and by
expanding h yields:

h=YTY — BTXTY —YTXB + BTXTXpB
=YTY — 2BTXTY + BTXTXp
Taking the derivative to 3,

oh _ —2XTy + 2XTXp. If% = 0,then XTXpB
ap p
=XTy
Therefore,
Pors = XTX)1XTY (4)

OLS will have unbiased results if X and yhave
an approximately linear relationship.It also has a
low variance if n > p. However, in real life, in
many datasets such as health, business, and
economy datasets, the number of explanatory
variables can be much larger than the number of
samples, p » n. Hence,the OLS solution is not
unique. A datasetmay be high variability in the
estimators, which causes poor predictive and
overfitting. For these types of datasets,researchers
usually use Ridge and Lasso modelsto select
variables.

This paper is organized as follows: Section 2
provides a background for Ridge and Lasso models.
In section 3, Bayesian inference is discussed.
Markov chain Monte Carlo and Gibbs sampler are
discussed in sections 4 and 5; respectively. In
section 6, a new variable selection method is
applied to a simulation dataset. Real data analysis is
introduced in section 7. Section 8 presentsresults
and discussion of the variable selection for a real
dataset between the new method and some
commonly used methods. In the end, the
conclusionis given in section 9.

Ridge and Lasso

This section reviews two variable selection
(shrinkage) methods named Ridge®and Lasso.
Shrinkagemethods can be wused wunder some
constraints depending onthe size of thedataset.The
regression model can be fitted using all the p
variables, but the shrinkage technique improves the
accuracy and stability by reducing the number of
variables. TheRidge and Lasso models aim to
estimate the coefficient of some variables asO or
close to zero so that those variables can be excluded
from the model.p = (B, fu, ... .B,) that minimizes

the Residual Sum Squares (RSS) is the solution to
the OLS fitting procedure; i.e.,

n n 2
RSS:Z Yi_,BO_Z,Bjxij
=1 =

Similarly, Ridge regression seeks the vector fTi@9e
that minimizes the penalized RSS, RSS+

AXE_ Biie.,
n 2
Yi = Bo— Z Bjxij
=1

P P
+AZ,8]-2 , subject to Z'sz <t
j=1 j=1

where the value oft is the upper bound for the sum
of the coefficients. The complexity parameter,A, is
greater than or equals to 0. If 2 = 0, then f749¢ =
B, as A - oo, ,[?”'dge—>0p. And 0<A<
balances linear regression model fitting and
shrinkage of the coefficients. The shrinkage penalty
is small whenpy, B,, ..., andp, are close to zero®.
Unlike OLS, ridge solutions are not unique. As
a result, before the estimation, the inputs should be
standardized. First,Byis estimated separately as

y = ?21%, and the remaining parameterscan be

estimated by using the data matrix X as follows,
pridge = (XTx + AN~1XTy, where [ is the
p X p identity matrix.

To constrain the size of OLS estimatesdifferent
kinds of penalization can be considered. For
example, L; norm can be used as penalty
encompasses, so

n

[749¢ = minimize Z

i=1

n

(19550 = minimize Z Yi = Bo

i=1

n 2

j=1
14

+2)1gl),  azo0
j=1

Lasso propertyallowsexcluding variables by
setting their coefficients to be zero’. The reduced
model becomes more efficient, especially when the
number of variables is much larger than the number
of samples, p > n.
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Bayesian Inference of a Multivariate Linear
Regression

Eqg.2 is used to apply Gibbs sampler in the
Multivariate Linear Regression (MLR). From
Eq.2,it can be concluded
that y ~ MVNn(XB; a2In).Therefore, the
likelihood function,denoted byL(y), can be
expressed as follows,

1 =] [row
i=1

-1 -1
1 (Fo-xpT(m)  0-xp))

(Vo?)"
1 (—(y—XB)T(y—XB))
=—e 20? (6)
(0?)2

The prior for Bis chosen to be Multivariate
Normal Distribution with mean 0 and covariance
matrixcoly4q;i. €., ~ MVN(O,coly41).Co is
usually chosen to be a large positive value that leads
to a large variance®. The prior for o'2is chosen to be
inverse Gamma; i.e, 0% ~ IG(ay, by).ay and
byare the initial valuesthat can be any positive
numbers. The conditional posterior distribution for
B can be written as follows,

n(flo?, D) « L(¥) X H(Gzlﬁ,?)
5 EXP(_} (v —XB) (y—Xﬁ)+ﬁ ﬁ)
Al a? Co
[+, T
o EXP(_} y'y —y"XB - B"X"y + BTX"XB
2] g2
T
+M>
Co
x EXP HL X X TXTX
—2_02(—3/ B—BXy+pB B)
+@>
Co
1[1 T
« EXP <— 2o (—28"XTy + BTXTXP) + %D
« EXP(_} —ZﬁTXTy+BTXTX/3+BTﬁD
2] o? Co
1] XTy XTx
e EXP(—E_—ZBT?+[3T<7 B

+ BT (CI—O)ﬁD
x EXP (—%[—ZﬁTX(%'*' BT [Xc%-l' cl_o] ﬂ])

T
Considerh = X2

xTx 1
and A= —+—, so the
o2 o2 Co

posterior distribution for S can be written as
follows,

n(Bla?, D) « f(y) x [1(¢?)
« EXP ((—%[ﬁTAﬁ - ZBTb]))

«x EXP <—%(ﬁ -p)"d(B - p))

« EXP (— % (B-A"TD)T A(B - A‘lb)> (7

Eq.7 is a MVN density with u=A~'b and X =
A~1.Hence, the full conditional posterior for g is

T
B ~ MVN(A~'b,A~1), where A = XU—ZX +Ci
0

XT
and b = —
(o

The full conditional posterior distribution for 2 is

n(a?|B, D)
o (02)” % EXP (— %%) (02)~(@*DEXP (— %)
where E = (y —XB)T (y — XB)

n l E
___(a +1)
x (0?)72 TV EXE ( ) <2 bo))

)

The above function isthe density function of the
inverse gamma distribution with a shape equal to
=+ a, and rate equal to g +by. e,
a? ~IG(E+a ﬂ+b )
2 0 0 8)

So far, the posterior distributions for S(Eq.7)
and ¢2(Eq.8) have been derived. Hence, the
estimated values for f and o2 can be found by
calculating theirsample means. This can be done
using Markov chain Monte Carlo (MCMC)without
calculating the marginal likelihood for g and ¢2.In
the following section, a brief discussion of MCMC
is given, and thena particular case from MCMC
(Gibbs sampler) is explained in detail.
Markov Chain Monte Carlo

MCMC is an essential technique, and it is used
frequently in many statistical applications. In many
cases, it is challenging to sample from a target
posterior density. ThenMCMC is used®. There are
three popular MCMC sampling techniques, such as
Metropolis-Hastings, slice sampling’®, and Gibbs
sampling".MCMC methods are derived from a
Monte Carlo (MC)?. A chain is used to
approximate samples of desired distribution in
MCMC, and the approximation is
generallyimproved after several stepshave been
done®.
Gibbs Sampler

In Bayesian inference, Gibbs sampling is
commonly used bystatistical inference without
calculating the marginal likelihood function. A high
dimensional problem can be broken down into
numbers of lowdimensional problemswhen Gibbs
sampler is used.The vector of parametersshould
besplit into several blocks, and theneach block can
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besampled from its conditional distribution given
other blocks.That means Gibbs sampling generated
posterior samples by sweeping through each block
variables*. Gibbs sampling issimilarto the other
MCMC algorithms that generate a chain of samples
where each of them is correlated with its nearby
samples. Therefore, if the independent samples are
desired, the samples should be thinned to get an
independent sample set’. Suppose there aren
parametersé, 6,, ..., 6,,,Gibbs sampling canestimate
the parameters by updating them one by one.
Evaluating the joint posteriorf (64,05, ..., 6,|Data)
is the first step, and it can be done by multiplying
the likelihood with the prior £(6,), f(62), ..., f(6).
For instance,the conditional posterior foré,,
f(6416,,64, ...,6,), can be  found by
assuming#,, ..., 0,are fixed atcurrent values. This
process should be repeated for all the parameters
6,,05,...,0,. Algorithml summarizesGibbs
sampler steps™.

Algorithm:Gibbs Sampler

INPUT: 9¢-D = (9,070, 9,(1,  9,("1)
OUTPUT: 8@ = (9,?,0,7, ...,0,?)
for j = 1,2,..,N do
0.9 ~ £(6,]6,57V,0,97Y,...,0,077)
0,7 ~ £(6,]60,9,0,57Y,...,6,07V)
0;9 ~ f(65]6,7,0,9,...,0,077)

0,7 ~ £(0:]6:7,0,7,...,0,,7)
end for

Simulation Studies

Four datasetswithfour differentcovariates (8, 20,
40, 60)were generated with 1000cases.The
covariates were simulated independently from a
normal distribution, and then Eq.1was used to find
the responses for each dataset. The smallest dataset,
8 covariates, is discussed in detail, and the results of
other datasets are summarized. Mean Squared Error
(MSE) and time-complexity are represented in
Fig.1. Figure la shows that Gibbs gives the lowest
MSE in all four simulated datasets. Moreover, time
consumption is  checked forall  datasets.
Fig.1bshows that Gibbs uses less time compared to
the other methods.
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Figure 1. Comparison among 4 methods (OLS,
Lasso, Ridge, and Gibbs) in the 4 simulation
datasets.

The true parametersfor the first simulation
datasetare: By =1.1, B; = —2.2, f, =43, B3 =
1.2, By = —2.2,s = 6.7, fg = —1.3, B; =
3.3and fig = 3.1. The posterior distribution that
has been derived in Eq.7 and 8have beenrun with
10000 iterations. Simulated samples arethinned at
every 5t"sample to reduce the correlation between
the samples.Both Gibbs sampler and Lasso
methodsare used to identifythe most important
variables from the 8 variables.Parameters
aresummarized from their corresponding posterior
means, and some of themarevery good estimatorsof
the corresponding true value. In Fig.2, The samples
are plotted as histograms, and the true valuesare
marked with the blue lines. The distributions for
some of the posterior samples are approximately
normal. The true values of the parameters are close
to the estimated parameters.Thecovariates
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associated withg,, 5., B, Leand B,were selected
as the most significant covariates because they were
close to the true model coefficients, as
showninTable 1.However, in Lasso and Ridge
methods,all  the covariateswere selected as
important variables.Computationally, selecting all
the variables as important variables is inefficient
because both the error and time willincrease for the
large datasets.

Moreover, in Tablel, the parameters’ actual
values are compared with their corresponding
posterior sample means.The 95percentcredible
intervals (CI) are calculated for all the parameters.
It is clear that the values that are not considered a
significant lie in large CI; On the other hand, all
significant parametersare centered innarrow CI.
This indicates that the estimation is reasonable and
practical.

bs

bg

by
I T T T 1
-5 -4 -3 -2 -1
by
I T T T
-6 -4 -2 0
b7
I T T T
0 2 4 6

Figure 2. Posterior histograms for B, ..., Bg, blue lines denote the simulation’s actual values.

Table 1. True values, predicted values, and 95% credible intervals.

Parameter True Value  Posterior 95% CI Selected Variables (YES/NO)

Means Gibbs Lasso Ridge
Bo 1.1 1.003 (—0.534,2.398) YES YES YES
B1 —2.2 —3.321 (—5.822,-1.272) NO YES YES
B2 4.3 4221 (3.482,5.448) YES YES YES
B3 1.2 2.322 (0.238,4.230) NO YES YES
B —2.2 —2.331 (—3238,0.382) YES YES YES
Bs 6.7 8.263 (5.239,9.384) NO YES YES
Be -1.3 —1.294 (—3.484,1.823) YES YES YES
B, 3.3 3.309 (1.349,5.282) YES YES YES
Bs 3.1 4.872 (3.392,7.849) NO YES YES
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Real data Analysis

In this section, the Rock Strength Dataset
(RSD) is analyzed. RSD contains information
regarding the relationship between 8 predictors,

which are %Quartz (quatz),
%Plagaoclase(plag), %K. feldspar
(kfds),%Hornblende

(hb),

Grain size (gs), Grain area (ga), Shape Factor (sf)
,Aspect Ratio (ar), and the response, Uniaxial
Compressive  Strength  (UCS), for 30 rock
specimens.The dataset is collected from theUCI
Machine Learning Repository.

Figure 3a shows the heatmap for the8
predictors. The heatmap did not give us sufficient
information about the data. As can be seen,the level
of correlation is represented across all samples. The
orange colorrepresents the high correlation, and the
low correlation is marked with yellow color. The
dataset was normalized, and then predictors’
boxplots are plotted.InFig.3b, some outliers in the
dataset are realized.So,they areremoved before
running Gibbsand Lasso variables selection
methods.The correlation matrix for the 8 predictors
in the real data set (RSD) is given in Fig.4. Most of
the covariates are approximately normally
distributed. gsand gahavea  strongpositive
correlation, while plagand kfdshave a very low
correlation.

a. Heatmap for SRD variables

o

o

o

| I II I

quartz  plag

T
kfds

T
hb

T
gs

b. Boxplot for SRD variables
Figure 3.Heatmap and boxplot for the 8
predictors in SRD.
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Figure 4.correlation matrix for the 8 predictors in SRD and their distributions.

Result and Discussion of the Variable
Selection in RSD

Gibbs sampler has been used to select the
essential variables in RSD. If all the variables are
used, then the general multivariate model should be

y = Bo + Biquartz + p, plag + f3kfds
+ Byshb + Bs gs + Bsga + B7sf
+pgar+¢
where € ~ MNN(O,, I,)

In the beginning, the dataset isnormalized.
Gibbs sampler is run for1000 iterations to create the
posterior samples of the parameters. The prediction
performanceischecked by using leave-one-out-cross
validation (LOOCV)(10). In LOOCV,one of the
observations left out,and the model’s coefficients
are estimatedwith the rest of the observations. Since

procedure isrepeated 30 times. It was found that 5
out of8 posterior means lie inside the 95percent
credible intervals. These variables were selected as
important predictors. Therefore, using the Gibbs
method, the new model becomes

y = Bo + Brquartz + Bz3kfds + Bs gs + Brsf +

ewhere € ~ MNN (O, I,)

OLS, Ridge, Lasso, and Gibbs selection methods
were applied on the RSD, and the outputs are shown
in Table2. Gibbs methodgives the smallest MSE,
and takes less time compared to the other methods.
Table 3. shows that the posterior means for the
parameter arerepresented with their 95percent CI.
Gibbs selects 4 variables as essential variables:
quartz, Kfds, gs, and sf, while Lasso
selects6variables, and Ridge selects all the 8

the real data has only 30 observations, the  Variables.
Table 2. Comparison between OLS, Ridge, Lasso, and Gibbs selection methods
Parameter OLS Ridge Lasso Gibbs
MSE 2.311 1.934 0.773 0.460
Time ~8 seconds ~6 seconds =3 seconds <1 second
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Table 3.Posterior means, 95% CI, and the selected variables.

Parameter Posterior Means 95% ClI Selected Variables (YES/NO)
Gibbs Lasso Ridge
Bo 104.943 (103.533,106.232) YES YES YES
B, quartz 2.351 (0.375,4.234) YES YES YES
B, plag —3.685 (—3.561,13.873) NO NO YES
B; kfds —0.396 (—2.832,2.134) YES YES YES
B, hb 8.566 (—4.054,7.184) NO YES YES
Bs gs —-3.124 (—4.334,1.334) YES YES YES
Bs ga —5.604 (—3.442,12.497) NO YES YES
B sf 2.761 (0.476 ,4.512) YES YES YES
Bg ar 9.268 (—2.442,7.583) NO NO YES
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