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Abstract

The author obtain results on the asymptotic behavior of the nonoscillatory
solutions of first order nonlinear neutral differential equations.
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INTRODUCTION

The oscillation theory for delay
differential  equations  has been
developed over twenty years, only in
the last few years has much effort been
devoted to the study of neutral
differential equations, i.e. equations in
which the highest order derivative of
the unknown function appears both
with and without delay which can be
found in [1],[2]....In this paper we
study the behavior of the solutions of
the first order neutral delay differential
equations of the type

d
—[x(0)+ P(&) x(a (1)) ) + Q6) f(x(z(1))) = 0
dt

1)

Evhere P,Q:[ty.0)> R are continuous
with neither P nor Q identically zero
on any half line [ ,»0), o,r are
continuous and strictly increasing and

lim o(t) =, lim 7(/) ==,
—>x t— o

f:R—> R is continuous.we will
assume that every solution x(¢) of (1) is
continuous and nontrivial, such
solution is said to be oscillatory if it

has unbounded sequence of zeros, and
is said to be nonoscillatory otherwise .

Properties of nonoscillatory

solutions
In all results f will satisfy
u f(u)>0 for u # 0 . Throughout this

paper we will assume that Q(r) 20,
and
o) <t, () <t, o’(t)=o(o()).

Theorem 1.
Suppose  that P()=0, f is
increasing, 7(¢) <t
?Q(s)ds < ®
(2)
o -®
j d: = j‘ —d_ = @
a f(z2) —a f(z)
(3)

where « >0, then all nonoscillatory
solutions of (1) are bounded.

Proof. Let x(f) be a nonoscillatory
solution of (1), and suppose that
x(t)>0, t2>t, (the case for x(r) <0
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is similar) and x(z(t)) >0 for
1L 2 and let
u(t) = x(t)+ P(t)x(o(t)) so fort large
enough we have only the case
u' ()20, u(t)>0 for t2t,2¢ to
discuss:
u(t) = x(t) then
S@)z fu(z(0) = f(x(z(r))) hence
from (1) we get
u'(t)

S(u(2))

Integrating the last inequality we

obtain

! u'(s) !
] ds < [Q(s)ds
1 f(u(s) )

u(r) t
i dz < [Q(s)ds
u(lz)f(z) ly

According to (2) and (3) the last
inequality implies that  «() must be
bounded, but x(r)<u(r), so x(¢) is
also must be bounded .

<0

Corollary.

Suppose that all conditions of theorem
1 hold, then every unbounded solution
of (1) are oscillatory.

Theorem 2.
Suppose that -1 <-4 < P(1) <0

o0

fowyde ==

@)

f(u) is bounded away from zero if u
is bounded away from zero, if x() is
nonoscillatory solution of (1) then
cither |x(1)| > or x(t) >0 as
I —> 0,
Proof. Let x(f) be nonoscillatory
solution of (1), and assume that
x(1)>0, t>t,then u'(1)20, 21
1. Suppose that lirg i”nf x(1) #0 then
3¢ > 0 such that

et &e: T2t 2t and so
f(x(#))= k>0, integrating eq.(1) we

Vol 1(2) 2004

get

4 1
u(t) - u(ty) = 1Q(s) f(x(z(s)))ds > k [Q(s) ds
th 4

this implies that wu(f) > o as 1 > ®
but u(r) < x(¢) then x(t) > .
2. Suppose that lh}l iwnf x(¢) = 0 since
u(t)<x(t) and u'(r)20
u(t) £0 and so

x(t) £ =P()x(o(t)) £ Ax(o(t)) then

we have

x(c' @) < Ax(t), x(c() <A x(r)
and by induction we get
x(6" (1)) <A™ and as n—w
this implies that x(f) >0 as r > .

Example 1. Consider the neutral

differential equation
!

d -5 1
—[x()+(2+e “)x(—)]-
dt 2

L 2y s @D
(22 o ) —_—= 0
t
x(—)
2
all conditions of theorem 1 are satisfy
so all nonoscillatory solution of

eq.(E 1) are bounded, for instance
x(t)=2-¢”" which is such bounded
solution.

Example 2. Consider the neutral
differential equation

d 1 ¢
— @) =—3()]
d 2 2
L (E2)
.
e’(e 2——9 I)x(i)=0. t20

4 2
we can see that all conditions of
thecorem 2 are satisfied so all
nonoscillatory solutions of eq.(E£_2)

are either tends to « or 0, for instance
x(t) = ¢" is such unbounded solution.

Note : One can established some other
results when
N=20,0t ©f)> 1 olf) >I.
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