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Abstract:

This work characterizes the fractographic features of the neat epoxy and ZrO, epoxy
nanocomposites. All samples were subjected to a tensile test to determine the tensile strength and tensile
modulus. SEM images were used to study the morphology of the fractured surface. The fractographic of the
fracture surfaces were studied by microstructure analysis program (j-images) to specify the effect of ZrO,
nanoparticles on tensile performance and failure mechanism for ZrO, epoxy nanocomposites. The tensile test
results show that the addition of ZrO, nanoparticles (2, 4, 6, 8, and 10 vol.%) to the epoxy matrix leads to
increase the tensile strength about 40% for optimal content of ZrO, nanoparticles at 4 vol.%, tensile modules
of ZrO, epoxy nanocomposites increased about 200% for optimal content of ZrO, nanoparticles at 4 vol.%.
SEM images show that the patterns of fractured surfaces of ZrO, epoxy nanocomposites are different from
the pattern of the neat epoxy. The fracture roughness of ZrO, epoxy nanocomposites increased with the
increases of the percentages of ZrO, nanoparticles, where the increment of fracture roughness about 30% for
optimal content of ZrO, nanoparticles at 4 vol.% can be indicator for the improvement of mechanical
properties (tensile strength and modules).
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Introduction:

Recently, epoxy nanocomposites have nanophase regions'®. The reinforcement efficiency
many positive characteristics in many fields; in  nanocomposites is strongly dependent on;
dielectric, mechanical, and thermal field. Epoxy  particle size (particle diameter), dispersion of
nanocomposites also have several advantages such nanoparticles in the resin matrix, and volume
as; good mechanical properties’, good corrosion  fraction of nanoparticles in the resin matrix™.
resistance, adhesion to the most substrates, excellent ~ Increase use of epoxy nanocomposites is
tribological properties, scratch resistance, and accompanied by failures, which are certainly
biomechanical performance®®. Other advantages are  occurring. Failures in nanocomposites occur during
low permeability of gaseous and liquid (barrier  any of the following steps; the manufacturing
characteristics), materials with good ability to process, during the primary tests, and/or during the
maintain its original dimensions (dimensional actual field service (9,10). The analysis of failure
stability), retardancy of flame, and ability to resist identifies the causes of failure in an endeavor to
heat. These characteristics and advantages drew  provide informative feedback to the designers,
attention to the capability and benefits of epoxy  manufacturers, and users*>. The failure modes are
nanocomposites in the industrial field®®. The  the first step to identify the type of failure, and
nanoparticles (as additional inorganic nanophase  fractographic study can be used to establish the
filler) can almost fill up the weak micro-regions in  failure modes and failure analysis'®. Features of the
the epoxy resin to enhance the interaction forces nanocomposite failure distinguishes the fracture
between the epoxy resin and filler regions led to  surface, these features provide vital information that
enhance the properties of nanocomposites. determines the location and source of failure,
Significant improvement in the properties of  conditions of stress at the crack initiation time and
composites of epoxy resin is ascribed to the type of  propagation, and final failure ™. In this work, the
interaction force between the epoxy resin and  fractographic features will characterize tensile
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performance and failure mechanism of the neat
epoxy and ZrO, epoxy nanocomposites.

Materials and Methods:
Materials

The Epoxy resin used was: Nitofill, EPLV,
Fosroc Company with the hardener (Nitofill EPLV).
mixing ratio was 3:1 (resin:hardener) weight ratio
for one to another, final concentrations of epoxy
resin in the nanocomposites were 98%, 96%, 94%,

Figure 1. (a) TEM imagé énd (b) X

Experimental Procedure:

In this study, the technique of two steps was
used to prepare ZrO, epoxy nhanocomposites
(volume fraction, 2, 4, 6, 8 and 10 vol.% of ZrO,
nanoparticles). ZrO, nanoparticles were exposed for
thermal at 100 °C for 30 minutes to ensure the
discard of mostly of H,O molecules that were
absorbed by ZrO,. First step, mixing ZrO,
nanoparticles with epoxy resin by using a shearing
mixer for 4 minutes to give good distribution but
without having good dispersion of ZrO,
nanoparticles inside the resin matrix, this step leads
to reduce the time for using the ultrasonic
homogenizer, where the high temperature
accompanying using ultrasonic homogenizer device
may reduce the time of gel epoxy making hard to
mold the epoxy nanocomposite™ *°. The second
step, using a homogenizer (Soniprep 150 MSE,
ultrasonic) for 4 minutes to reach the best dispersion
of ZrO, nanoparticles inside the resin matrix which
is the most important condition for the theory of
reinforcing of epoxy nanocomposites (15). The
hardener was mixed with the mixture of ZrO,
nanoparticles-resin mixture for 2 minutes by a
homogenizer. Finally, the vacuum system was used
to remove any bubble from ZrO, epoxy
nanocomposites structure before casting in a mold
identically to ASTM D638 (dog bone shape) Test
Specimen Fig. 2.

92% and 90% vol. fraction. The time to gelling was
40 minutes at 35 °C, gravity (specific) 1.04 g/lcm*
and mixed viscosity 1.0 poise at 35 °C (information
supply by Fosroc Company). ZrO, nanoparticles
were produced by MTI company with specific
surface area 20 - 30 m?/g, average particle size 20-
30 nm while density 0.4 - 0.6 g/cm?®, the purity of
Zr0O, > 99%, Fig. 1 shows TEM image and x-ray of
ZrO, nanoparticles (information and figures supply
by MTI Company).

Zirconium oxide, ZrO,

Stock number: 5937ZS

JCPDS card number: 37-1484
Radiation: Cu Ka.

Crystallographic system: monoclinic
Space group: P2 /a(14)
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Figure 2. Final ZrO, epoxy nhanocomposite
specimen according to ASTM D638, L, = length
overall, L, = length of narrow section, b; = width
overall, b, = width of narrow section, w
thickness.

Characterization

All samples, neat epoxy resin and ZrO,
epoxy nanocomposites, were subjected to the
following analysis; the tensile test was implemented
by using of Instron 1122 device to determine the
tensile strength and modulus, the speed of the
tensile test across head was 5 mm/min according to
ASTM specifications. SEM Hitach 4400 device was
used to study the morphologies of the fractured
surfaces after the specimen tensile test.

Results and Discussion:
Tensile Test

Tensile tests were performed to examine the
effect of ZrO, nanoparticles on the tensile
performance of ZrO, epoxy nanocomposites, the
behavior of ZrO, epoxy nanocomposites is shown in
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Fig. 3. The results show that all of the ZrO,
nanoparticles volume percentages added to the
epoxy matrix lead to an increase in the tensile
strength  and modules of ZrO, epoxy
nanocomposites, the maximum increment in tensile
strength value occurs at 4 vol.%, all the percentages
over 4 vol.% lead to reduce tensile strength for ZrO,
epoxy nanocomposites but the results of tensile
strength are still higher than the tensile strength of
neat epoxy. The effect of ZrO, nanoparticles on
epoxy matrix could be explained using the theory of
dispersion degree and distribution degree of ZrO,
nanoparticles around and through the epoxy matrix
chains consequently lead to epoxy chains support,
reducing the length and mobility of matrix chains
which in turn lead to absorb mechanical stress apply
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on ZrO, epoxy hanocomposites and hence on matrix
chains ™. On the other hand, the increasing volume
percentages of ZrO, nanoparticles lead to increase
restriction of chains and interlock between epoxy
chains, which cause an increase in tensile strength
and modulus as shown in Fig. 3a and 3b. This
behavior can occur in high volume percentages,
where the low free volume between epoxy chains
cause crowd ZrO, nanoparticles around polymer
chains and consequently pressing them'. This
action leads to the appearance of the high strength
modulus behavior in epoxy nanocomposites, that
means the increase all mechanical properties of the
new nanocomposites. This confirmed the findings
of another researchers'®?,
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Figure 3. (a) Tensile strength and (b) tensile modules of ZrO, epoxy hanocomposites

Fractured Surface Analysis (Fractography)

The behavior of fracture surface, crack
initiation, and crack propagation in neat epoxy and
ZrO, epoxy nanocomposites were studied using
SEM images. Figure 4 shows, SEM images of the
topography of the fractured surface of the neat
epoxy specimen, whereas Fig. 4a shows obvious

micro-cracks and semi-flat surface areas in the
fractured surface, pullout areas due to tensile stress
are also shown in Fig. 4a. Semi-linear cracks (like
linear cracks in the glass material are good indicator
for brittle material) are an indicator of brittle
behavior of neat epoxy as shown in Figs. 4b, 4c the
same but magnifying image®***.

Figure 4. SEM images of the fracture surface of neat epoxy (a) 20 um (b) 10 um (c) 1 um scales
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Figure 5 shows SEM images of the
topography of the fracture surfaces of ZrO, epoxy
nanocomposites for the following percentages; 2, 4,
6, 8, and 10 vol.% of ZrO, nanoparticles. SEM
images show the following features; first, less
smooth fracture surface, and no obvious crack
propagation direction appeared due to adding ZrO,
nanoparticles which increases the path of crack in
all directions (which make fracture surface less
smooth without crack propagation direction). Figure
5a and 5e emerges the increase in the area of
fracture surfaces with increasing the percentage of
ZrO, nanoparticles compare with Fig. 4b for the
same magnification range, Fig. 5¢ shows the higher
roughly surface and the most lesser smooth surface.

Second, the crack lines become more crowded with
small and sharp hyperbolic marks, where ZrO,
nanoparticles act as stress concentrator for initiation
and propagation of crack under tensile load, and
hence ZrO, nanoparticles made the patterns of
fractured surfaces of ZrO, epoxy nanocomposites
looks different from the patterns of the neat epoxy
(the new pattern of fracture surfaces of ZrO, epoxy
nanocomposites depending on the ship, size, and
nature of nanoparticles">*%. Third, Fig. 5d shows
the appearance of ZrO, nanoparticles agglomeration
in the fractured surface. this confirmed the findings
of other researchers Bajpai et al., Garg et al., and
Wetzel et al. %,

U v

Figure 5. SEM images of fracture surfaces of (a-e) ZrO, epoxy nanocomposites of 2%, 4%, 6%,
8%, and 10 vol.% of ZrO, nanoparticales respectively and 20 um scale.

Surface Roughness

Figure 6 shows the behavior of fracture
roughness of neat epoxy and ZrO, epoxy
nanocomposites, it is obvious that the roughness of
fractured surfaces for all ZrO, epoxy
nanocomposites percentages is higher than the
roughness of the neat epoxy fractured surface. Mean
roughness (Ra) increased with an increase in the
percentages of ZrO, nanoparticles; (Ra) describes
the height variations of fractured surfaces . Root
mean square roughness (Rq) increased with an
increase in the percentages of ZrO, nanoparticles
which means an increase in the fracture surface area
of ZrO, epoxy nanocomposites **. Figure 7 shows
the variation of the height of fracture surfaces for
neat epoxy and ZrO, epoxy nanocomposites., where
the variation increases with increase the percentages
of ZrO, nanoparticles which emphasis the result in
Fig. 6, this confirmed the findings of another
researchers®?,
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Figure 6. shows the main roughness (Ra) and
RMS roughness (Rq) of the fractured
surfaces of epoxy nanocomposites and neat
epoxy.
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Figure 7. 3D heights variation for fractured surfaces of (a) neat epoxy and (b-f) ZrO, epoxy
nanocomposites 2%, 4%, 6%, 8%, and 10 vol.% of ZrO, nanoparticles respectively.

Failure Mechanism

The fractographic study is employed to
identify the mechanisms of failure and toughening
of ZrO, epoxy nanocomposites, where SEM images
in Fig. 8 showed that failure origin did not emerge
in a specific area, usually failure appears in the
weakest area, and this area acts as crack
propagation area, the disappearing of the failure
origin indicates good distribution and dispersion of
nanoparticles and good reinforcement of epoxy
matrix. After cracks initiation, cracks propagated
and the fractured surface appeared in a uniform
surface type. Signs of possible toughening

434

mechanism show (first) increase in the fractured
surface area because of the propagation of the
cracks in an irregular path %; (second) crack
pinning; and (finally) plastic deformation occurred
in the epoxy matrix around the nanoparticles, where
nanoparticles behave as stress concentrators which
lead to plastic deformation and induce of the
localized yielding, this also produces crack tip
blunting. The mechanism of crack pinning is the
most important source of toughening in ZrO, epoxy
nanocomposites comparing with neat epoxy, this
confirmed the findings of the results of the

following references %2,
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Figure 8. SEM images of fracture surfaces of (a) neat epoxy and (b-f) ZrO, epoxy nanocomposites of
2%, 4%, 6%, 8%, and 10 vol.% of ZrO, nanoparticles respectively, images scale: 100 pm.

Conclusion:

The tensile test results show that the addition of
ZrO, nanoparticles to the epoxy matrix leads to
increase the tensile strength about 40% growth (69
MPa to 97 Mpa) and increase tensile modules about
200% growth (150 GPa to 310 Gpa) for ZrO, epoxy
nanocomposites. SEM images show that the
patterns of fractured surfaces of ZrO, epoxy
nanocomposites are different from the pattern of the
neat epoxy. The pattens look less smooth fractured
surface and no obvious crack propagation direction
has appeared; increases in the area of fractured
surfaces with increasing the percentage of ZrO,
nanoparticles specially at 4 VVol.% of nanoparticles,
are very obvious in SEM images of ZrO, epoxy
nanocomposites; Mean roughness (Ra) and Root
mean square roughness (Rq) increase with
increasing the percentages of ZrO, nanoparticles.
The mechanism of failure show shows, first,
increase in fractured surface area (Ra increase from
85.4 to 114.93, Rq increase from 101.67 to 132.84
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as show in Gray value fig. 6, second, crack pinning,
finally, plastic deformation occurs in the epoxy
matrix around the ZrO, nanoparticles.
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