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Abstract:

Throughout this paper R represents a commutative ring with identity and all R-
modules M are unitary left R-modules. In this work we introduce the notion of S-
maximal submodules as a generalization of the class of maximal submodules, where a
proper submodule N of an R-module M is called S-maximal, if whenever W is a semi

essential submodule of M with N € W € M, implies that W = M. Various properties

of an S-maximal submodule are considered, and we investigate some relationships
between S-maximal submodules and some others related concepts such as almost
maximal submodules and semimaximal submodules. Also, we study the behavior of
S-maximal submodules in the class of multiplication modules. Farther more we give
S-Jacobson radical of rings and modules.

Key words: Maximal submodules, S-maximal submodules, Almost maximal
submodules, Semimaximal submodules, Semi essential submodules and Jacobson
radical of modules.

Introduction:

Throughout  this  paper R Hatem in [4] gave another
represents a commutative ring with generalization for maximal
identity and all R-modules M are submodules, named semimaximal
unitary left R-module, also all R- submodules,  where a  proper
modules under study contain prime submodule N of an R-module M is

submodules. It is well known that a
proper submodule N of an R-module o ]
M is called maximal, if whenever W is semisimple R-module. Muna in [9]

: introduced the concept of nearly
a submodule of M with N & W S M maximal submodules, where a proper

] ] ] M ]
called semimaximal, if N is a

implies that W = M, eqUivalentIy, there submodule N of an R-module M is
IS no  proper submodule of M called nearly maximal, if whenever a
containing N properly [1]. submodule W of M containing N
~ Inaam and Riyadh in [2Z] properly implies that W + J(M) = M,
introduced the notion of almost where J(M) is the Jacobson radical of
maximal submodules, where a proper M. In this paper, we introduce the
submodule N of an R-module M is concepts of S-maximal submodules as
called almost maximal, if whenever W a generalization of maximal
is an essential submodule of M with N submodules, where a  proper
& W S M implies that W = M, where a submodule N of an R-module M is
submodule K of M is said to be called S-maximal, if whenever W is a
essential, if for every submodule L of semi essential submodule of M with N
M with K n L = (0) implies that L = ¢ W < M, implies that W = M, where
) [3]. a submodule K of M is called semi
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essential if K N P #(0), for every
nonzero prime submodule P of M [6].
In section 1, we investigate some main
properties of this type of submodules.
In section 2, we study the relationships
between S-maximal submodules and
some other concepts such as almost
maximal and semimaximal
submodules a. In section 3 we study
the behavior of S-maximal submodules
in the class of multiplication modules.
In section 4, we introduce the S-
Jacobson radical of S-maximal
submodules.

1. S-maximal submodules

In this section we introduce a class
of S-maximal submodules as a
generalization of maximal submodules.
We give various basic properties for
this concept. Firstly we begin by the
following definition.

Definition  (1.1): A proper
submodule N of an R-module M is
called S-maximal, if whenever a semi
essential submodule W of M with N &
W c M, then W = M. Equivalently,
there is no proper semi essential
submodule of M containing N
properly. An ideal | of a ring R is
called S-maximal if it is S-maximal R-
submodule of R.

Remarks and Examples (1.2):

1. It is clear that every maximal
submodule is S-maximal, but the
converse is not true in general as the
following example shows; The Z-
module M = 2Z @ 2Z and the
submodule N = 4Z @ (0) of M is not
maximal, since 4Z & (0) ¢ 2Z & (0)
C 2Z @ 2Z. While N is an S-maximal,
since the only submodule in M
containing N properly is 2Z & (0),
which is not semi essential submodule
of M, since there exists a prime
submodule (0) @ 2Z of M such that
((0) e 22) N (22 & (0)) = (0).

2. Z is not S-maximal submodule of
the Z-module Q, since there exists a
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submodule % Z of Q such that Z < 5

1 _ . . .
Z, and clearly Z Z is a semi essential

submodule of Q.

3. Not every module has an S-maximal
submodule. For example: Z,.. as Z-
module. In fact for each submodule N
of Z,.., any submodule W of Z,_.such
that N € W & Z,., is an essential
submodule of Z,.. and so a semi

essential. That is N is not S-maximal
submodule of Z,,...

4. If N and W are proper submodules
of an R-module M such that N € W. If
N is an S-maximal submodule of M,
then W is an S-maximal submodule of
M

Proof (4): Suppose that W is not S-
maximal submodule of M, then there

exists a semi essential submodule U of
M such that W & U © M. This implies
that N € U € M, that is N is not S-
maximal which is a contradiction.

5. If U and V are proper submodules
of an R-module M such that UNV is an
S-maximal submodule of M, then both
of U and V are S-maximal submodules
of M.

Proof (5): Follows directly from (4).

The converse of (5) is not true in
general as we see in the following
example:

The submodules (2) and (3) of the Z-
module Z are S-maximal submodules,
but (2) N (3) = (6), and (6) is not S-
maximal submodule of Z since (6) ¢
(3) € Z, and (3) is a semi essential
submodule of Z.

6. Let M be an R-module and let N
and K be submodules of M. If N and K
are S-maximal submodules of M, then
N+K is an S-maximal submodule of
M

Proof (6): The result follows by (4).
7. Let M be an R-module and let N
and K be proper submodules of M,
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such that N & K. If N is an S-maximal

submodule of K and K is an S-
maximal of M, then N is not necessary
S-maximal submodule of M. For
example: Consider the Z-module
M=Z,4 and the submodules K = (2)
and N = (4) of Z,4. Note that N is an S-
maximal of K and K is S-maximal
submodule of M, but N is not S-
maximal submodule of M.

8. Let M be an R-module, and let A be
an S-maximal submodule of M. If B is
a submodule of M such that B = A,
then it is not necessary that B is an S-
maximal submodule of M. For
example: Consider the Z-module Z, the
submodule 2Z is an S-maximal in Z,
and 2Z =~ Z, but Z is not S-maximal
submodule of Z. In fact any S-maximal
submodule must be a proper in any R-
module.

9. Every nonzero F-regular module has
an S-maximal submodule. In fact every
nonzero F-regular module has a
maximal submodule [7] and the result
follows from (1), where an R-module
M is called F-regular if every
submodule of M is pure [7].

Recall that a prime radical of an R-

module M, is the intersection of all
prime submodules of M, and denoted
by rad (M) [8]. We have the following
proposition.
Proposition (1.3): Let M; and M,
be R-modules and let N & M+, assume
that f: M;—M; be an epimorphism
such that ker(f) € rad (M) < N. If N
is an S-maximal submodule of My,
then f(N) is S-maximal submodule of
M.

Proof: Since ker(f) <

rad(M,), and
radM; & M, then we can show that

f(N) & M. In fact if (N) = M, = f(M,),
since N # Mj, so there exists me M;
such that mg N. Now y = f(m) e f(N),
this implies that f(m) = f(n) for some
ne N, and hence m-ne ker(f) < N.
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Therefore m-n= n; for some n;e N,
that is m=n+n; € N which is a
contradiction, since N # M. Now, If
f(N) is not S-maximal submodule of
M,, then there exists a semi essential

submodule W of M, such that f(N) &
W € M,. This implies that f*(f(N) & f
‘w) ¢ fM,). But f s
epimorphism and kerf € rad(M;) € N,
then N & f(W) € M. Since W is a
semi essential submodule of M, and
kerf < rad (M,), so by [6] fX(W) is a
semi essential of My, that is N is not S-

maximal submodule of M; which is a
contradiction.

Corollary (1.4): Let N be an S-
maximal submodule of M and let K €

an

N
N. If K € rad (M), then K is an S-
M
maximal submodule of X
Corollary (1.5): If N is an S-

maximal submodule of M such that
rad(M) € N, then is S-

rad(M)

maximal submodule of .
rad (M)

Recall that a nonzero R-module M
is called semi uniform, if each nonzero
submodule of M is semi essential of M.
A ring R is called semi-uniform if each
nonzero ideal of R is a semi essential
[6].

It's clear that every proper ideal is
contained in an S-maximal ideal, then
we have the following.

Remark (1.6): Let M be a semi
uniform R-module and let N be a
proper submodule of M. Then N is an
S-maximal submodule if and only if N
is maximal submodule.

Definition (1.7): An R-module M is
called S-semisimple, if M has no
proper semi essential submodule of M.
That is if a submodule N is a semi
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essential submodules of M, then N =
M.

It is clear that every S-semisimple
module is a semisimple module.
Examples (1.8):

1. (3) in the Z-module Zs is an S-
semisimple module since (3) has no
proper semi-

essential submodule.

2. Z;p as Z-module
semisimple module.
Proposition (1.9): Let M be an R-
module. Then the zero submodule of
M is an S-maximal submodule if
and only if M is an S-semisimple
module.

Proof: =) If the zero submodule (0)
iIs S-maximal, then M has no proper
semi essential submodule, that is M is
an S-semisimple module.

<) Since M is an S-semisimple R-
module, then M has no proper semi
essential submodule, which implies
that every submodule of M is an S-
maximal. Thus (0) is an S-maximal of
M.

Corollary(1.10): Let M be an R-
module, then the following statements
are equivalent:

1. M is an S-semisimple module.

2. (0) is an S-maximal submodule.

3. Every proper submodule of M is an
S-maximal submodule.

Proof: (1) & (2) By Prop (1.10).

(2) = (3) By Rem and Ex (1.2)(4).

(3) = (2) Itis obvious.

Proposition (1.11): If N is an S-
maximal submodule of an R-module M
and | is an ideal of R, If (N:,I) is a
proper submodule of M, then (N:y; I) is
an S-maximal submodule of M.

Proof: Since (N:yyI) € M and N €
(N:y,; I),50 by Rem and Ex (1.2)(4), we
get (N:yI) is an  S-maximal
submodule.

Note that sometimes(N:y I) = M, for
example: If M is a multiplication

is not S-
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module, then any submodule N of M
can be written as the form N=IM,
hence (N:y, I) = M.

The converse is not true for
example. The Z-module M=Zj,, and
the ideal 1=2Z of Z, N = {0, 4, 8} is not
S-maximal submodule of Zj;», while

maximal submodule of M.

Definition (1.12): An R-module M
is called SM-module, if every proper
submodule of M is an S-maximal. And
a ring R is called SM-ring if every
proper ideal of R is an S-maximal
ideal.

Examples (1.13):

1. Both of Z-module Zg and Z-module
Z10 are SM- modules.

2. Z as Z-module is not SM-module,
since the submodule (6) of Z is not S-
maximal

submodule. In fact a nonzero
submodule (n) of Z is S-maximal if
and only if (n) prime submodule of Z.

3. Every S-semisimple module is an
SM-module.

Proof (3): It follows from Cor
(1.10).

Recall that an R-module M is
called fully prime, if every proper
submodule of M is prime [9]. In the
following theorem we prove under
some conditions, the direct sum of two
SM-modules is an SM-module, before
that we need to give the following
lemma.

Lemma (1.14): If M is a fully prime
R-module, then every nonzero semi
essential submodule of M is an
essential submodule of M.

Lemma (1.15): Let M = M; & M,

be a fully prime R-module where M;
and M, are submodules of M, and let

(0)#K1§M1§Mand(0)?ﬁKggM2

€ M, then K; & K5 is a semi essential

submodule of M; & M if and only if
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K is a semi essential submodule of M,
and K, is a semi essential submodule
of M.

Proof: =) Since M is a fully prime
module, then by Lemma (1.14) K; &

K, is an essential submodule of M; &
M., and by [8], K; is an essential
submodule of M, and K3 is an essential
submodule of M,. But every essential
submodule is a semi essential, so we
get the result.
<) Also by using [8].
Theorem (1.16): Let M be a fully

prime R-module, and M=M;®M,,

where M; and M, be are modules, and
let annMy + annM, = R. If M; and M,
are SM-modules, then M is an SM-
module.

Proof: Let N be a proper submodule
of M, and let K be a submodule of M

such that N € K € M where K is a
semi essential submodule of M. Since
annM; + annM, = R, then N=N;®N,
for some submodules N; of M; and N,

of M,, also K= K;®K, for some

submodules K; of M; and K, of M,
[10]. There are three cases: (1) Both of
N; and N, are proper submodules of
M; and M, respectively (2) N; is a
proper submodule of M; and N, = M,
(3) N3 is a proper submodule of M, and
N; = M. If both of N; and N, are
proper submodules of M; and M,

respectively, then we have Ni®N, <

Ki®K, € Mi®M, where Ki®K, is

semi essential submodule of M{®M,,
so by Lemma (1.15), K; is a semi
essential submodule of M4 and K5 is a
semi essential submodule of M,. But
both of M; and M, are SM-module,
then K; = M; and K; = M, and this
implies that K = Ki®K; = MM, =
M, hence M is an SM-module. If

N=N;®M,, and since M; is an SM-
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module, then K = My, hence K =
Ki®Ks = MidM, = M, hence M is an

SM-module. Similarity for N=M;®N,.

The following two examples are
about the direct sum of two S-maximal
submodules. The first one shows that
for R-modules My and M, if Ny is an
S-maximal submodule of M; and N is
an S-maximal submodule of My, then it

is not necessarily that N;@®N, is S-

maximal submodule of M1®M,.
Example (1.17): Consider the Z-

module Z and the Z-module M=Z&Z.

It is clear that N;=2Z and N»,=3Z are S-
maximal submodules of Z. However,

Ni®N, € Z3Z < M. Moreover, it is

clear that Z®3Z is a proper semi
essential submodule of M, thus
N=N;:®N; is S-maximal
submodule of M.

The other example shows that if

both of Ny and N, are S-maximal
submodules of an R-module M, then

N1@®N, is not necessarily S-maximal
submodule of M.

Example (1.18): The submodules
N;= (2) and N,= (3) are S-maximal
submodules of the Z-module Zg, but
N1®N, = Zg is not S-maximal
submodule since it is not proper
submodule of Zs.

2. S-maximal submodules and

some other related concepts

In this section we study the
relationships between S- maximal
submodules and almost maximal
submodules and some others classes of
submodules such as semimaximal,
weakly prime and nearly maximal
submodules. Firstly, recall that a
proper submodule N of an R-module
M is called almost, maximal if
whenever W is an essential submodule

not
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of M with N € W € M implies that W
=M.

Remark (2.1): Every S-maximal
submodule is almost maximal.

The converse of Remark (2.1) is
not true in general as we see in the Z-
module Z4,, the submodule (8) is an
almost maximal, since the only proper
submodules  which  contains (&)
properly are (2) and (3) and each of
them is not essential submodule of the
Z-module Z4. But (&) is not S-
maximal submodule of Z4,, since (2)
and (3) are both semi essential
submodules of Z4, and containing (6)
properly.

Recall that an R-module M is
called chained, if for each submodules
U, V of M, either UCV or VCU [11].
In order to prove the following
theorems we need to give the following
lemma.

Lemma (2.2):

1. Every chained module is a uniform
module, so it is semi uniform module.
2. Every integral domain is a uniform
module, so it is semi uniform module.
Theorem (2.3): Let N be a proper
submodule of a chained module M,
then the following statements are
equivalent:

1. N is an S-maximal submodule.

2. N is a maximal submodule.

3. N is an almost maximal submodule.
Proof: (1) & (2) By Lemma (2.2)
(1) and by Prop (1.6).

(2) © (3) [2, Cor (1.4)].

(3) @ (1) By Remark (2.1) and [2, Cor
(1.4)].

Theorem (2.4): Let | be a proper
ideal of an integral domain R, then the
following statements are equivalent.

1. I'is an S-maximal ideal.

2. | is a maximal ideal.

3. lis an almost maximal ideal.
Proof: (1) & (2) By Lemma (2.2)(2).
(2) © (3) [2, Cor (1.5)].
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(3) © (1) By Remark (2.1) and [2, Cor
(1.5)].

Recall that a submodule N of M is

called weakly prime, if whenever a, b
e Rwith 0 # abe | implies that ac | or
b e I [12]. It is well known that a non
trivial proper ideal of a principle ideal
domain (briefly PID), is prime if and
only if it is maximal ideal, so we have
the following.
Proposition (2.5): Let | be a non
trivial proper ideal of a PID, R. Then
the  following  statements  are
equivalent:

1. I'is an S-maximal ideal.

2. | is an almost maximal ideal.

3. I is a maximal ideal.

4. 1is a weakly prime ideal.

5. lis a prime ideal.

Proof: (1) = (2), by Remark (2.1).
Qe ) e @) e 0)I[2]

(5) = (1), since l is a prime ideal and R
is a PID, then I is a maximal and by

Remark (1.2)(1), I is an S-maximal
ideal.

Remark (2.6): Every S-maximal
submodule is semimaximal submodule.
In fact by Remark (2.1), every S-
maximal submodule is almost maximal
and every almost maximal submodule
is semimaximal submodule [2].

The converse of Remark (2.6) is
not true in general. In fact (6) is
semimaximal submodule in the Z-
module Z, but not S-maximal, since
there exists a proper semi essential
submodule (3) of Z such that (6) < (3).

However, under some condition the
converse of Remark (2.6) is true as the
following proposition shows.
Proposition (2.7): Let | be a prime
ideal of aring R. If I is a semimaximal
ideal of R, then I is an S-maximal
ideal.

Proof: It follows by using [2, Prop
(1.15)] together with Rem and Ex

(1.2)(1).
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Recall that a proper submodule N
of an R-module M is called nearly
maximal, if whenever a submodule W
of M containing N properly implies
that W+J(M)=M, where J(M) is the
Jacobson radical of M [5].

Remark (2.8): Nearly maximal
submodules is not necessarily S-
maximal submodule, for example: In
the Z-module Q, the submodule Z is
nearly maximal but not S-maximal
submodule of Q, since there exists a

. . 1
semi essential submodule 2 Z of Z

such that Z ¢ i Z. We think the two

concepts are independent, but we can't
find an example to complete this claim.

Proposition (2.9): Let M be a fully

prime R-module and let (0) # N & M,

then N is an S-maximal submodule of
M if and only if N is an almost
maximal submodule of M.

Proof: =) Clear.
<) Assume that N is an almost

maximal submodule of M, and let N &

L < M where L is a nonzero semi
essential submodule of M. Since M is a
fully prime module, then by Lemma
(1.14) L is an essential submodule of
M. But N is an almost maximal
submodule, thus L = M, that is N is an
S-maximal submodule.
We need to introduce the

following definition.

Definition  (2.10): A nonzero
module M is called fully essential, if
every  nonzero  semi  essential

submodule of M is an essential
submodule of M. A ring R is called
fully essential, if R is fully essential R-
module.

Example (2.11):

1. Every integral domain is a fully

essential module.
2. The Z-module Z

essential module.

is fully

FICE
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3. Both of Zss and Z3 are not fully
essential Z-module.

4. Zyisafully essential module.

5. Every uniform module is a fully
essential module.

Remark (2.12): In the Lemma
(1.15) and Th (1.16) we can replace the
condition "M is a fully prime module”,
by the condition "M is a fully essential
module”, and the proof is done in
similar way.

Proposition (2.13): Let M be a

fully essential R-module and let N €

M, then N of M is S-maximal if and
only if N is an almost maximal
submodule of M.

In the following theorem, we prove

analogous of Th (1.16), but without
need to put the condition "fully prime"
on an R-module M. Before that we
need to introduce the following
definition.
Definition (2.14): An R-module M
is called AM-module, if every nonzero
submodule of M is an almost maximal.
And a ring R is called AM-ring, if
every proper nonzero ideal of R is an
almost maximal R-submodule.

Note that Zs as Z is an AM-
module, and by using Remark (2.1) we
can easily show that every SM-module
is AM-module.

Theorem (2.15): Let M be an R-

module, and M=M;&M,, where M,

and M, be are modules, and let annM;
+ annM, = R. If M; and M, are AM-
modules, then M is an AM-module.

Proof: Let N be a proper submodule
of M, and let K be a submodule of M

such that N € K € M where K is an
essential submodule of M. Since
annM; + annM, = R, then N=N;®N,
for some submodules N; of M; and N,
of M, also K= K;®K;, for some

submodules K; of M; and K, of M,
[10]. As the same argument of Th
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(1.15), we have Ni®N; € Ki®K; €
M1®M;

essential submodule of Mi®M,. By

[3], K1 is an essential submodule of M;
and K, is an essential submodule of
M,. But both of M; and M, are AM-
module, then K; = My and Ky, = My,

and this implies that K = K;®K; = M,
hence M is an AM-module. )
3. S-maximal submodules and

multiplication modules

In this section we will study the
behavior of S-maximal submodules in
the class of multiplication modules.
Firstly, recall that an R-module is
called multiplication, if for each
submodule N of M, there exists an
ideal 1 of R such that N=IM [13].
Equivalently, M is a multiplication
module if and only if for each
submodule N of M, N = (N:zM) M
[14].
Remark (3.1): Every multiplication
module contains an  S-maximal
submodule.

Proof: Since every multiplication has
a maximal submodule then by Rem
and Ex (1.2) (1) we are done.

Corollary (3.2):  Every cyclic R-
module has an S-maximal submodule.

Proof: The result follows from the
fact that every cyclic module is
multiplication module.

We need to give the following
definition.
Definition (3.3): A nonzero R-
module M is said to be S-local module
if M has only S-maximal submodule
which contains all proper submodules
of M. A ring R is called S-local ring if
R is an S-local R-module.
Example (3.4): The Z-module (3)
in the Z-module Z; is an S-local
module, since it has only S-maximal
submodule which is (8).

where Ki®K, is semi
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Proposition (3.5): Let M be a
nonzero multiplication and S-local R-
module, and let N be an S-maximal
submodule of M. If N= (0), then N is a
semi essential submodule of M.

Proof: Let P be a prime submodule of

M with P n N = (0). Since M is a

nonzero multiplication module, so by
[14], P contained in some maximal
(hence S-maximal) submodule of M.
But M has only one S-maximal

submodule which is N. Thus P € N.
This implies that P = (0), that is N is a
semi essential submodule of M.
Corollary (3.6): Let R be an S-
local, and let | be an S-maximal ideal
of R. if T # (0), then I is a semi
essential ideal of R.

Theorem (3.7): Let N be a
submodule of a faithful and
multiplication R-module M. Consider
the following statements:

1. N is an S-maximal submodule of M.
(N:z M) is an S-maximal ideal of R. 2.

3. N =IM for some S-maximal ideal |
of R.

Then: (1) = (2) = (3),andif M isa
finitely generated module then (3) =
(1.

Proof (1) = (2): Suppose that (N:z M)
is not S-maximal ideal of R. Then there
exists a proper semi essential ideal J of
R such that (N:zM) € J € R. Since M
is a multiplication module, then N =
(N:zM) M € JM € M [14]. Since M is
a faithful and multiplication module,
then JM is a semi essential submodule
of M [6]. Hence N is not S-maximal
which a contradiction with our
assumption is, thus (N:zM) is an S-
maximal ideal. .
(2) = (3): Since N is a multiplication
N = (N:g M) M [14], so by (2), (N:z M)
is an S-maximal ideal of R and we are
done.

(3) = (1): Suppose that N is not S-
maximal submodule of M, then there
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exists a proper semi essential
submodule U of M such that N & U <
M. By assumption N = IM for some S-
maximal ideal | of R and U = JM for
some ideal J of R. Since M is a
multiplication, thus IM & JM € RM =
M and since M is a finitely generated
faithful multiplication module, so by
[14, Th (31, ISJES R. ButU=1IM
is a semi essential submodule of M and
M is a faithful multiplication module,
then J is a semi essential ideal of R [6]
and thus | is not S-maximal ideal,
which is a contradiction with (3).
Therefore N is an S-maximal
submodule of M. .

We end this section by the
following theorem which gives the
hereditary property between SM-
module over ring and the ring R itself.

Theorem (3.8): Let M be a finitely
generated faithful and multiplication
module. Then M is an SM-module if
and only if R is an SM-ring.

Proof: =) Assume that M is an SM-
module, and let | be a proper ideal of
R. Since M is a multiplication module
then N=IM. But M is an SM-module,
so N is an S-maximal submodule of M.
By Th (3.7), I is an S-maximal ideal of
R.

&) Suppose that R is an SM-ring and
let N be a proper submodule of M.
Since M is a multiplication module, so
there exists an ideal |1 of R such that
N=IM. By assumption 1| is an S-
maximal ideal, and by Th (3.7) N is an
S-maximal submodule of M, that is M
is an SM-module.

4. S-Jacobson radical of rings

and modules

In this section we introduce the
concept of S-Jacobson radical of
modules. We give some properties and
other characterization for this type of
radical. We start by the following
definition.
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Definition (4.1): Let M be an R-
module. S-Jacobson radical of M is
denoted by SJ(M), and we defined as
follows:

SJ(M) = n{N, where N is an S-
maximal submodules of M}.

If there is no S-maximal submodule in
M, then we say that SJ(M)=M. An S-
Jacobson radical of a ring R is the
intersection of all S-maximal ideals of
R

Examples and Remarks (4.2):

1. SI(M) € J(M).

2. If M is an SM-module, then SJ(M)
= (0).

Pﬁo)of (2): By assumption (0) is an S-
maximal SJ(R) = n {I, where | is an S-
maximal ideal of R}.

submodule and hence SJ(M) < (0), and
we are done.

3. If M is a S-semisimple module, then
SJ(M) = (0).

Proof (3): Since M is an S-

semisimple module, so by Cor (1.10)
every proper submodule of M is an S-
maximal, in particular (0) is an S-
maximal submodule of M, thus SJ(M)

€ (0) and we are done.

Proposition _(4.3): Let M be a
faithful, finitely  generated and
multiplication R-module, then SJ(M) =

n {IM | I'is an S-maximal ideal | of R}.

Proof: Put K= n{IM | I is an S-
maximal ideal |1 of R}. If SJ(M)=M
then clearly KESJ(M), so assume that
SJ(M)#=M and let N be an S-maximal
submodule of M. Since M is a faithful
and multiplication module then by Th
(3.7), (N:x M) is an S-maximal ideal of
R. By assumption K € (N:3M) M = N,
and by definition of SJ(M) we have K
€ SJ(M)...(1). Now, let I be an S-

maximal ideal of R. Since M is a
faithful,  finitely  generated and
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multiplication module, then by Th
(3.7), IM is an S-maximal submodule

of M, hence SJ(M) € IM hence SJ(M)

€ K ...(2). From (1) and (2) we get
SJ(M) = K and we are done.

Corollary (4.4): Let M be a
faithful, finitely generated and
multiplication R-module. If R is an
integral domain and M is a divisible,
then SJ(M) = M.

Proof: Let I be an S-maximal ideal
of R. Since M is a divisible module,
then IM = M, but M is a faithful,
finitely generated and multiplication
module, so by Prop (4.3), SJ(M) = M.
Corollary (4.5): If R is an integral
domain and divisible, then SJ(R) = R.

Corollary (4.6): If M is a faithful,
finitely generated and multiplication R-

module, then SJ(R) M € SJ(M).
Proof: Let I be an S-maximal ideal of
R. By definition of SJ(R ), SJ(R) € |,

hence SJ(R) M € IM. Since M is a

faithful, finitely  generated and
multiplication R-module so by Prop
(4.3) SI(R)M € SJ(M).

In the Cor (4.6), when SJ(R) is an

S-maximal ideal of R, then the equality
holds as the following shows.
Corollary (4.7): Let M be a
faithful,  finitely  generated and
multiplication R-module. If SJ(R) is an
S-maximal ideal of R, then SJ(R) M =
SJI(M).
Proof: Since SJ(R) is an S-maximal
ideal of R and M is faithful and
multiplication R-module, then by Th
3.7), SIRM is an S-maximal
submodule of M. This implies that
SJ(M) € SJ(R)M. But M is a finitely
generated module, then by Cor (4.6)
we get the result.

Now, we study the S-Jacobson
radical of submodules and the S-
radical of ideals.
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Definition (4.8): Let N be any
submodule of an R-module M. The S-
Jacobson radical of submodule N is
denoted by SJ(N) and defined as
follow: SJ(N) = n{K: K is an S-
maximal submodule of M containing
N) and the S-Jacobson radical ideal of
A is defined by SJ(A) =n { 1| lisan
S-maximal ideal of R containing A}.

Example (4.9): Consider the
submodule ( 12) of the Z-module Z,,.
Not that SJ(12) = n { K : K is an S-
maximal submodules of Z,4}. The S-
maximal submodules of Z,4 containing
(12) are only (2) and (3), so (2) n (3)

= (6). Thus SJ(12) = (&).

The following proposition gives
some properties of the S-Jacobson
radical of submodules.

Proposition (4.10): Let N and L be
two submodules of an R-module M,
and let | be an ideal of R then:

1. N € SI(N).

2. SI(SI(N)) = SI(N).

3. SI(N nL) € SIN) n SI(L).
Proof: Itis clear, so we omitted.

Proposition (4.11): If M is an SM-
module, then SJ(N) = N, for each
submodule N of M.

Proof: Let N be a submodule of M,
SJIN) = n{K | K is an S-maximal
submodule of M such that N € K}. By

assumption N is an S-maximal
submodule of M, thus SJ(N) = N.
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