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Abstract: 
The study of cohomology groups is one of the most intensive and exciting researches that arises 

from algebraic topology. Particularly, the dimension of cohomology groups is a highly useful invariant which 

plays a rigorous role in the geometric classification of associative algebras. This work focuses on the 

applications of low dimensional cohomology groups. In this regards, the cohomology groups of degree zero 

and degree one of nilpotent associative algebras in dimension four are described in matrix form. 
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Introduction:  

Algebraic topology is one of the main 

areas in mathematics. This area uses 

fundamental ingredients from abstract algebra 

in the study of topological spaces. One of the 

essential techniques of algebraic topology is 

cohomology groups. It is a general term of a 

sequence of groups associated with a 

topological space which is defined from a 

cochain. On the other hand, one of the ancient 

areas of the modern algebra is the theory of 

finite-dimensional associative algebras, and it 

has been studied by many investigators like 

Pierce 
1
, Mazzola 

2
 and Basri 

3
. In this regard, 

this study concentrates on cohomology groups 

for associative algebras.   

The cohomology theory of groups has 

numerous applications in many sorts of 

mathematical and physical studies (see for 

instance 
4,5

 and 
6
). The cohomology groups 

Hp(A, D), with an action associative algebra A 

on A-bimodule D, were presented by 

Hochschild 
7
. One of the important invariant in 

studying cohomological problems is 

derivations. The derivations are linear 

transformations on algebras and exactly the 

elements of 𝑍1(𝐴, 𝐷) 1-cocycles, while the so-

called inner derivations are 1-coboundaries 

denoted by 𝐵1(𝐴, 𝐷), 
8, 9

.   

         The present study concentrates on the 

description of low dimensional cohomology 

groupsHi(A, A); i = 0, 1, because the 

dimension of the cohomology groups is 

considered as one of the important 

invariants to study the properties of 

algebras. Particularly, this invariant plays a 

rigorous role in the geometric 

classification of associative algebras. Using 

the classification result of nilpotent 

associative algebras, the description of 

cohomology groups of degree zero and 

degree one of nilpotent associative algebras 

in dimension four are given in matrix form. 

 

Preliminaries 
This section provides some terminologies 

that are needed in this work.   
Definition 1 

10
: An associative algebra over a 

field K is a K -vector space A equipped with 

bilinear map λ: A × A ⟶ A  satisfying the 

associative law: 

 

λ(λ(x, y), z)  =  λ(x, (λ(y, z)),

∀x, y, z ∈  A 
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Definition 2 
10

: Let A be an associative algebra 

over K  and define as: 

 

A1  =  A; Ak  =   λ(A, Ak−1 )    (k >  1) 

The series 

A1 ⊇ A2 ⊇ A3 ⊇ ⋯ 

is called the descending central series of A. If 

there exists an integer s ∈  N,, such that 

𝐴1 ⊇ 𝐴2 ⊇ 𝐴3 ⊇ ⋯ 𝐴𝑠 = {0} 

then this algebra is called nilpotent. 

 

Definition 3 
10

 : Let 𝐴1 and 𝐴2 be two associative 

algebras over 𝐾. A homomorphism between  𝐴1 

and 𝐴2 is an 𝐾 -linear mapping 𝑓 ∶  𝐴1 ⟶
 𝐴2 such that 

𝑓(𝑥𝑦) =  𝑓(𝑥)𝑓(𝑦)          ∀𝑥, 𝑦 ∈ 𝐴1 

Definition 4 
10

 : A linear transformation 𝑑 of 

associative algebra 𝐴 is called a derivation if   

𝑑(𝑥 · 𝑦) =  𝑑(𝑥)𝑦 +  𝑥𝑑(𝑦)          ∀𝑥, 𝑦 ∈  𝐴  

The set of all derivations is denoted by 𝐷𝑒𝑟(𝐴).  An 

important special case of derivation mapping 

so-called inner derivation mapping is defined 

as follows: 

Definition 5 
10

 : A linear transformation 𝑎𝑑𝑧  of 

the associative algebra A is called an inner 

derivation if   

 𝑎𝑑𝑧(𝑥) =  𝑥𝑧 −  𝑧𝑥      ∀𝑥 ∈  𝐴,  and 

 𝑧 ∈  𝐴 
The set of all inner derivations is represented 

by 𝐼𝑛𝑛(𝐴). 
 

Definition 6 
10

 : Let 𝐴 be associative algebra on a 

field 𝐾. An 𝑛-dimensional vector space 𝐷 over 

the same field 𝐾 is called a 𝐴 −  𝐴 bimodule if 

𝐷 is a right and a left 𝐴-module, such that 

 (𝑥𝑢)𝑦 =  𝑥(𝑢𝑦)        ∀𝑥, 𝑦 ∈  𝐴 and 𝑢 ∈  𝐷; 

 

 𝛼𝑢 =  𝑢𝛼                   ∀𝛼 ∈  𝐾   a n d     𝑢 ∈  𝐷. 
To simplify terminology, we will use the 

expression 𝐴-bimodule instead of 𝐴 −
 𝐴 bimodule. 

 

Let Φ be a multilinear mapping from an 

associative algebra 𝐴𝑝 to an 𝐴-bimodule 𝐷. The 

set of all these multilinear mappings is called 

cochain of 𝐴 in dimensional 𝑝 and 

represented by 𝐶𝑝(𝐴, 𝐷). It is convenient to 

identify 𝐶0(𝐴, 𝐷)with 𝐷 and 𝐶𝑝(𝐴, 𝐷) with 

{0}  for 𝑝 <  0. 

  

Definition 7 
10

 : The mapping 𝛿(𝑝) between 

𝐶𝑝(𝐴, 𝐷) and 𝐶𝑝+1(𝐴, 𝐷) is called coboundary 

homomorphism such that 

  

(𝛿(𝑝)Φ)(𝑥1, 𝑥2,· · · , 𝑥𝑝+1)  

=  𝑥1Φ(𝑥2,· · ·  , 𝑥𝑝+1) + 

∑ (−1)𝑖
𝑝

𝑖=1
 Φ(𝑥1,· · · , 𝑥𝑖𝑥𝑖+1,· · · , 𝑥𝑝+1) 

+ (−1)𝑝 + 1Φ(𝑥1,· · · , 𝑥𝑝)𝑥𝑝+1 

 
Lemma 1

10
 : The operator 𝛿(𝑝): 𝐶𝑝(𝐴, 𝐷) ⟶

𝐶𝑝+1(𝐴, 𝐷)  is called a 𝐾-module 

homomorphism such that  
𝛿(𝑝+1)𝛿(𝑝) = 0 

 

Remark 1
10

 :  

1-The elements of the kernel 𝑍𝑝(𝐴, 𝐷) of the 

operator 𝛿(𝑝) are known as cocycles in 

dimensional 𝑝 with values in 𝐷.  

2- The elements of the image of 𝛿(𝑝+1) 

represented by 𝐵𝑝(𝐴, 𝐷) are known as 

coboundaries in dimensional 𝑝 with values in 

𝐷.  

3- Based on Lemma 1, it is easy to see that 

𝐵𝑝(𝐴, 𝐷)  ⊆  𝑍𝑝(𝐴, 𝐷) for (𝑝 ≥  1).  

4- The quotient space 

𝐻𝑝(𝐴, 𝐷)  =  𝑍𝑝(𝐴, 𝐷)/𝐵𝑝(𝐴, 𝐷)  

is known as the cohomology group of 𝐴 in 

degree 𝑝. 

Following, a particular case is considered 

that 𝐷 =  𝐴 as 𝐴-bimodule and all algebras 

considered are over a complex field ℂ.  
Main Results: 

This section is devoted to computing the zero-

cohomology groups 𝐻0(𝐴, 𝐴) and first-

cohomology groups 𝐻1(𝐴, 𝐴) of four-

dimensional nilpotent associative algebras. 

The algebraic classification of all nilpotent 

associative algebras in dimensional four is 

constructed by 
3
 and is provided with the 

following theorem. Note that  𝐴𝑠𝑛
𝑞
 denotes 𝑞𝑡ℎ 

isomorphism class of associative algebra in 

dimension 𝑛. 

 

Theorem 1. Any complex nilpotent associative 

algebra structure on four dimensional is 

isomorphic to one of the following classes of 

algebras:  

𝐴𝑠4  
1    :  𝑒1𝑒1 = 𝑒3,      𝑒2𝑒2 = 𝑒4;    

             𝐴𝑠4  
2    :  𝑒1𝑒2 = 𝑒3,      𝑒2𝑒1 = 𝑒4;    

 

             𝐴𝑠4  
3    :  𝑒1𝑒2 = 𝑒4,      𝑒3𝑒1 = 𝑒4;    

 

              𝐴𝑠4  
4    :  𝑒1𝑒2 = 𝑒3,      𝑒2𝑒1 = 𝑒4,          𝑒2𝑒2

= −𝑒3; 
 

             𝐴𝑠4  
5    :  𝑒1𝑒2 = 𝑒3,      𝑒2𝑒1 = −𝑒3,

𝑒2𝑒2 = 𝑒4; 
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              𝐴𝑠4  
6    :  𝑒1𝑒2 = 𝑒4,      𝑒2𝑒1 = −𝑒4,

𝑒3𝑒3 = 𝑒4; 
 

            𝐴𝑠4  
7  (𝛼):  𝑒1𝑒2 = 𝑒4,      𝑒2𝑒1 =

1 + 𝛼

1 − 𝛼
𝑒4,

𝑒2𝑒2 = 𝑒3; 
 

            𝐴𝑠4  
8  (𝜇):  𝑒1𝑒1 = 𝑒4,    𝑒1𝑒2 = 𝑒3,

𝑒2𝑒1 = −𝜇𝑒4, 𝑒2𝑒2 = −𝑒3; 
 

            𝐴𝑠4  
9    : 𝑒1𝑒1 = 𝑒3,

𝑒1𝑒3 = 𝑒4,      𝑒2𝑒2 = −𝑒4,
𝑒3𝑒1 = 𝑒4; 

 

             𝐴𝑠4  
10    : 𝑒1𝑒1 = 𝑒4,

𝑒1𝑒2 = 𝑒3,      𝑒2𝑒1 = −𝑒3,
𝑒2𝑒2 = −2𝑒3+𝑒4; 

 
             𝐴𝑠4  

11    : 𝑒1𝑒1 = 𝑒4,
𝑒1𝑒2 = 𝑒4,      𝑒2𝑒1 = −𝑒4,
𝑒3𝑒3 = 𝑒4; 

 
            𝐴𝑠4  

12    : 𝑒1𝑒1 = 𝑒4,
𝑒1𝑒4 = −𝑒3,      𝑒2𝑒1 = 𝑒3,
𝑒4𝑒1 = −𝑒3; 

 
             𝐴𝑠4  

13    : 𝑒1𝑒1 = 𝑒4,
𝑒1𝑒4 = −𝑒3,      𝑒2𝑒1 = 𝑒3,
𝑒2𝑒2 = 𝑒3, 𝑒4𝑒1 = −𝑒3; 

 
            𝐴𝑠4  

14   (𝜆) ∶  𝑒1𝑒1 = 𝑒4,
𝑒1𝑒2 = 𝜆𝑒4,      𝑒2𝑒1 = −𝜆𝑒4,
𝑒2𝑒2 = 𝑒4, 𝑒3𝑒3 = 𝑒4; 

 

            𝐴𝑠4  
15    : 𝑒1𝑒2 = 𝑒4, 𝑒1𝑒3 = 𝑒4,      𝑒2𝑒1 =

−𝑒4, 𝑒2𝑒2 = 𝑒4, 𝑒3𝑒1 = 𝑒4; 
           𝐴𝑠4  

16    : 𝑒1𝑒1 = 𝑒2, 𝑒1𝑒2 = 𝑒3,
𝑒1𝑒3 = 𝑒4,      𝑒2𝑒1 = 𝑒3,
𝑒2𝑒2 = 𝑒4, 𝑒3𝑒1 = 𝑒4; 

for all 𝛼 ∈  ℂ\ {1} and 𝜆, µ ∈  ℂ. 
 

Following, the classification results will be 

used which is already known from Theorem 

1 to compute cohomology groups 𝐻𝑝(𝐴, 𝐴) 

for 𝑝 =  0, 1. 
 

The Cohomology Groups of Degree Zero 

Based on the expression of cohomology 

group of A 

𝐻0(𝐴, 𝐴) =  𝐾𝑒𝑟(𝛿0) = {

.

𝑥 ∈  𝐴
∶  𝛿0(𝑥)  = 0} 

{

.

𝑥 ∈  𝐴 ∶  𝛿0(𝑥)(𝑎)  =  𝑎𝑥 −  𝑥𝑎 =
 0 , ∀ 𝑎 ∈  𝐴}

 

=  𝑍(𝐴) (1) 

Thus, 𝐻0(𝐴, 𝐴) is the center of 𝐴. 

Next the zero-cohomology group of complex 

nilpotent associative algebras in dimension 

four is described.  Theorem 2 provides the 

following results: 

 

Theorem 2: The cohomology group in degree 

zero of complex nilpotent associative algebra in 

dimension four has the following form: 

 

𝐻0(𝐴𝑠4
1, 𝐴𝑠4

1) = 𝑠𝑝𝑎𝑛ℂ{𝑒1, 𝑒2, 𝑒3, 𝑒4};  

       𝐻0(𝐴𝑠4
2, 𝐴𝑠4

2) = 𝑠𝑝𝑎𝑛ℂ{𝑒3, 𝑒4};   

   

𝐻0(𝐴𝑠4
3, 𝐴𝑠4

3) = 𝑠𝑝𝑎𝑛ℂ{ 𝑒2, 𝑒3, 𝑒4};  

           𝐻0(𝐴𝑠4
4, 𝐴𝑠4

4) = 𝑠𝑝𝑎𝑛ℂ{𝑒3, 𝑒4};   

 

𝐻0(𝐴𝑠4
5, 𝐴𝑠4

5) = 𝑠𝑝𝑎𝑛ℂ{ 𝑒3, 𝑒4};  

                𝐻0(𝐴𝑠4
6, 𝐴𝑠4

6) = 𝑠𝑝𝑎𝑛ℂ{𝑒3, 𝑒4};    

  

𝐻0(𝐴𝑠4
7, 𝐴𝑠4

7) = 𝑠𝑝𝑎𝑛ℂ{ 𝑒3, 𝑒4};  

               𝐻0(𝐴𝑠4
8, 𝐴𝑠4

8) = 𝑠𝑝𝑎𝑛ℂ{𝑒3, 𝑒4};   

   

𝐻0(𝐴𝑠4
9, 𝐴𝑠4

9) = 𝑠𝑝𝑎𝑛ℂ{ 𝑒3, 𝑒4};  

               𝐻0(𝐴𝑠4
10, 𝐴𝑠4

10) = 𝑠𝑝𝑎𝑛ℂ{𝑒3, 𝑒4};    

  

𝐻0(𝐴𝑠4
11, 𝐴𝑠4

11) = 𝑠𝑝𝑎𝑛ℂ{ 𝑒3, 𝑒4};  

           𝐻0(𝐴𝑠4
12, 𝐴𝑠4

12) = 𝑠𝑝𝑎𝑛ℂ{𝑒3, 𝑒4};  

    

𝐻0(𝐴𝑠4
13, 𝐴𝑠4

13) = 𝑠𝑝𝑎𝑛ℂ{ 𝑒3, 𝑒4};  

           𝐻0(𝐴𝑠4
14, 𝐴𝑠4

14) = 𝑠𝑝𝑎𝑛ℂ{𝑒3, 𝑒4};    

  

𝐻0(𝐴𝑠4
15, 𝐴𝑠4

15) = 𝑠𝑝𝑎𝑛ℂ{ 𝑒3, 𝑒4};  

          𝐻0(𝐴𝑠4
16, 𝐴𝑠4

16) = 𝑠𝑝𝑎𝑛ℂ{𝑒1, 𝑒2, 𝑒3, 𝑒4}.  

   

Proof. Let {𝑒1, 𝑒2, 𝑒3, 𝑒4} be a basis in 𝐴 

where 𝐴 is an 4-dimensional nilpotent 

associative algebra.  

𝑥 =  𝑎1𝑒1 + 𝑎2𝑒2 + 𝑎3𝑒3 + 𝑎4𝑒4 

Where  𝑥 is a vector of 𝐴. Based on Theorem 

1, the structure constants of four-dimensional 

nilpotent associative algebra are substituted 

in  

{

.

𝑥 ∈  𝐴 ∶  𝛿0(𝑥)(𝑎)  =  𝑎𝑥 −  𝑥𝑎 
=  0 , ∀ 𝑎 ∈  𝐴}

 

=  𝑍(𝐴) 

Then, the structure constants of 𝐴𝑠4
1 are 

given as follows:   

𝛾11
3 = 1, 𝛾11

4 = 1 
and the others are zeros. Based on (1), it 

leads 

𝑒1𝑥 =  𝑥𝑒1, 𝑒2𝑥 =  𝑥𝑒2,  𝑒3𝑥 =  𝑥𝑒3   and 

𝑒4𝑥 =  𝑥𝑒4 
Thus  

𝑎1𝑒3  = 𝑎1𝑒3,  𝑎2𝑒4  = 𝑎2𝑒4, 0 =  0 and 

0 =  0 
 

Therefore, the span basis of zero cohomology group 

for 𝐴𝑠4
1 is given as follows: 



Open Access     Baghdad Science Journal                                P-ISSN: 2078-8665 

Published Online First: September 2021             2022, 19(2): 329-335                                            E-ISSN: 2411-7986 

 

332 

𝐻0(𝐴𝑠4
1, 𝐴𝑠4

1) = 𝑠𝑝𝑎𝑛ℂ{𝑒1, 𝑒2, 𝑒3, 𝑒4} 

 

The remaining parts of zero cohomology 

groups in dimension four can be done in a 

similar manner as shown above. 

 

The Cohomology Groups of Degree One 

𝐻1(𝐴, 𝐴)  =  𝐾𝑒𝑟 (𝛿1)/ 𝐼𝑚 (𝛿0), where 

𝐾𝑒𝑟 (𝛿1) = {

.

Φ ∈  𝐶1(𝐴, 𝐴) ∶ 𝛿1(Φ)(𝑥1 , 𝑥2)  
=  𝑥1𝛷( 𝑥2)  −  𝛷(𝑥1, 𝑥2)  + 

 𝛷(𝑥1) 𝑥2 =  0,     ∀ 𝑥1, 𝑥2  ∈  𝐴} 

and 

𝐼𝑚 (𝛿0) = {

.

Φ ∈   𝐶1(𝐴, 𝐴) ∶  Φ = 𝛿0(𝑥), 𝑥 
∈  𝐴}

 
 

= {

.

𝛷 𝑥 ∈  𝐶1(𝐴, 𝐴), 𝑥 ∈  𝐴 ∶  𝛷(𝑎)  

=  𝑎𝑥 −  𝑥𝑎, ∀𝑎 ∈  𝐴} 

It is easy to see that 𝐾𝑒𝑟 (𝛿1) has elements 

satisfying the derivation condition 

and 𝐼𝑚(𝛿0) has elements satisfying the inner 

derivation condition, respectively.  

Therefore, the quotient space 

 𝐻1(𝐴, 𝐴)  =  𝐾𝑒𝑟(𝛿1)/𝐼𝑚(𝛿0)  
=  𝐷𝑒𝑟(𝐴)/𝐼𝑛𝑛(𝐴) 

The 1-cocycles (derivations) of nilpotent 

associative algebras in dimension four are 

given in 
9
. Consequently, the concept of 1-

coboundaries (inner derivations) is looked into. 
The following section describes the procedure 

for finding 1-Coboundaries. 

 

Procedure for Finding 1-Coboundaries 

Let {𝑒1, 𝑒2,· · · , 𝑒𝑛} be a basis of associative 

algebra 𝐴  with dimension 𝑛 over a field 𝐾 

and let Φ be an element in 𝐵1(𝐴, 𝐴). Then  

𝑥 = 𝑎1𝑒1  + 𝑎2𝑒2  + · · ·  + 𝑎𝑛𝑒𝑛 
 

where 𝑥 is a  vector in 𝐴 such that 𝛿0(𝑥)  =
Φ.  

 

                                Φ𝑥(𝑒𝑖)
= 𝑒𝑖𝑥 − 𝑥𝑒𝑖                  ∀𝑒𝑖𝐴, 𝑖
= 1, 2, … , 𝑛.                 (2)       

 

A linear transformation  𝛷𝑥  of  𝐴  can be 

represented as a matrix form 

 𝛷𝑥  =  (𝑎𝑖𝑗), 𝑖, 𝑗 =  1, 2, . . . 𝑛. 

 

                              Φ𝑥(𝑒𝑖) =
   ∑ 𝑑𝑗𝑖

𝑛
𝑗=1 𝑒𝑗                 𝑖 =

1, 2, … , 𝑛               (3)           

                 Thus 

                              ∑ 𝑑𝑗𝑖

𝑛

𝑗=1
𝑒𝑗

= 𝑒𝑖𝑥
− 𝑥𝑒𝑖                                       (4)                                                  
Then  

                             𝑑𝑗𝑖

=  ∑ 𝑎𝑡

𝑛

𝑡=1
𝛾𝑖𝑡

𝑗

− ∑ 𝑎𝑡

𝑛

𝑡=1
𝛾𝑡𝑖

𝑗
                       (5)                                                  

 

 

      The solutions to the system give the 

description of 1−coboundaries in matrix form. 

Following, our procedure is applied to obtain 

the group 𝐵1(𝐴, 𝐴) of nilpotent associative 

algebras in dimension four where IC is 

represented isomorphism classes of algebras. 

 

Theorem 3: The group of all 1−coboundaries 

elements for complex nilpotent associative algebras 

in dimension four  

                       𝐴𝑠4
𝑞
 has the following form: 

IC   1−coboundaries     Dim𝑩𝟏(𝑨, 𝑨) 

 

   𝐴𝑠4
1               (

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

)              0 

 

𝐴𝑠4
2                 (

0      0
0       0

0 0
0 0

𝑎2 −𝑎1

−𝑎2   𝑎1

0 0
0 0

)              2 

 

𝐴𝑠4
3          (

  
0        0
0        0

0  0
0  0

0 0
𝑎2−𝑎3 −𝑎1

0 0
𝑎1 0

)                   2 

 

  𝐴𝑠4
4     (

0      0
0       0

0 0
0 0

𝑎2 −𝑎1

−𝑎2   𝑎1

0 0
0 0

)                      2     

 

𝐴𝑠4
5        (

0      0
0      0

0 0
0 0

2𝑎2 −2𝑎2

0 0
0 0
0 0

)              2 

 

𝐴𝑠4
6           (

0     0
0       0   

0 0
0 0

0 0
2𝑎2 −2𝑎2

0 0
0 0

)                2 
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   𝐴𝑠4
7         (

     
0               0
0               0

0 0
0 0

0 0

(1 −
1+𝛼

1−𝛼
 )𝑎2

1+𝛼

1−𝛼
𝑎1

0 0
0 0

)         2 

 

 

𝐴𝑠4
8        (

0       0
0        0

0 0
0 0

𝑎2 −𝑎1

𝜇𝑎2 −𝜇𝑎1

0 0
0 0

)                    2 

 

 𝐴𝑠4
9       (

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

)                  0 

 

  𝐴𝑠4
10      (

0   0
0    0

0 0
0 0

2𝑎2 0
0 0

0 0
0 0

)                      1 

 

𝐴𝑠4
11          (

0    0
0    0

0 0
0 0

0 0
2𝑎2 2𝑎1

0 0
0 0

)                 2 

 

𝐴𝑠4
12       (

0   0
0    0

0 0
0 0

−𝑎2 𝑎1

0 0
0 0
0 0

)                  2 

 

𝐴𝑠4
13          (

0   0
0    0

0 0
0 0

−𝑎2 𝑎1

0 0
0 0
0 0

)                 2 

 

𝐴𝑠4
14       (

0        0
0         0

   
0 0
0 0

0 0
2𝜆𝑎2 −2𝜆𝑎1

0 0
0 0

)                2 

 

𝐴𝑠4
15        (

0      0
0      0

  
0 0
0 0

0 0
2𝑎2 −2𝑎1

0 0
0 0

)                    2 

 

𝐴𝑠4
16          (

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

)                0 

 

where = 1, … ,16 .    

Proof. If n=4 and q=1 then, the structure 

constants of 𝐴𝑠4
1 are given as follows: 

𝛾11
3 = 1, 𝛾22

4 = 1 
 

and the others are zeros. Based on condition 

(5), it leads 

  

𝑑11  =  𝑑12  =  𝑑 13  =  𝑑 14 =  𝑑 21 = 𝑑22  
=  𝑑 23 = 𝑑24  =  𝑑31 = 

               𝑑 32 = 𝑑33  =  𝑑34  =  𝑑41  
=  𝑑42  =  𝑑43  =  𝑑 44  
= 0                                          

 

Thus, 

                  Φ𝑥 = (𝑑𝑖𝑗) = (

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

)        

 
If n=4 and q=2 then, the structure constants 

of 𝐴𝑠4 
2are given as follows:   

𝛾12
3 = 1, 𝛾21

4 = 1.   
Based on condition (5), it leads 

𝑑11 = 𝑑12  =  𝑑 14 =  𝑑 21 = 𝑑22 = 𝑑 23

= 𝑑24 = 𝑑31 =  𝑑33 =  𝑑34

= 𝑑43 = 𝑑 44 = 0       
 
𝑑31  =  𝑎2,  𝑑32  =  −𝑎1, 𝑑41 =  −𝑎2,    𝑑42    

= 𝑎1  
 

Thus, the 1-coboundary of 𝐴𝑠4 
2  is 

                  𝛷𝑥 = (𝑑𝑖𝑗) = (

0      0
0       0

0 0
0 0

𝑎2 −𝑎1

−𝑎2   𝑎1

0 0
0 0

) 

The remaining parts of 1-coboundary 

algebras in dimension four can be done in a 

similar manner as shown above. 

Based on [9] and Theorem 3, the span bases and the 

dimensions of first cohomology groups will be 

found as shown in Corollary 1. 

 

Corollary 1: Let 𝐻1( 𝐴𝑠n
q

, 𝐴𝑠n
q

) be the 

cohomology group in degree one where 𝐴𝑠n
q

 

denotes as 𝑚𝑡ℎ isomorphism class of associative 

algebra in dimension 𝑛. If 𝑛 = 4 and 𝑞 =
1, 2, . . .16 then, the span bases and the 

dimensions cohomology group in degree one of 

complex nilpotent associative algebra has the 

following form: 

 

  𝐻1( 𝐴𝑠4
1, 𝐴𝑠4

1)    

=  𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸22 , 𝐸31 ,   𝐸32 ,  𝐸41 , 𝐸42 }; 
 

  𝐻1( 𝐴𝑠4
2, 𝐴𝑠4

2)    =  𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸22 ,   𝐸41 , 𝐸42 }; 
 

𝐻1( 𝐴𝑠4
3, 𝐴𝑠4

3)    =  𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸21 ,   𝐸22 , 𝐸43 }; 
 

𝐻1( 𝐴𝑠4
4, 𝐴𝑠4

4)    =  𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸41 ,   𝐸42  }; 
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𝐻1( 𝐴𝑠4
5, 𝐴𝑠4

5)   

=  𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸12 ,  𝐸22,   𝐸41 , 𝐸42 }; 
 

𝐻1( 𝐴𝑠4
6, 𝐴𝑠4

6)    

=  𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸12 ,  𝐸33,   𝐸43 , 𝐸44 }; 
 

𝐻1( 𝐴𝑠4
7, 𝐴𝑠4

7)   

=  𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸12 ,  𝐸22,   𝐸31 , 𝐸32 }; 
 

𝐻1( 𝐴𝑠4
8, 𝐴𝑠4

8)    =  𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸41 ,   𝐸42  }; 
 

𝐻1( 𝐴𝑠4
9, 𝐴𝑠4

9)   

=  𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸21 ,  𝐸31,   𝐸41 , 𝐸42 }; 
 

𝐻1( 𝐴𝑠4
10, 𝐴𝑠4

10)    =  𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸32 ,   𝐸41 , 𝐸42 }; 
 

𝐻1( 𝐴𝑠4
11, 𝐴𝑠4

11)   =  𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸21 ,   𝐸43  }; 
 

𝐻1( 𝐴𝑠4
12, 𝐴𝑠4

12)    =  𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸21 ,   𝐸41  }; 
 

𝐻1( 𝐴𝑠4
13, 𝐴𝑠4

13)   =  𝑠𝑝𝑎𝑛ℂ{ 𝐸21 ,   𝐸41  }; 
 

𝐻1( 𝐴𝑠4
14, 𝐴𝑠4

14)    =  𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸21 ,   𝐸43  }; 
 

𝐻1( 𝐴𝑠4
15, 𝐴𝑠4

15)   =  𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸21 ,   𝐸43  }; 
 

𝐻1( 𝐴𝑠4
16, 𝐴𝑠4

16)   =  𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸21 ,   𝐸31 , 𝐸41 }.  

Proof. Let {{𝐸𝑖𝑗, 𝑖 = 1, … ,4, 𝑗 = 1, … ,4} be a 

basis of the quotient space  

𝐻1(𝐴, 𝐴) =  𝐷𝑒𝑟(𝐴)/𝐼𝑛𝑛(𝐴)  
If 𝑛 = 4 and 𝑞 = 1. Then, the derivation (1-

cocycle) of 𝐴𝑠4
1 was given in (6) in a matrix 

form as follows:  

𝑑 = (𝑑𝑖𝑗) = (

𝑑11      0
0       𝑑22

0        0
0         0

𝑑31      𝑑32

𝑑41      𝑑42
 
 2𝑑11 0

0 2𝑑22

) 

 

Thus, 

𝐷𝑒𝑟( 𝐴𝑠4
1) =

𝑠𝑝𝑎𝑛ℂ{ 𝐸11, 𝐸22, 𝐸31,  𝐸32, 𝐸41, 𝐸42 }. On 

other hand, the inner derivation (1-

coboundarie) of 𝐴𝑠4
1 is given in Theorem 3 in 

a matrix form as follows: 

 

Φ𝑥 = (𝑑𝑖𝑗) = (

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

) 

 

Thus,  𝐻1( 𝐴𝑠4
1, 𝐴𝑠4

1)   =

 𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸22 , 𝐸31 ,   𝐸32 ,  𝐸41 , 𝐸42 }. 
If 𝑛 = 4 and 𝑞 = 2.. Then, the derivation (1-

cocycle) of 𝐴𝑠4
2 was given as follows: 

 

𝑑 = (𝑑𝑖𝑗) = (

𝑑11      0
0       𝑑22

   
0      0  
0       0  

𝑑31      𝑑32

𝑑41      𝑑42
 
 𝑑11    0  

0   𝑑11

) 

 

Hence, 

𝐷𝑒𝑟( 𝐴𝑠4
2) =

𝑠𝑝𝑎𝑛ℂ{ 𝐸11, 𝐸22, 𝐸31,  𝐸32, 𝐸41, 𝐸42 }. Based 

on Theorem 3 the inner derivation (1-

coboundarie) of 𝐴𝑠4
2 is  

Φ𝑥 = (𝑑𝑖𝑗) = (

0      0
0       0

0 0
0 0

𝑎2 −𝑎1

−𝑎2   𝑎1

0 0
0 0

) 

 

Then,  𝐼𝑛𝑛( 𝐴𝑠4
2) = 𝑠𝑝𝑎𝑛ℂ{𝐸31,  𝐸32}.  Let 

𝑣 ∈ 𝐷𝑒𝑟( 𝐴𝑠4
2). The vector 𝑣 can be written  

 

𝑣 = 𝑎1𝐸11 + 𝑎2 𝐸22 + 𝑎3𝐸31 + 𝑎4𝐸32

+ 𝑎5𝐸41 + 𝑎6𝐸42 
 

= (𝑎3𝐸31 + 𝑎4𝐸32) + (𝑎1𝐸11 + 𝑎2 𝐸22

+ 𝑎5𝐸41 + 𝑎6𝐸42) 

 

Let 𝑥 ∈ 𝐻1( 𝐴𝑠4
2,  𝐴𝑠4

2) =  𝐷𝑒𝑟( 𝐴𝑠4
2)/

𝐼𝑛𝑛( 𝐴𝑠4
2) such that 𝑥 = 𝑣. The vector 𝑥 can 

be written 

 
𝑥 = 𝑣 = (𝑎3𝐸31

̅̅ ̅̅ ̅ + 𝑎4𝐸32
̅̅ ̅̅ ̅) + (𝑎1𝐸11

̅̅ ̅̅ ̅

+ 𝑎2 𝐸22
̅̅ ̅̅ ̅ + 𝑎5𝐸41

̅̅ ̅̅ ̅ + 𝑎6𝐸42
̅̅ ̅̅ ̅) 

 
= 𝑎1𝐸11

̅̅ ̅̅ ̅ + 𝑎2 𝐸22
̅̅ ̅̅ ̅ + 𝑎5𝐸41

̅̅ ̅̅ ̅ + 𝑎6𝐸42
̅̅ ̅̅ ̅ 

 

Since 𝐸31
̅̅ ̅̅ ,̅ 𝐸32

̅̅ ̅̅ ̅  ∈ 𝐻1( 𝐴𝑠4
2,  𝐴𝑠4

2) vanishes. 

Thus, 

  𝐻1( 𝐴𝑠4
2, 𝐴𝑠4

2)   =  𝑠𝑝𝑎𝑛ℂ{𝐸11 , 𝐸22 ,   𝐸41 , 𝐸42 }. 
 

 

 The span bases of cohomology group in degree 

one of the remaining parts can be done in a 

similar manner as shown above. 

 
Conclusion: 

The present work focuses on the 

applications of low dimensional cohomology 

groups 𝐻𝑖(𝐴, 𝐴), 𝑖 =  0, 1. The dimensions of 

zero cohomology groups and first 

cohomology groups for four-dimensional 

complex nilpotent associative algebras range 

between zero and four and between zero and 

six, respectively.  
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 حول الزمر الكوهومولوجية للجبر التجميعي عديم القوى ذات البعد الرابع
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 لخلاصة:ا
مر تعد دراسة الزمر الكوهومولوجية واحدة من أكثر البحوث المكثفة والمثيرة  والتي قد  نشأت من التبولوجيا الجبرية. حيث يعتبرالبعد للز

الكوهومولوجية على وجه الخصوص ثابت في غاية الفائدة ويلعب دورآ هامآ في التصنيف الهندسي للجبر التجميعي. هذا العمل يركز على 

الزمر الكوهومولوجية ذات الابعاد المنخفضة. في هذا الخصوص، الزمر الكوهومولوجية المنخفضة للجبر التجميعي عديم القوى ذات تطبيقات 

 البعد الرابع تم وصفهاعلى شكل مصفوفة.  
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