Evaluation of the one electron expectation values for different wave functions ### Khalil H. Al-bayati Date of acceptance 14/1/2004 ### Abstract The aim of this work is to evaluate the one-electron expectation values < r $^n>$ from the radial electronic density function D(r) for different wave functions for the 2S state of Li atom. The wave functions used were published in 1963,1974 and 1993, respectavily. Using Hartree-Fock wave function as a Slater determinant has used the partitioning technique for the analysis open shell system of Li (1s 2 2s) State. #### WAVEFUNCTIONS The properly antisymmetrized many electron wave function can be constructed from the spin orbital by forming a Slater determinant $$\Phi(1,2,...,N) = (N!)^{-1/2} | \phi(1) \phi(2)... \phi(N) |$$(1) Where the one electron functions ϕ are called spin-orbital and depend on both spin function σ and spatial function The spatial function ϕ_{nt} is defined by. $$\phi_{n\ell} = \sum_{i=1}^{J} c_n^i \qquad \chi_{nlm}$$(2) j=6 for Clementi and Roetti [1] and j=6 for Weiss[2] and j=7 for Bunge et al [3]. The basis function χ_{nlm} as standard normalized Slater-Type Orbitals (STO's) and is given by $$\chi_{nlm}(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$$(3) where $$R_{nl}(r) = N_{nlm} S_{nl}(r)$$(4) $N_{n\ell m}\,$ is the normalization constant, and given as $$N_{nlm} = (2 \cdot \xi)^{(n+1/2)} / [(2 \cdot n)!]^{1/2}$$(5) Then $$S_{nl}(r) = r^{n-1} \cdot e^{-(\xi \cdot r)}$$ where $S_{n\ell}(r)$ is called the Slater-Type-Orbitals (STO's). c_n in Eq. (2) represents the coefficients of $\chi_{nlm}(r)$ and $Y_{lm}(\Omega)$, and ξ is the orbital exponent ### THEORY The radial electronic density function D(r) is evaluated from [4] $D(r) = \iint r^2 \rho(r) d$(7) ^{*}Dr -College of Science for women-Physics Dept.-Baghdad University where $$\rho (\mathbf{r}) = \int \Phi^*(1,2,..,N) \, \Phi(1,2,..,N) \, ds1$$ $$< r1^n > = \int D(r1) r1^n dr1$$ Note that, when n=0 the value of $< r1^n >$ must be equal one. By using the following integral: $$\int x^n e^{-ax} dx = n! / a^{n+1}$$ The $< r1^n >$ can be written as follows: $$< r 1^n > = \sum \sum_i C_i C_j N_i N_j \{ (n_i + n_i + n_i) \}$$ / $(\zeta_i + \zeta_j)^{n_i + n_j + n + 1}$ } (11) where C_i C_j are the variationally determined expansion coefficient for 1s or 2s orbitals, and N_i N_j are the normalization constant. ### **Results and Discussion** The examination of the one particle expectation value $\langle r1^n \rangle$ for $k\alpha k\beta$ shell for different wave functions presented in Table 1 , and for $k\alpha L\alpha$ (= $k\beta L\alpha$) shell presented in Table 2 , and for total Li atom presented in Table 3. Figure 1 shows the expectation values $\langle r1^n \rangle$ for $K\alpha k\beta$ and $k\alpha L\alpha$ (= $k\beta L\alpha$) shell for different wave functions (published in 1963,1974,1993) plotted against n (where n takes values from – 2,-1,0,+1,+2) Table 1 Expectation values (r1ⁿ) for kαkβ shell for different wave functions, Weiss (1963)[1], Clementi and Roetti (1974) [2] and Bunge et al (1993) [3]. | <r1<sup>n> For Lithium Z=3</r1<sup> | | | | | | |--|----------|-----------|----------|--|--| | n | 1963[1] | 1974[2] | 1993[3] | | | | - 2 | 14.88859 | 14.890732 | | | | | - 1 | 2.684978 | 2.685039 | 2.685000 | | | | + 1 | 0.573123 | 0.573139 | 0.573125 | | | | + 2 | 0.446807 | 0.446821 | 0.446803 | | | <u>Table 2</u> Expectation values $\langle r1^n \rangle$ for $k\alpha L\alpha$ (= $k\beta L\alpha$) shell for different wave functions, Weiss(1963)[1], Clementi and Roetti (1974) [2] and Bunge et al (1993) [3]. | | $< r1^n > For I$ | Lithium $Z=3$ | | |-----|------------------|---------------|----------| | n | 1963[1] | 1974[2] | 1993[3] | | - 2 | 7.661916 | 7.663178 | 7.66193 | | - 1 | 1.515184 | 1.515223 | 1.515195 | | + 1 | 2.223197 | 2.223328 | 2.22339 | | + 2 | 9.08769 | 9.092319 | 9.092645 | Table 3 Expectation values (r1ⁿ) for total Li atom for different wave functions, Weiss(1963)[1], Clementi and Roetti (1974) [2] and Bunge et al (1993) [3], where the normalized total (r1ⁿ) value obtained here by taking $$1/3 \sum \langle r1^n \rangle$$ | | $< r1^n > For$ | Lithium Z=3 | | |-----|----------------|-------------|-----------| | n | 1963[1] | 1974[2] | 1993[3] | | - 2 | 10.070807 | 10.072363 | 10.070729 | | - 1 | 1.905115 | 1.905162 | 1.90513 | | + 1 | 1.673171 | 1.673264 | 1.6733 | | + 2 | 6.207419 | 6.210511 | 6.210721 | Figure 1 Variation of expectation values $\langle r1^n \rangle$ for $K\alpha k\beta$ and $k\alpha L\alpha$ (= $k\beta L\alpha$) shell for different wave functions (published in 1963,1974,1993) plotted against n (where n takes values from -2,-1,0,+1,+2) ## From the above results we conclude the followings 1: A comparison of the HF values for $\langle r1^n \rangle$ for $k\alpha k\beta$ shell shows that the relation $(\langle r1^{-2} \rangle) \rangle (\langle r1^{-1} \rangle) \rangle (\langle r1^{+1} \rangle) \rangle (\langle r1^{+2} \rangle) \rangle$ will fit for all the types of the wave functions. 2: In the comparison of the one particle expectation values $\langle r1^n \rangle$ (when n=2,-1,0,+1,+2 It is found that the results for n = -2 as HF(1974) \rangle HF(1963) \rangle HF(1993) and for n = -1 as HF(1974) \rangle HF(1993) \rangle HF(1963) and for n = +1 as HF(1974) \rangle HF(1993) \rangle HF(1963) and for n = +2 as HF(1974) \rangle HF(1963) \rangle HF(1993) 3: For the inter-shell ($k\alpha L\alpha$ and $k\beta L\alpha$) we get the $\langle r1^n \rangle$ for n>1 the relation HF(1974) \rightarrow HF(1993) \rightarrow HF(1963), whereas for n < 1, we get HF(1993) \rightarrow HF(1974) \rightarrow HF(1963) 4: It was found that $\langle r1^{-n} \rangle$ value is greater than $\langle r1^{n} \rangle$ where n=+1and +2 for all types of the wavefunction in each individual electronic shell. 5: For total atom, it was found that $\langle r1^{-2} \rangle$ value is greater than $\langle r1^{-1} \rangle$ value and this is greater than $\langle r1 \rangle$ for all types of wave functions ,and also found that $\langle r1^{+2} \rangle$ value is greater than $\langle r1^{-1} \rangle$ and $\langle r1 \rangle$. $\langle r1^{-2} \rangle$ greater than $\langle r1^2 \rangle$ ### Conclusion All the wavefunctions give negligible deffernces for n = -1,1,2; whereas for n = -2 the Clementi and Roetti wavefunction(1963) gives higher value than that derived from Bunge et al wavefunction (1993) . Weiss wavefunction(1974)gives lower results than that for Clementi and Rotti wavefunction #### References - 1. Weiss, A.W.1963 wavefunctions and oscillator strengths for the Lithium isoelectronic sequence, J.Chem.Phys., 39,1262 - 2. E.Clementi and C.Roetti, 1974 Atomic Data and Nuclear Data tables, Atom. Data Nucl. Data Tables, 14,177 - C.F.Bunge, J.A. Barrientos And A.V. Bunge, 1993 Roothaan – Hartree – Fock ground – state atomic wave function, Atom. Data Nucl. Data Tables, 53,133 - 4. King, F.W. and P.R.Dressel 1989 Compact expressions for the radial electronic density functions for the ²S states of three electron system, J. Chem. Phys. 90 6449 # حساب القيمة المتوقعة للالكترون المفرد ولدوال موجية مختلفة د.خليل هادي البياتي قسم الفيزياء - كلية العلوم للبنات - جامعة بغداد ### الخلاصة هدف البحث هو لحساب القيم المتوقعة للالكترون المنفرد $< r^n >$ بأستخدام دالة الكثافة الألكترونية القطرية D(r) لدوال موجية مختلفة للحالة 2S للسنوات القطرية D(r) لدوال موجية مختلفة للحالة 2S للسنوات الموجية المستخدمة منشورة المسنوات الموجية المستخدمة المتخدمة المتخدمة المنافق على التوالي. أستخدمت دالة هارتوي فوك كمصفوفة سليتر وتقنية التجزئة لدراسة النظام المفتوح لذرة الليثيوم (1s² 2s).