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Abstract:

The study of cohomology groups is one of the most intensive and exciting researches that arises
from algebraic topology. Particularly, the dimension of cohomology groups is a highly useful invariant which
plays a rigorous role in the geometric classification of associative algebras. This work focuses on the
applications of low dimensional cohomology groups. In this regards, the cohomology groups of degree zero
and degree one of nilpotent associative algebras in dimension four are described in matrix form.
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Introduction:

Algebraic topology is one of the main The present study concentrates on the
areas in mathematics. This area uses description of low dimensional cohomology
fundamental ingredients from abstract algebra  groupsH!(A,A);i= 0,1, because the

in the study of topological spaces. One of the dimension of the cohomology groups is
essential techniques of algebraic topology is considered as one of the important
cohomology groups. It is a general term of a invariants to study the properties of
sequence of groups associated with a  algebras. Particularly, this invariant plays a
topological space which is defined from a  rigorous role in the geometric
cochain. On the other hand, one of the ancient  classification of associative algebras. Using
areas of the modern algebra is the theory of  the classification result of nilpotent
finite-dimensional associative algebras, and it  associative algebras, the description of
has been studied by many investigators like  cohomology groups of degree zero and
Pierce !, Mazzola ? and Basri °. In this regard,  degree one of nilpotent associative algebras
this study concentrates on cohomology groups indimension four are given in matrix form.
for associative algebras.

The cohomology theory of groups has Preliminaries
numerous applications in many sorts of  This section provides some terminologies
mathematical and physical studies (see for that are needed in this work.
instance *° and °). The cohomology groups  Definition 1 °: An associative algebra over a
HP (A, D), with an action associative algebra A field K is aK -vector space A equipped with

on A-bimodule D, were presented by  bilinear map A:AxA— A satisfying the
Hochschild ’. One of the important invariant in associative law:

studying cohomological problems is

derivations. The derivations are linear AAxY),2) = A% (A(y,2),
transformations on algebras and exactly the vx,y,z € A
elements of Z1(4, D) 1-cocycles, while the so- e
called inner derivations are 1-coboundaries
denoted by B(4, D), &°.
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Definition 2 '°: Let A be an associative algebra
over K and define as:

Al = A; AK = A(AA%T) (k> 1)
The series
A'D2A2D A3 D
is called the descending central series of A. If
there exists an integer s € N,, such that
A1 D2 A22A432---45 ={0}
then this algebra is called nilpotent.

Definition 3 % : Let A, and A, be two associative
algebras over K. A homomorphism between A,
and A, is an K -linear mapping f: A; —
A, such that

f(xy) = fCX)f(y) Vx,y € A;
Definition 4 * : A linear transformation d of
associative algebra A is called a derivation if
dix-y)= dx)y + xd(y) Vx,y € A
The set of all derivations is denoted by Der(4). An
important special case of derivation mapping
so-called inner derivation mapping is defined
as follows:

Definition 5 ° : A linear transformation ad, of
the associative algebra A is called an inner
derivation if

ad,(x) = xz — zx
z€ A

The set of all inner derivations is represented
by Inn(A).

Vx € A, and

Definition 6 *° : Let A be associative algebra on a
field K. An n- dlmensmnal vector space D over
the same field K is called a A — A bimodule if
D is a right and a left A-module, such that
(xw)y = x(uwy) Vx,y € Aandu € D;
au = ua Va € K and u € D.
To simplify terminology, we will use the
expression A-bimodule instead of A —
A bimodule.

Let & be a multilinear mapping from an
associative algebra AP to an A-bimodule D. The
set of all these multilinear mappings is called
cochain of A in dimensional p and
represented by CP (A4, D). It is convenient to
identify €°(4, D)with D and CP(A4,D) with
{0} forp < O.

Definition 7 '° : The mapping 6® between
CP(A,D) and CP*1(4,D) is called coboundary
homomorphism such that
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(P D) (xq, x5,
xlq)(xz,. ..

'xp+1)
'xp+1) +

p .
Do D PG xixXinn X
i=
+ (—DP + 1P (xq,, Xp) Xpt1

Lemma 1% : The operator §®:CP(4,D) —
CP*1(4,D) is called a K-module
homomorphism such that

s+t s® = o

Remark 1% :

1-The elements of the kernel ZP (A, D) of the
operator 5™ are known as cocycles in
dimensional p with values in D.

2- The elements of the image of §®*V
represented by BP(A,D) are known as
coboundaries in dimensional p with values in
D.

3- Based on Lemma 1, it is easy to see that
BP(A,D) < ZP(A,D) for (p = 1).

4- The quotient space

HP(A,D) = ZP(A,D)/BP(A,D)

is known as the cohomology group of A in
degree p.

Following, a particular case is considered
that D = A as A-bimodule and all algebras
considered are over a complex field C.

Main Results:

This section is devoted to computing the zero-
cohomology groups H°(4, A) and first-
cohomology groups H'(4,A) of four-
dimensional nilpotent associative algebras.

The algebraic classification of all nilpotent
associative algebras in dimensional four is
constructed by ® and is provided with the
following theorem. Note that As, denotes gt
isomorphism class of associative algebra in
dimension n.

Theorem 1. Any complex nilpotent associative
algebra structure on four dimensional is
isomorphic to one of the following classes of
algebras:

1. — -
As; :eje; =e3, ey, =ey;
2 . — —p
Asy :ejep; =e3,  exe) = ey;
3 . — —p
AS; 1 eje; =6y, €361 = €y
4, — —
ASy 1 eje; =e3, €361 = ey, e,e;
= —ej3;
5 . — —
Asy :ee; =e3, exe; = —eg,
€262 = €y,
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6 . _ _
Asy :eje; = ey, exe = —ey,
€363 = €4,
. 1+a
Asy (a): eje; = ey, ey = €y,
l—«a
€€, = é3;
8 ) _ _
Asy (1): eje; = ey, eje; =e3,
€281 = —Uey, €26y = —€3;
As] :eje; = e,
€163 = €4, €383 = —€4,
€361 = €4,
ASi‘O 18161 = €y,
€16, = €3, €61 = —¢€3,
e,y = —2eztey;
Asil ieje; = ey,
€162 = €4, €381 = —€y,
€363 = €4,
ASiZ 18161 = €y,
€164 = —€3, €361 =63,
€461 = —é€3;
ASi‘S 18161 = €y,
6164 = _33, 6261 = 63,
€€, = és, €461 = —€3;
14 ) _
Asy™ () : ejeg = ey,
ee; = Aey, €61 = —Aey,
€26 = €y, €363 = €4,
As}® :ee, =e,, ejes=e e,eq =
4~ 16163 = €4, €163 = €4, 261 =
€4, €263 = €4, €361 = €4,
16 . _ _
Asy” iejeq = ey, €16z = €3,
€163 = €4, e,eq = é3,
€267 = €y, €361 = €4,

foralla € C\{1}and A,p € C.

Following, the classification results will be
used which is already known from Theorem
1 to compute cohomology groups HP (A, A)
forp = 0,1.

The Cohomology Groups of Degree Zero
Based on the expression of cohomology
group of A .
H°(A,A) = Ker(6°) ={x € A

. : 59(x) 0}

{x € A: §°x)(a) = ax — xa

0,Va € A} = Z(A) 1)
Thus, H°(A4, A) is the center of A.

Next the zero-cohomology group of complex
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nilpotent associative algebras in dimension
four is described. Theorem 2 provides the
following results:

Theorem 2: The cohomology group in degree
zero of complex nilpotent associative algebra in
dimension four has the following form:

H(As;, As;) = spanc{e,, e, e, e,};
H°(AsZ, As§) = spanc{es, es};

HO(As3, As?) = spanc{ e, €5, e4);
H°(Asj, Asy) = spanc{es, es};

HO(Asz, As?) = spanc{ es, es};
H(Asg, Asg) = spanc{es, es};

H(As],As]) = spanc{ e3, e,};
H°(4s8, Asd) = spanc{es, es};

H°(As], As]) = spanc{ es, es};
H°(A4s1°, As1%) = spanc{es, es};

H(Asit, Asi') = spanc{ ez, e,};
H°(As3?, Asg?) = spancfes, eq};

HO(As}3, As}3) = spanc{ es, eq);
HO(As}*, As}*) = spanc{es, es};

HO(As}® As;®) = spancf{ es, e.};
HO(As}6, Ast®) = spancfe, e, €3, €4}

Proof. Let {e;, e, e3,e,} be a basis in A

where A is an 4-dimensional nilpotent
associative algebra.
X = aq.e;+ aze, + azes +aze,

Where x is a vector of A. Based on Theorem
1, the structure constants of four-dimensional
nilpotent associative algebra are substituted
in -

{x € A: §°x)(a) = ax — xa
0,Va € A} = Z(A)
Then, the structure constants of Asi are
given as follows:

yii =1Ly =1
and the others are zeros. Based on (1), it
leads

elx = xeq, e;X = Xxe,, e3x = xes and
esx = xey

Thus

a,ez = a.€s, e, = a,€,4,0 = 0 and
0=0

Therefore, the span basis of zero cohomology group
for Asj is given as follows:
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HO(A4s}, As}) = spanc{ey, e;, €3, e4}

The remaining parts of zero cohomology
groups in dimension four can be done in a
similar manner as shown above.

The Cohomology Groups of Degree One
H'(A,A) = Ker (6Y)/ Im (6°), where
Ker () ={ ¢ € C1(A,A4) : §Y(P)(x1 ,x3)
= x1P(x2) — P(x1,x2) +
O(x1) x, = 0, Vxq,x, €A}
and -
Im(@D)={de C'(4,A4): & =6%x),x
- € A}
={0,€ CL(A4,A),x € A: ¢
= ax — xa,Va € A}
It is easy to see that Ker (61) has elements
satisfying the derivation condition
and Im(5°) has elements satisfying the inner
derivation condition, respectively.
Therefore, the quotient space
H(A,A) = Ker(6Y)/Im(5°)
= Der(A)/Inn(A)
The 1-cocycles (derivations) of nilpotent
associative algebras in dimension four are
given in °. Consequently, the concept of 1-
coboundaries (inner derivations) is looked into.
The following section describes the procedure
for finding 1-Coboundaries.

Procedure for Finding 1-Coboundaries
Let {ei,e,, -+, e,} be a basis of associative
algebra A with dimension n over a field K
and let ® be an element in B1(4, A). Then

x =aq.eq + aze, +:-- +ane,

where x is a vector in A such that §°(x) =
D.

D, (e;)
=e;x — xe; Ve;A,i
=12, ..,n 2

A linear transformation ¢, of A can be

represented as a matrix form

b = (aij)r i,j = 1,2,.n.
(Dx(_ei) =
;'l=1 d] ej 1=
1,2,...,n 3

Thus

Then

n .
-3 a (5)
t=1

The solutions to the system give the
description of 1—coboundaries in matrix form.
Following, our procedure is applied to obtain
the group B'(4,A) of nilpotent associative
algebras in dimension four where IC s
represented isomorphism classes of algebras.

Theorem 3: The group of all 1-coboundaries
elements for complex nilpotent associative algebras
in dimension four

As]l has the following form:

IC_1-coboundaries DimB1(4,4)
0 0 0O
00 00
Asi 0000 0
00 00
0 0 0 0
0 0 0 0
Asi a —a 0 0 2
—da; a 0 0
0 0 0 0
0 0 0 0
Asj 0 0 0 0 2
a,—az —a; a; 0
0 0 0 0
0 0 0 0
Asff a —a 0 0 2
—da; a 0 0
0 0 0 0
5 0 0 0 0
Asg 2a, —2a, 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0
As? 0 0 0 0 2
2a, —2a, 0 O
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0 0 0 0
; 0 0 0 0
AS4 0 0 0 0 2
1_”_“)a e
( 1-a/%2 T4 0 0
0 0 0 0
8 0 0 0 0
Asg a —a 0 0 2
ua; —Ha; 0 0
0O 0 0 O
9 0O 0 0 O
4ss Lo 0 0 0 0
0O 0 0 O
0 0 0O
10 0 0 0 O
4si° {24, 0 0 0 1
0 0 0 O
0 0 0 0
11 0 0 0 O
2a, 2a; 0 0
0 0 0 O
12 0 0 0 O
As; —a, a; 0 0 2
0 0 0 0
0 0 0 O
13 0 0O 0 O
As; —~a, a; 0 0 2
0 0 0 0
0 0 0 0
14 0 0 0 0
2Aa, —2a; 0 O
0 0 0 0
15 0 0 00
2a, —2a; 0 O
0 0 0 O
16 0 0 0 O
Ass 000 0 0
0 0 0 O

where =1, ...,16 .
Proof. If n=4 and gq=1 then, the structure
constants of As; are given as follows:

Y131 = 1‘Y§2 =1

and the others are zeros. Based on condition
(5), it leads

dig = diz = dqz3 = d1s= da = dy;

dz, = dzz = d3g = dyy
dyy = dyz = dys

=0

Thus,
0 00O
_ _[(0 0 0 O
q’x_(dif)‘oooo
0 00O

If n=4 and g=2 then, the structure constants

of AsZare given as follows:

yiz = Ly =1L )

Based on condition (5), it leads

dipg =dyz = dyg= dz1 = dyy =d 33
= dy4 = d3z1 = dzz = d3z,
= dyz3=d44=0

d31 = ap, d3; = —aq,dy; = —ay, dy

Thus, the 1-coboundary of As? is

0 0 00
— _| O 0O 0 O
Px = (dij) “\a —a; 0 O

—az a 0 0
The remaining parts of 1-coboundary
algebras in dimension four can be done in a
similar manner as shown above.
Based on [9] and Theorem 3, the span bases and the
dimensions of first cohomology groups will be
found as shown in Corollary 1.

Corollary 1: Let H'(As], As)) be the
cohomology group in degree one where Asg
denotes as mt"* isomorphism class of associative
algebra in dimension n. If n=4 and q =
1,2,...16 then, the span bases and the
dimensions cohomology group in degree one of
complex nilpotent associative algebra has the
following form:

Hl(ASi,A_si)_ .
= spanc{Ei1,E22 ,E31, Esz, Es1,Esp };

H'(As},Asf) = spanc{Ev1,Ezz, Es1,Esz }i

H'(Asi,As) = spanc{Er1,Ez1, Ezz,Eas);

H'(Asy,Asy) = spanc{Eir,Ear, Ea };
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H'( As3,Asz?)
= Span(c{E_n,E_u: E32,

Ey1 Eqn )
HY( Asg, As$)

= spanc{Ei1,E12, E33, Eaz, Esa };
HY(As],As])

= Span(c{En yE12, Ezz, E31,E3; };
H'(As$, As§) = spanc{Ei1,Es1, Esz };

H( As], As]
= Span(C{Ell vE21, E31, E41,Es; }i

H'(As% Asy%) = spanc{Er1,Esz, Ear Esz };

H'(Asit,Asi') = spanc{Ei1, Bz, Eas }i

H'(Asy? Asy?) = spanc{Err, Ear, Ear };

H(As, As) = spanc(For, T }

H'(Asy* AsyY) = spanc{Err, Ear, Eas b

H'(Asi® Asi®) = spanc{E11,Ea1, Eas J;
H'(As;® As;®) = spanc{Ei1,Ey1, Esi, Eqq J.
Proof. Let {{E;;, i=1,..,4,j=1,..,4}bea
basis of the quotient space

H(A,A) = Der(A)/Inn(A)
If n=4 and g = 1. Then, the derivation (1-
cocycle) of As} was given in (6) in a matrix
form as follows:

dqq 0 0 0
_ [ o dyp 0 0
=)=\ a, dy 2dy 0
dyq dy 0 2d;;
Thus,
Der( As}) =
spanc{ E11,E22,E31, Es2,E41,Esz }. On
other hand, the inner derivation (1-

coboundarie) of As} is given in Theorem 3 in
a matrix form as follows:

@, = (dy) =

S OO O
S OO O
S OO O
S OO O

Thus, H'( As}, As}) =
Span(c{En vE22 ,E31, Ezp, Egq,Egp }
If n =4 and g = 2.. Then, the derivation (1-
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cocycle) of As? was given as follows:

diq 0 0 0
_ _ 0 d,o 0 0
4=(d)=\ay  ds dyy O
d4—1 d4—2 O dll
Hence,
Der( As?) =

span(c{ E11,E32,E31, Ezp,Eqq,Ey } Based
on Theorem 3 the inner derivation (1-
coboundarie) of AsZ is

0 0 0 0

- _[ O 0 0 0
by = (dij) “la —a 0 0
—adz 4 0 0

Then,  Inn(As}) = spanc{Es,, E3;}. Let
v € Der( As2?). The vector v can be written

v = alEll + a, EZZ + a3E31 + a4E32
+agEy +agEys

= (azE31 + asE3;) + (a1E11 +az Ep;
+ asEyq + agEyz)

Let x € HY( As2, As?) = Der( As?)/
Inn( As?) such that x = 7. The vector x can
be written

x =V = (azEs3s + asE3;) + (a1E14
+ ay Ezp + asEyq + agkEyy)

=a1E11 +az Eyy; +asEy +acEy,

Since E3;, E3, € H'( As%, As?) vanishes.
Thus,
H'( As2,As2?)

Span(C{E_ll'E_ZZ' FH'FQ }

The span bases of cohomology group in degree
one of the remaining parts can be done in a
similar manner as shown above.

Conclusion:

The present work focuses on the
applications of low dimensional cohomology
groups H:(A,A),i = 0,1. The dimensions of
zero cohomology groups and  first
cohomology groups for four-dimensional
complex nilpotent associative algebras range
between zero and four and between zero and
six, respectively.
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