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Abstract: 
Variable selection is an essential and necessary task in the statistical modeling field. Several studies have 

triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a 

researcher needs to ask himself/herself what are the most significant variables that should be used to describe 

a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler 

techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the 

parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new 

approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute 

Shrinkage and Selection Operator (Lasso), and Tikhonov Regularization (Ridge). The simulation 

studiesshow that the performance of our method is better than the othersaccording to the error and the time 

complexity. Thesemethodsare applied to a real dataset, which is called Rock StrengthDataset.The new 

approach implemented using the Gibbs sampler is more powerful and effective than other approaches.All the 

statistical computations conducted for this paper are done using R version 4.0.3 on a single processor 

computer. 

 

Keywords: Bayesian, Gibbs, Lasso,Markov chain Monte Carlo,Posterior, Ridge, Variable selection. 

 

Introduction: 
The relationship between a set of variables, 

𝑥1, 𝑥2, … , 𝑥𝑝, and a response, 𝑦, can be expressed by 

the following linear regression model, 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖 ,

𝜖𝑖 ∼ 𝑁(0, 𝜎2) ∀𝑖
= 1, … , 𝑛. 

(1) 

The system of 𝑛 equations (Eq.1) can be 

expressed in matrix notation as follows, 

𝑦 = 𝑋𝛽 + 𝜖, 𝜖 ∼ 𝑀𝑉𝑁(0n, Σn×n) (2) 

where 𝑦 is a 𝑛 × 1 vector, 𝑋 is a 𝑛 × (𝑝 + 1) 

matrix, 𝛽 is a (𝑝 + 1) × 1 vector, 𝜖 is a 𝑛 × 1 

vector, 0 is a 𝑛 × 1 vector and Σ is a 𝑛 × 𝑛 

matrix.Generally, selectingcertain explanatory 

variables that can be used to describe the response 

variable is called feature selection (shrinkage). The 

feature selection is used to i) remove the 

unimportant variables which do not add any 

information; ii) reduce the computation time by 

shrinking the data size; iii) avoid the overfitting. To 

decide which variables are irrelevant is hard for 

high dimensional datasets. On the other hand, it is 

difficult to build and interpret a model that uses all 

the explanatory variables. In this case,variables 

selection techniques can play an important role. The 

set of coefficients, 𝛽, can express whether the 

explanatory variablesare important for the model or 

not. When the value of a coefficient is zero or very 

close to zero, then its corresponding variable is not 

significant to be chosen in the model. 

Variable selection can be made using several 

traditionalapproaches. For example, Chi-square 1, 

ANOVA2, and Pearson correlations can compute 

the variables’ impact. Depending onthe coefficient 

values, itcan be determined whether the variable is 

important or not. Moreover, forward and backward 

selection methods are used to select the best subsets 

of variables by following some steps3.These 

methods are slow with large datasets4. In this paper, 

variables are selected based onthe influence of their 

coefficientson the model. 

In general, the set of parameters, {𝛽i: 𝑖 =
1, … , 𝑛},can be estimated from 𝑛of the observations 

using the Ordinary Least Squares (OLS) criterion. 
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The set of estimated parameters is denoted by 𝛽̂𝑂𝐿𝑆 

and defined as follows, 

𝛽̂𝑂𝐿𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽∈ℝ𝑝||𝑌 − 𝑋𝛽||
2

= 𝑎𝑟𝑔𝑚𝑖𝑛𝛽∈ℝ𝑝(𝑌

− 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) 

(3) 

From Eq.3, 𝛽̂𝑂𝐿𝑆 is the value of 𝛽 that givesas 

the minimum squared norm of error between the 

observed value and estimated value. The first step 

to derive 𝛽̂𝑂𝐿𝑆, let ℎ = (𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽), and by 

expanding h yields:  

ℎ = 𝑌𝑇𝑌 − 𝛽𝑇𝑋𝑇𝑌 − 𝑌𝑇𝑋𝛽 + 𝛽𝑇𝑋𝑇𝑋𝛽
= 𝑌𝑇𝑌 − 2𝛽𝑇𝑋𝑇𝑌 + 𝛽𝑇𝑋𝑇𝑋𝛽 

Taking the derivative to 𝛽, 
𝜕ℎ

𝜕𝛽
= −2𝑋𝑇𝑌 + 2𝑋𝑇𝑋𝛽. If

𝜕ℎ

𝜕𝛽
= 0, then 𝑋𝑇𝑋𝛽

= 𝑋𝑇𝑌 

Therefore, 

𝛽̂𝑂𝐿𝑆 =  (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (4) 

OLS will have unbiased results if 𝑋 and 𝑦have 

an approximately linear relationship.It also has a 

low variance if 𝑛 ≫ 𝑝. However, in real life, in 

many datasets such as health, business, and 

economy datasets, the number of explanatory 

variables can be much larger than the number of 

samples, 𝑝 ≫ 𝑛. Hence,the OLS solution is not 

unique. A datasetmay be high variability in the 

estimators, which causes poor predictive and 

overfitting. For these types of datasets,researchers 

usually use Ridge and Lasso modelsto select 

variables. 

This paper is organized as follows: Section 2 

provides a background for Ridge and Lasso models. 

In section 3, Bayesian inference is discussed. 

Markov chain Monte Carlo and Gibbs sampler are 

discussed in sections 4 and 5; respectively. In 

section 6, a new variable selection method is 

applied to a simulation dataset. Real data analysis is 

introduced in section 7. Section 8 presentsresults 

and discussion of the variable selection for a real 

dataset between the new method and some 

commonly used methods. In the end, the 

conclusionis given in section 9. 

Ridge and Lasso 
This section reviews two variable selection 

(shrinkage) methods named Ridge5and Lasso. 

Shrinkagemethods can be used under some 

constraints depending onthe size of thedataset.The 

regression model can be fitted using all the p 

variables, but the shrinkage technique improves the 

accuracy and stability by reducing the number of 

variables. TheRidge and Lasso models aim to 

estimate the coefficient of some variables as0 or 

close to zero so that those variables can be excluded 

from the model.𝛽̂ = (𝛽̂0, 𝛽̂1, … ,𝛽̂𝑝) that minimizes 

the Residual Sum Squares (RSS) is the solution to 

the OLS fitting procedure; i.e., 

𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑛

𝑗=1

)

2
𝑛

𝑖=1

 

Similarly, Ridge regression seeks the vector 𝛽̂𝑟𝑖𝑑𝑔𝑒 

that minimizes the penalized 𝑅𝑆𝑆, 𝑅𝑆𝑆 +
𝜆 ∑ 𝛽𝑗

2𝑝
𝑗=1 ,i.e., 

𝛽̂𝑟𝑖𝑑𝑔𝑒 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑛

𝑗=1

)

2
𝑛

𝑖=1

+ 𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1

) , subject to ∑ 𝛽𝑗
2

𝑝

𝑗=1

≤ 𝑡 

where the value of𝑡 is the upper bound for the sum 

of the coefficients. The complexity parameter,𝜆, is 

greater than or equals to 0. If 𝜆 = 0, then 𝛽̂𝑟𝑖𝑑𝑔𝑒 =

𝛽̂, as 𝜆 → ∞, 𝛽̂𝑟𝑖𝑑𝑔𝑒 → 0𝑝. And 0 < 𝜆 < ∞ 

balances linear regression model fitting and 

shrinkage of the coefficients. The shrinkage penalty 

is small when𝛽1, 𝛽2, … , and𝛽𝑝 are close to zero6. 

Unlike OLS, ridge solutions are not unique. As 

a result, before the estimation, the inputs should be 

standardized. First,𝛽0is estimated separately as 

𝑦̅ = ∑
𝑦𝑖

𝑛

𝑛
𝑖=1 , and the remaining parameterscan be 

estimated by using the data matrix 𝑋 as follows, 

𝛽̂𝑟𝑖𝑑𝑔𝑒 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑦, where 𝐼 is the 

𝑝 × 𝑝 identity matrix. 

To constrain the size of OLS estimatesdifferent 

kinds of penalization can be considered. For 

example, 𝐿1 norm can be used as penalty 

encompasses, so 

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (∑ (𝑦𝑖 − 𝛽0

𝑛

𝑖=1

− ∑ 𝛽𝑗𝑥𝑖𝑗

𝑛

𝑗=1

)

2

+ 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

) , 𝜆 ≥ 0 

(5) 

 

Lasso propertyallowsexcluding variables by 

setting their coefficients to be zero7. The reduced 

model becomes more efficient, especially when the 

number of variables is much larger than the number 

of samples, 𝑝 ≫ 𝑛. 
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Bayesian Inference of a Multivariate Linear 

Regression 
Eq.2 is used to apply Gibbs sampler in the 

Multivariate Linear Regression (MLR). From 

Eq.2,it can be concluded 

that 𝑦 ∼ 𝑀𝑉𝑁𝑛(𝑋𝛽; 𝜎2𝐼𝑛).Therefore, the 

likelihood function,denoted by𝐿(𝑦), can be 

expressed as follows, 

𝐿(𝑦) = ∏ 𝑓(𝑦𝑖)

𝑛

𝑖=1

=
1

(√𝜎2)
𝑛 𝑒

(
−1

2
(𝑦−𝑋𝛽)𝑇(𝜎2𝐼𝑛)

−1
(𝑦−𝑋𝛽))

=
1

(𝜎2)
𝑛

2

𝑒
(

−(𝑦−𝑋𝛽)𝑇(𝑦−𝑋𝛽)

2𝜎2 )
(6) 

The prior for 𝛽is chosen to be Multivariate 

Normal Distribution with mean 0 and covariance 

matrix𝑐0𝐼𝑝+1; i. e. , 𝛽 ∼  𝑀𝑉𝑁(0, 𝑐0𝐼𝑝+1).𝑐0 is 

usually chosen to be a large positive value that leads 

to a large variance8. The prior for 𝜎2is chosen to be 

inverse Gamma; i. e., 𝜎2 ∼  𝐼𝐺(𝑎0, 𝑏0).𝑎0 and 

𝑏0are the initial valuesthat can be any positive 

numbers. The conditional posterior distribution for 

𝛽 can be written as follows, 

𝜋(𝛽|𝜎2, 𝐷)    ∝  𝐿(𝑦)  ×  ∏(𝜎2|𝛽, 𝐷) 

∝  EXP (−
1

2
[
(𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽)

𝜎2
+

𝛽𝑇𝛽

𝑐0
]) 

∝  EXP (−
1

2
[
𝑦𝑇𝑦 − 𝑦𝑇𝑋𝛽 − 𝛽𝑇𝑋𝑇𝑦 + 𝛽𝑇𝑋𝑇𝑋𝛽

𝜎2

+
𝛽𝑇𝛽

𝑐0
]) 

∝  EXP (−
1

2
[

1

𝜎2
(−𝑦𝑇𝑋𝛽 − 𝛽𝑇𝑋𝑦 + 𝛽𝑇𝑋𝑇𝑋𝛽)

+
𝛽𝑇𝛽

𝑐0
]) 

∝  EXP (−
1

2
[

1

𝜎2
(−2𝛽𝑇𝑋𝑇𝑦 + 𝛽𝑇𝑋𝑇𝑋𝛽) +

𝛽𝑇𝛽

𝑐0
]) 

∝  EXP (−
1

2
[
−2𝛽𝑇𝑋𝑇𝑦 + 𝛽𝑇𝑋𝑇𝑋𝛽

𝜎2
+

𝛽𝑇𝛽

𝑐0
]) 

∝  EXP (−
1

2
[−2𝛽𝑇

𝑋𝑇𝑦

𝜎2
+ 𝛽𝑇 (

𝑋𝑇𝑋

𝜎2
) 𝛽

+ 𝛽𝑇 (
𝐼

𝑐0
) 𝛽]) 

∝  EXP (−
1

2
[−2𝛽𝑇 𝑋𝑇𝑦

𝜎2 + 𝛽𝑇 [
𝑋𝑇𝑋

𝜎2 +
𝐼

𝑐0
] 𝛽]). 

Consider𝑏 =  
𝑋𝑇𝑦

𝜎2  and 𝐴 =  
𝑋𝑇𝑋

𝜎2 +
𝐼

𝑐0
, so the 

posterior distribution for 𝛽 can be written as 

follows, 

𝜋(𝛽|𝜎2, 𝐷)    ∝  𝑓(𝑦)  ×  ∏(𝜎2) 

∝  EXP ((−
1

2
[𝛽𝑇𝐴𝛽 − 2𝛽𝑇𝑏])) 

∝  EXP (−
1

2
(𝛽 − 𝑝)𝑇  𝜙(𝛽 − 𝑝)) 

∝  EXP (−
1

2
(𝛽 − 𝐴−1𝑏)𝑇  𝐴(𝛽 − 𝐴−1𝑏)) (7) 

Eq.7 is a MVN density with 𝜇 = 𝐴−1𝑏 and Σ =
𝐴−1.Hence, the full conditional posterior for 𝛽 is 

𝛽 ∼ 𝑀𝑉𝑁(𝐴−1𝑏, 𝐴−1), where 𝐴 =
𝑋𝑇𝑋

𝜎2 +
𝐼

𝑐0
 

and 𝑏 =  
𝑋𝑇𝑦

𝜎2  

The full conditional posterior distribution for 𝜎2 is 

𝜋(𝜎2|𝛽, 𝐷)    

∝  (𝜎2)− 
𝑛

2  EXP (−
1

2

𝐸

𝜎2
) (𝜎2)−(𝑎0+1)EXP (−

𝑏0

𝜎2
) ,

where   𝐸 = (𝑦 − 𝑋𝛽)𝑇  (𝑦 − 𝑋𝛽) 

∝  (𝜎2)− 
𝑛

2
 −(𝑎0+1)

 EXP (−
1

𝜎2
(

𝐸

2
+  𝑏0)) 

∝  (𝜎2)−(
𝑛

2
+𝑎0+1)

 EXP (−
1

𝜎2
(

𝐸

2
+  𝑏0)) 

The above function isthe density function of the 

inverse gamma distribution with a shape equal to 
𝑛

2
+ 𝑎0 and rate equal to 

𝐸

2
+ 𝑏0. i.e., 

𝜎2 ∼ 𝐼𝐺 (
𝑛

2
+ 𝑎0,

𝐸1

2
+ 𝑏0) (8) 

So far, the posterior distributions for 𝛽(Eq.7) 

and 𝜎2(Eq.8) have been derived. Hence, the 

estimated values for 𝛽 and 𝜎2 can be found by 

calculating theirsample means. This can be done 

using Markov chain Monte Carlo (MCMC)without 

calculating the marginal likelihood for 𝛽 and 𝜎2.In 

the following section, a brief discussion of MCMC 

is given, and thena particular case from MCMC 

(Gibbs sampler) is explained in detail. 

Markov Chain Monte Carlo 
MCMC is an essential technique, and it is used 

frequently in many statistical applications. In many 

cases, it is challenging to sample from a target 

posterior density. ThenMCMC is used9. There are 

three popular MCMC sampling techniques, such as 

Metropolis-Hastings, slice sampling10, and Gibbs 

sampling11.MCMC methods are derived from a 

Monte Carlo (MC)12. A chain is used to 

approximate samples of desired distribution in 

MCMC, and the approximation is 

generallyimproved after several stepshave been 

done13. 

Gibbs Sampler 
In Bayesian inference, Gibbs sampling is 

commonly used bystatistical inference without 

calculating the marginal likelihood function. A high 

dimensional problem can be broken down into 

numbers of lowdimensional problemswhen Gibbs 

sampler is used.The vector of parametersshould 

besplit into several blocks, and theneach block can 
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besampled from its conditional distribution given 

other blocks.That means Gibbs sampling generated 

posterior samples by sweeping through each block 

variables14. Gibbs sampling issimilarto the other 

MCMC algorithms that generate a chain of samples 

where each of them is correlated with its nearby 

samples. Therefore, if the independent samples are 

desired, the samples should be thinned to get an 

independent sample set7. Suppose there are𝑛 

parameters𝜃1, 𝜃2, … , 𝜃𝑛,Gibbs sampling canestimate 

the parameters by updating them one by one. 

Evaluating the joint posterior𝑓(𝜃1, 𝜃2, … , 𝜃𝑛|𝐷𝑎𝑡𝑎) 

is the first step, and it can be done by multiplying 

the likelihood with the prior 𝑓(𝜃1), 𝑓(𝜃2), … , 𝑓(𝜃𝑛). 

For instance,the conditional posterior for𝜃1, 

𝑓(𝜃1|𝜃2, 𝜃3, … , 𝜃𝑛), can be found by 

assuming𝜃2, … , 𝜃𝑛are fixed atcurrent values. This 

process should be repeated for all the parameters 

𝜃2, 𝜃3, … , 𝜃𝑛. Algorithm1 summarizesGibbs 

sampler steps15. 

 
Algorithm:Gibbs Sampler 

INPUT: 𝜽(𝒊−𝟏) = (𝜽𝟏
(𝒊−𝟏), 𝜽𝟐

(𝒊−𝟏), … , 𝜽𝒌
(𝒊−𝟏)) 

OUTPUT: 𝜽(𝒊) = (𝜽𝟏
(𝒊), 𝜽𝟐

(𝒊), … , 𝜽𝒌
(𝒊)) 

𝐟𝐨𝐫  𝒋 =  𝟏, 𝟐, … , 𝑵  𝐝𝐨 

𝜽𝟏
(𝒋) ~  𝒇(𝜽𝟏|𝜽𝟐

(𝒋−𝟏), 𝜽𝟐
(𝒋−𝟏), … , 𝜽𝒌

(𝒋−𝟏)) 

𝜽𝟐
(𝒋) ~  𝒇(𝜽𝟐|𝜽𝟏

(𝒋), 𝜽𝟑
(𝒋−𝟏), … , 𝜽𝒌

(𝒋−𝟏)) 

𝜽𝟑
(𝒋) ~  𝒇(𝜽𝟑|𝜽𝟏

(𝒋), 𝜽𝟐
(𝒋), … , 𝜽𝒌

(𝒋−𝟏)) 

⋮ 

𝜽𝒌
(𝒋) ~  𝒇(𝜽𝒌|𝜽𝟐

(𝒋), 𝜽𝟐
(𝒋), … , 𝜽𝒌−𝟏

(𝒋)) 

𝐞𝐧𝐝 𝐟𝐨𝐫 

 

Simulation Studies 
Four datasetswithfour differentcovariates (8, 20, 

40, 60)were generated with 1000cases.The 

covariates were simulated independently from a 

normal distribution, and then Eq.1was used to find 

the responses for each dataset. The smallest dataset, 

8 covariates, is discussed in detail, and the results of 

other datasets are summarized. Mean Squared Error 

(MSE) and time-complexity are represented in 

Fig.1. Figure 1a shows that Gibbs gives the lowest 

MSE in all four simulated datasets. Moreover, time 

consumption is checked forall datasets. 

Fig.1bshows that Gibbs uses less time compared to 

the other methods. 

 
a. Comparing the MSE 

 

 
b. Comparing the consuming time 

 

Figure 1. Comparison among 4 methods (OLS, 

Lasso, Ridge, and Gibbs) in the 4 simulation 

datasets. 

 

The true parametersfor the first simulation 

datasetare: 𝛽0 = 1.1,  𝛽1 = −2.2, 𝛽2 = 4.3,  𝛽3 =
1.2,  𝛽4 = −2.2, 𝛽5 = 6.7,  𝛽6 = −1.3,  𝛽7 =
3.3 and 𝛽8 = 3.1. The posterior distribution that 

has been derived in Eq.7 and 8have beenrun with 

10000 iterations. Simulated samples arethinned at 

every 5𝑡ℎsample to reduce the correlation between 

the samples.Both Gibbs sampler and Lasso 

methodsare used to identifythe most important 

variables from the 8 variables.Parameters 

aresummarized from their corresponding posterior 

means, and some of themarevery good estimatorsof 

the corresponding true value. In Fig.2, The samples 

are plotted as histograms, and the true valuesare 

marked with the blue lines. The distributions for 

some of the posterior samples are approximately 

normal. The true values of the parameters are close 

to the estimated parameters.Thecovariates 
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associated with𝛽0,  𝛽2, 𝛽4,  𝛽6and 𝛽7were selected 

as the most significant covariates because they were 

close to the true model coefficients, as 

showninTable 1.However, in Lasso and Ridge 

methods,all the covariateswere selected as 

important variables.Computationally, selecting all 

the variables as important variables is inefficient 

because both the error and time willincrease for the 

large datasets. 

Moreover, in Table1, the parameters’ actual 

values are compared with their corresponding 

posterior sample means.The 95percentcredible 

intervals (CI) are calculated for all the parameters. 

It is clear that the values that are not considered a 

significant lie in large CI; On the other hand, all 

significant parametersare centered innarrow CI. 

This indicates that the estimation is reasonable and 

practical. 

 

 
Figure 2. Posterior histograms for 𝜷𝟎, … , 𝜷𝟖, blue lines denote the simulation’s actual values. 

 

 

 

Table 1. True values, predicted values, and 95% credible intervals. 

Parameter True Value Posterior 

Means 

𝟗𝟓% CI Selected Variables (YES/NO) 

Gibbs Lasso Ridge 

𝜷𝟎 1.1 1.003 (−0.534 , 2.398) YES YES YES 

𝜷𝟏 −2.2 −3.321 (−5.822 , −1.272) NO YES YES 

𝜷𝟐 4.3 4.221 (3.482 , 5.448) YES YES YES 

𝜷𝟑 1.2 2.322 (0.238 , 4.230) NO YES YES 

𝜷𝟒 −2.2 −2.331 (−3238 , 0.382) YES YES YES 

𝜷𝟓 6.7 8.263 (5.239 , 9.384) NO YES YES 

𝜷𝟔 −1.3 −1.294 (−3.484 , 1.823) YES YES YES 

𝜷𝟕 3.3 3.309 (1.349 , 5.282) YES YES YES 

𝜷𝟖 3.1 4.872 (3.392 , 7.849) NO YES YES 
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Real data Analysis 
In this section, the Rock Strength Dataset 

(RSD) is analyzed. RSD contains information 

regarding the relationship between 8 predictors, 

which are %Quartz (𝐪𝐮𝐚𝐭𝐳), 

%Plagaoclase(𝐩𝐥𝐚𝐠), %K. feldspar 

(kfds),%Hornblende 

(hb),

Grain size (𝐠𝐬), Grain area (𝐠𝐚), Shape Factor (sf)

,Aspect Ratio (𝐚𝐫), and the response, Uniaxial 

Compressive Strength (UCS), for 30 rock 

specimens.The dataset is collected from theUCI 

Machine Learning Repository. 

Figure 3a shows the heatmap for the8 

predictors. The heatmap did not give us sufficient 

information about the data. As can be seen,the level 

of correlation is represented across all samples. The 

orange colorrepresents the high correlation, and the 

low correlation is marked with yellow color. The 

dataset was normalized, and then predictors’ 

boxplots are plotted.InFig.3b, some outliers in the 

dataset are realized.So,they areremoved before 

running Gibbsand Lasso variables selection 

methods.The correlation matrix for the 8 predictors 

in the real data set (RSD) is given in Fig.4. Most of 

the covariates are approximately normally 

distributed. 𝒈𝒔and 𝒈𝒂havea strongpositive 

correlation, while 𝒑𝒍𝒂𝒈and 𝒌𝒇𝒅𝒔have a very low 

correlation. 

 
a. Heatmap for SRD variables 

 
b. Boxplot for SRD variables 

Figure 3.Heatmap and boxplot for the 8 

predictors in SRD. 
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Figure 4.correlation matrix for the 8 predictors in SRD and their distributions. 

 

Result and Discussion of the Variable 

Selection in RSD 
Gibbs sampler has been used to select the 

essential variables in RSD. If all the variables are 

used, then the general multivariate model should be 

𝑦 =  𝛽0 + 𝛽1𝒒𝒖𝒂𝒓𝒕𝒛 + 𝛽2 𝒑𝒍𝒂𝒈 + 𝛽3𝒌𝒇𝒅𝒔
+ 𝛽4𝒉𝒃 + 𝛽5 𝒈𝒔 + 𝛽6𝒈𝒂 + 𝛽7𝒔𝒇
+ 𝛽8 𝒂𝒓 + 𝜖 

where   𝜖 ∼ 𝑀𝑁𝑁(𝑂𝑛, 𝐼𝑛) 

In the beginning, the dataset isnormalized. 

Gibbs sampler is run for1000 iterations to create the 

posterior samples of the parameters. The prediction 

performanceischecked by using leave-one-out-cross 

validation (LOOCV)(10). In LOOCV,one of the 

observations left out,and the model’s coefficients 

are estimatedwith the rest of the observations. Since 

the real data has only 30 observations, the 

procedure isrepeated 30 times. It was found that 5 

out of8 posterior means lie inside the 95percent 

credible intervals. These variables were selected as 

important predictors. Therefore, using the Gibbs 

method, the new model becomes 

𝑦 =  𝛽0 + 𝛽1𝒒𝒖𝒂𝒓𝒕𝒛 + 𝛽3𝒌𝒇𝒅𝒔 + 𝛽5 𝒈𝒔 + 𝛽7𝒔𝒇 +
𝜖where   𝜖 ∼ 𝑀𝑁𝑁(𝑂𝑛, 𝐼𝑛) 

OLS, Ridge, Lasso, and Gibbs selection methods 

were applied on the RSD, and the outputs are shown 

in Table2. Gibbs methodgives the smallest MSE, 

and takes less time compared to the other methods. 

Table 3. shows that the posterior means for the 

parameter arerepresented with their 95percent CI. 

Gibbs selects 4 variables as essential variables: 

𝐪𝐮𝐚𝐫𝐭𝐳, 𝐊𝐟𝐝𝐬, 𝐠𝐬, and sf, while Lasso 

selects𝟔variables, and Ridge selects all the 𝟖 

variables. 

 

 

Table 2. Comparison between OLS, Ridge, Lasso, and Gibbs selection methods 

Parameter OLS Ridge Lasso Gibbs 

MSE 2.311 1.934 0.773 𝟎. 𝟒𝟔𝟎 

Time ≈8 seconds ≈6 seconds ≈3 seconds <1 second 
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Table 3.Posterior means, 𝟗𝟓% CI, and the selected variables. 

Parameter Posterior Means 𝟗𝟓% CI Selected Variables (YES/NO) 

Gibbs Lasso Ridge 

𝛃𝟎 104.943 (103.533 , 106.232) YES YES YES 

𝛃𝟏 𝐪𝐮𝐚𝐫𝐭𝐳 2.351 (0.375 , 4.234) YES YES YES 

𝛃𝟐 𝐩𝐥𝐚𝐠 −3.685 (−3.561 , 13.873) NO NO YES 

𝛃𝟑 𝐤𝐟𝐝𝐬 −0.396 (−2.832 , 2.134) YES YES YES 

𝛃𝟒 𝐡𝐛 8.566 (−4.054 , 7.184) NO YES YES 

𝛃𝟓 𝐠𝐬 −3.124 (−4.334 , 1.334) YES YES YES 

𝛃𝟔 𝐠𝐚 −5.604 (−3.442 , 12.497) NO YES YES 

𝛃𝟕 𝐬𝐟 2.761 (0.476 , 4.512) YES YES YES 

𝛃𝟖 𝐚𝐫 9.268 (−2.442 , 7.583) NO NO YES 

 

Conclusions: 
A new variable selection approachusing the 

Gibbs samplerhas been discussed in this article.The 

posterior distributions for 𝛽and 𝜎2have been 

derived, andthe Gibbs sampler algorithmis used to 

sample from the corresponding distributions. The 

simulation datasets show that the Gibbs sampler is 

better than other existing methods (Lasso and 

Ridge, OLS). In both simulations and real 

datasets,the variable selection using Gibbs is faster 

and gives less error. Asshown in SRD, the new 

method performs better than the other strategies by 

selecting only 50 percent of the variables; In 

contrast, Lasso and Ridge have selected 75 percent 

and 100 percent of the variables; respectively, with 

less accuracy and more time-consuming. 
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 Rock Strengthوتطبيقها على بيانات  رةالمطوGibbsاختيار المتغيرات باستخدام خوارزمية 
 

 عثمان مهدي صالح  غدير جاسم محمد مهدي
 

 ، العراق.جامعة بغداد ،ابن الهيثم -كلية التربية للعلوم الصرفة  ،قسم الرياضيات

 

 :الخلاصة
اختيار المتغيرات مهمة ضرورية ومطلوبة في مجال النمذجة الإحصائية. حاولت العديد من الدراسات تطوير وتوحيد طرق اختيار 

ها المتغيرات، ولكن من الصعب القيام بذلك. السؤال الأول الذي يحتاج الباحث أن يسأل نفسه عنه هو ما هو أهم المتغيرات التي يجب استخدام

لمجموعة بيانات معينة. في هذا العمل، تمت مناقشة طريقة جديدة في الاستدلال بايزي لأختيار المتغيرات باستخدام تقنيات لوصف الاستجابة 

مجاميع  4. بعد تحديد النموذج، تم اشتقاق التوزيعات الخلفية لجميع المعلمات. تم اختبار طريقة الاختيار للمتغير الجديد باستخدام Gibbsعينات 

(، عامل انكماش مطلق واختيار OLS) ات الخطأمربعقليل التي هي  معروفةت. تمت مقارنة الطريقة الجديدة مع بعض الطرق البيانامن ال

(Lasso( وتسوية تيكونوف ،)Ridge أظهرت دراسات المحاكاة أن أداء طريقتنا أفضل من الأخرى حسب الخطأ ووقت الاستهلاك. تم .)

 ، وكانت الطريقة الجديدة التي تم تقديمها أكثر كفاءة ودقة.Rock Strengthتطبيق الطرق على مجموعة بيانات 

 

 ، نظرية بايز.Gibbsاختيار المتغيرات، طريقة المربعات الصغرى، طريقة الانكماش، خوارزمية  :الكلمات المفتاحية
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