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Abstract:

This article introduces the concept of finitely null-additive set function relative to the o-ring and many
properties of this concept have been discussed. Furthermore, to introduce and study the notion of finitely

weakly null-additive set function relative to the o-ring as a generalization of some concepts such as measure,
countably additive, finitely additive, countably null-additive, countably weakly null-additive and finitely
null-additive. As the first result, it has been proved that every finitely null-additive is a finitely weakly null-
additive. Finally, the paper introduces a study of the concept of outer measure as a stronger form of finitely

weakly null-additive.
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Introduction:

The theory of measure is an important subject
in mathematics. In 2015, Evans et al ! discussed
many details about the measure and proved some
important results in measure theory. Let U be a
nonempty set ,and let P (U) denoted to a power set
of a nonempty set U and the difference of two sets
Dand B be denoted by D\B and defined as:
D\B = D n B€. The notion of o-field was studied
by Ash ? and Mackenzie * where a collection
K < P(U) is called o-field if and only if UeX
and K is closed under complementation and
countable union. Many other authors were
interested in studying o-field to define monotone
measure and null-additive* °. The notion of o-ring
was studied by ® " as a generalization of o-field,
where a collection K < P(U) is called o-ring if
whenever Dy, D,, ... €e X, then U2, D; € X and for
any D,Be ¥, then D\Be K. It is clear that, every
o-field is o-ring.The concept of measure was
studied by " ® ° where a measure relative to the
o-ring XK is a set function Mt: K — [0, oo] such that
M(@)=0 and if D,,D,, .. form a finite or
countably infinite collection of disjoint sets in &,
then M(Up=1 Dn) = Y=g JM(Dy). The concept of
countably additive was studied by * > *® where a set

function IM: K — [—oo,00] is called countably
additive relative to the o-ringX if whenever
D,,D,, ... are finite or countably infinite collection
of disjoint sets in X, then M(Up=1Dy,) =
Yoy M(D,) and WM(P) = 0. If this requirement
holds only for the finite collection of disjoint sets in
¥, then Mt is said to be finitely additive relative to
the o-ring . The concept of the outer measure
studied by ' where a set function M:P(U) —
[0,00] is called the outer measure if M(P) =0
and if D,B € U such that D < B, then M(D) <
IM(B) and if Dy, D,,... are subsets of U, then
MU, DY) < T2, M(D,). In 2001 Pap
studied the notion of null-additive relative to the
o-ring X where a null-additive relative to the
o-ring X is a set function M: K — [—oo, 0] such
that whenever E,D are disjoint sets in & and
IM(E) =0, we have M(EUD) = M(D). In 2002
Pap ** introduced the countably null-additive on
o-ring, where a set function M: K — [—oo,00] is
called countably null-additive relative to the
o-ring K if whenever D4, D,, ... are a collection of
disjoint sets in & and BeX such that BND; = &
and M(D,) =0,vn=1,2,.., then M(B U
UZ;D,) = M(B). Mesiar et al * in 2014
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introduced the notion of countably weakly null-
additive as a generalization of the concept of
countably null-additive, where set function 0t: X —
[-o0,0] is said to be countably weakly null-
additive relative to the o-ringX if whenever
D4,D,,... are a collection of disjoint sets in K
and M(D,) = 0,vn = 1,2, ..., then M(Up=,Dy) =
0.

This paper is a generalization of the concepts of
countably null-additive and countably weakly null-
additive was introduced, also the concept of finitely
null-additive and finitely weakly null-additive were
studied respectively.

Finitely Null-additive Relative to the o-ring

This section, aims to introduce the concept
of finitely null-additive relative to the o-ring and
investigated some of its basic properties.
Furthermore, the section aims to present the
relationships between finitely null-additive and
countably null-additive.
Definition 1

A set function M:K — [—oo,00] is called a
finitely null-additive relative to the o-ring X of a
set U, if whenever D4, D5, ... Dy are a collection of
disjoint sets in K and BeX such that BND, = &
and M(D,) =0,vn=1,2,..,k, then IMBU
UR=1Dn) = M(B).

Example 1
Let U ={1,2,3} and K = P(U). Define a set
function M: K — [—oo0, 0] by:

M(D) = {0 if D=®or{l}or .{2}

1 otherwise
Then <Mt is a finitely null-additive relative to the
o-ring I of a set U.
Example 2
Let U ={1,2,3} and K = P(U). Define a set
function M: K — [—o0, 0] by:

0 if D=®or{l1}or{2}
EIJE(D)={1 if D={3}
5 otherwise

Assume D; = {1} and D, = {2}, then D;,D, are
disjoint sets in K andI(D,) =0,vn=1,2.
Consider B = {3}, then BND,, = ® ¥n = 1,2. Now,
since M(BU UZ_,D,) = M(U) =5 and M(B) =
1,

then M(B U UZ_,D,) # M(B), thus M is not
finitely null-additive relative to the o-ring X of a
set U.

The following theorem wused mathematical
induction to prove that the linear combination of
finitely null-additive relative to the o-ring X is also
finitely null-additive relative to the o-ring X.

Theorem 1

LetIt,, M, , ..., My: K — [—o0,00] be a
finitely null-additive relative to the o-ring X of a
set U and ¢ € [0,) for all j=1,2,...,m. If a set
function Y2, ¢;M;: K — [—oo, 0] is defined by:
Yiz1¢IY is a finitely null-additive relative to the
o-ring K.
Proof:

To prove that the statement is true when m =
2, let D4, Dy, ..., D be disjoint sets in & and BeX
such that BND, =& andM(D,) =0,Vn=
1,2,..,k,. Then, it is proved that (X2, ¢;) (Bu
Uk=1Dn) = (T2, W) (B). Since M; is finitely
null-additive relative to the o-ring K, j = 1,2. Then
M;(B U Uk_; D) = M;(B). Therefore
(1T + ;M) (BUUK_ D) =c¢;. My (BU
UIISIZIDI’I) +c;. ED’tZ(B U Ulri:l Dn)

=c;. M(B) +¢c,. MM,(B)
= (19 + ¢, M,)(B)

Now,
(ER, ) (BU Us=1Dn) = (X2, M) (B)
wherej = 1,2

Hence, (c;My +c,M,) is  finitely null-additive
relative to the o-ring K of a set U.
Now, assume that the statement is true when

m =t and prove that the statement is true when
m = t+ 1, that is, assume that 2}21 ;I is finitely
null-additive relative to the o-ring K of a set U that
is (U2, W) (BU UK=1Dn) = (X2, ) (B)
where j = 1,2, ...,t, and we prove that Z]-t;“} ;M is
finitely null-additive relative to the o-ring X of a
set U. Let My be a finitely null-additive relative to
the o-ring K of a set U and c; € [0, ) for all
j=12,..,t,t+1, and let D{,D,, ... ,Dx be
disjoint sets in & and BeX such that BND, = &
and M(D,) = 0,vn = 1,2, ..., k,. Since Z]-t=1 M is
finitely null-additive, then Yo, M (Bu
Uk=1Dn) = (Zj=; Iy) (B). This implies that
(E]t:% ;M) (B U Usoq Dn) = (Z]F=1 oI +
Cer1 M) (B U Ui=1 Dy)

= th=1 G- 9.“Rj(B U
Uk=1Dn) + Ces1 - Mes1(B U UF=1Dy)

= Q=1 M)(BU
Uk_, Dn) + Ciyq - Emt+1(B U Uk_; Dn)

= (Zj=1 M) (B) +
Cer1 - M1 (B)
since  Yi_,¢M;) and M, are finitely null-
additive
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= (Zj=1¢M;)(B) +
(Ce+1Mer1) (B)
= (ZjZ1 M) (B)
Hence, Z]-t;f} ¢ is finitely null-additive relative
to the o-ring K of a set U.
Therefore, ¥;Z, ;M) is  finitely null-additive
relative to the o-ring & of a set U.
Proposition 1
Let <M, M, be a countably null-additive
relative to the o-ring X of a set U and M, (P) =
M, (P) = 0. Assume N, or M, is finite and define
My — My K — [—oo, 0] by:
My, —M,)(D) = My (D) — M, (D), VD € K, then
(I, — M,) is a finitely null-additive relative to the
o-ring K of a set U.
Proof:
Let D4, D5, ... Dx be collection of disjoint sets in
K and BeX such that BND, = & and M(D,) =

0,vn=1,2,..,k, consider D,=® foralln>
k. then
U, D, =UK_,D,foralln >k  Now, since

IM;, i = 1,2 is countably null-additive relative to the
o-ring K of a set U, then W;(BU Up=1Dy,) =
I;(B). Hence

(M, —M,)(BU Uk=1 Dy) = (M; —M)(BU
Unz1Dn) = WMy (BU Uz Dp) — W, (BU
Unz1Dn) = My (B) —M,(B) = (M — M,)(B)
Therefore (0t; — M) is a finitely null-additive
relative to theo-ring K.

In the following propositions, the relationships
among the countably null-additive, finitely null-
additive and null-additive are giving.

Proposition 2

Let M: K — [—o0,0] be a countably null-
additive relative to the o-ring K such that M(P) =
0. Then Mt is a finitely null-additive relative to the
o-ring K.

Proof:

Let 9 be a countably null-additive relative to
the o-ring I and let D4, D, ... Dy be a collection of
disjoint sets in K and BeX such that BND, = &
and M(D,) =0,vn=1,2,..,k and consider
D, = ®,foralln >k, then U2, D, = UXK_, D,
foralln >k and (D,) =0,vn . Hence, M(BU
Un=1Dn) = M(B U UgZ; Dp)

= IMM(B) since M is a countably null-additive.
Therefore Mt is a finitely null-additive.
Proposition 3

Let M: K — [—o0, ] be a finitely null-additive
relative to the o-ring ¥ such that I (P) = 0. Then
I is a null-additive relative to the o-ring X..

Proof:

Let B, C be disjoint sets in & and 0t(C) = 0 and
let Mt be a countably null-additive relative to the
o-ring K. Consider C=D; and D, =®, Vn =
2,3,..,k,thenBu C=BuU UKX_, D, and M(D,) =

0,vn=1,2,..,k Hence MBUC) =
M(BU UK_,Dy)
=IM(B) since WM is a finitely null-

additive and M(D,) = 0,vn = 1,2, ..., k.
Therefore 9t is a null-additive.
Definition 2 -2
Let D4, D5, ... be subsets of aset U, if D, € D, c
---and UpZ; D; = D, then D; is called increase to D;
and write D,, T D.
Definition 3 *
Let D4,D,,... €X and D= Up~;D, such that
D, TD,if M (D,) — P(D), then a set function I
is called continuous from below at D.
Theorem 2
Let M: K — [—o0,00] be a continuous from
below at D and 9t(®) = 0. Then Mt is a countably
null-additive relative to the o-ring if and only if 9
is a finitely null-additive relative to the 6-ring .
Proof:
=) direct from Proposition 2.
Conversely)
Let M be a continuous from below at D and
I is a finitely null-additive relative to the o-ring
K. Assume that D4, Do, ... be disjoint sets in K and
BeX with BND, =& andM(D,) =0, Vn =
1,2,.. and let D= BUUp-;D,. If Dr=BU
U§=1 D,, then Dy T D, since 9 continuous from
below at D, then I(Dy) — V(D).
But Mt finitely null-additive, then 9Mt(Dy) = M(B U
Uk_; D) = M(B). Thus
9:)’t(D) = liInk—>oo 9:)’t(Dk)
= limy M (B U UX_, D,,) =M(B).
Hence M (BU Up=4 Dy,) = M(B), therefore M is
countably null-additive.
1. Finitely Weakly Null-additive Relative to
the o-ring
This section introduces and studies the
concept of finitely weakly null-additive relative to
the o-ring and basic properties of this concept are
giving. Furthermore, it presents the relationships
between finitely weakly null-additive, finitely null-
additive, measure, countably additive, finitely
additive, outer measure, countably weakly null-
additive and countably null-additive.
Definition 4
A set function M:K — [—oo, 0] is called
finitely weakly null-additive relative to the
o-ring KX of a set U, if whenever Dy, D,, ... Dy are
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collection of disjoint sets in X such that 90t(D,) =
0,vn =1,2,...,k, then M(UX_, D,) = 0.
Example 3

Let U ={1,2,3} and X = {d,{1},{2},{1,2}}.
Define a set function 9M:K — [—o0, 0] by:
IM(D) =0forallDeX. Then M is a finitely
weakly null-additive relative to the o-ring X of a
set U.
Example 4

Let U ={a,b,c} and K = P(U). Define a set
function M: K — [—o0, 0] by:

MD) = {0 if D = {a} or {b} or {c}
1 otherwise
PUt D1 = {a}, D2 = {b} and D3 = {C}, then

D4,D,, D3 are disjoint sets in K and M(D,) =
0,vn = 1,2,3. Now, since M(U3_,D,) =
IM(U) =1 # 0, then M is not finitely weakly null-
additive relative to the o-ring K of a set U.
Proposition 4

Let M: K — [—oo,0] be a finitely weakly
null-additive relative to the o-ring K of a set U and
c € (0,00). If a set function ¢t : K — [—oo,00] is
defined by:

(cI)(D) = c.[M(D)] VDeXK, then cMt is a finitely
weakly null-additive relative to the o-ring ¥ of a
set U.
Proof:

Let D,,D,,...Dy be a collection of disjoint sets
in X and(cM)(D,) =0,vn=1,2,..,k. Then
c.[M(Dy)] =0,vn =1,2,..,k. Since ¢ > 0, then
MD,) =0,vn=1,2,...,k. Now, finitely weakly
null-additive and M(D,) = 0,vn = 1,2, ..., k, then
im(UE:l Dn) = 0.

Hence,  (cT)(UX_.;Dy) = c.[M(UK_;D,)]
= c.0 = 0 and Mt is a finitely weakly null-additive.
Proposition 5

Let (M, M, , ..., M) K = [—o0, 0] be a
finitely weakly null-additive relative to the o-ring
¥ of a set U. If a set function X2, M;: K -

[—o0, 00] is defined by: [Xf2, M](D) =
221 (D) VDeX, then X2, MYy is a finitely
weakly null-additive relative to the o-ring X.
Proof:

To prove that the statement is true when m =
2. Let D4,Dy,... ,D are disjoint sets in K
and M(D,) =0,vn = 1,2,...,k,. Then proved that
[X72, 9] (Uk=1Dy) = 0. Since My is finitely
weakly null-additive relative to the o-ring X,
j=1,2.Then 9M;(Ux-1D,)=0. So,
[, + Emz](UEﬂ Dn) = Eml(U]ﬁﬂ Dn) +
M, (UK=1Dn)

=04+0=0

Hence, (%, + M) is finitely weakly null-additive
relative to the o-ring K of a set U.

Now, assume that that the statement is true
when m =t and it is proved that the statement is
true when m = t + 1, that is, assume that Yi_; M;
is finitely weakly null-additive relative to the o-ring
K of aset U that is [Xf2, ;] (Usi=1 Dn) = 0 where
m=t and it is proved that th:} MW is finitely
weakly null-additive relative to the o-ring K of a
set U. Let M; be a finitely weakly null-additive
relative to the o-ring K of a set U for all j =
1,2,..,t,t+1, and let D{,D,,... , Dy be disjoint
sets in KX and M(D,) =0,vn=1,2,...,k, Since
Z]-tzl M is finitely weakly null-additive, then
[Z2, 2] (UX=1 Dy) = 0. Implies that
[Xj21 ] (Un=1Dn) =
[Z=1 9 + My | (UR=1 Dn)

= z:J't=19:RJ'(Ulr§=1 Dp) +
imt+1(Ulr§=1 Dn)

=0+0=0 sinceX;_, M)
and M., are finitely weakly null-additive
Hence, 2}:}9%1- is finitely weakly null-additive
relative to the o-ring K of a set U.
Therefore Zjn;limj) is finitely weakly null-additive
relative to the o-ring % of a set U.
Theorem 3

Let (M, M, , ..., VM) K = [—o0, 0] be a
finitely weakly null-additive relative to the o-ring
K ofasetUandc; € (0,) forallj=1,2,...,m. If
a set function Y2, ;9 K — [0,00] s defined
by:
2j=1 ¢ is a finitely weakly null-additive relative
to the o-ring K.

Proof:

The result follows from Proposition 4 and
Proposition 5.

Proposition 6

Let 0t;, PV, be a finitely weakly null-additive
relative to the o-ring K of a set U and M, (P) =
M, (P) = 0. Define M; — M,: K — [—o0, 0] by:
(M, — M,)(D) = M, (D) — M, (D), VD € K, then
M, — M, is a finitely null-additive relative to the
o-ring K of a set U.

Proof:

Let D4, D,, ... Dy are collection of disjoint sets in
K andM(D,) =0,vn=1,2,...,k Since M;,i =
1,2 is finitely weakly null-additive relative to the
o-ring K of a set U, then M;(UX_,D,) = 0).
Hence
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(M — sz)(U§=1 Dn) = (M, - Emz)(Ulr§=1 Dn)
= 8:]?1(U]1§:1 Dn) — Emz(Ulﬁﬂ Dp) =0

Therefore M, — M, is a finitely weakly null-
additive relative to theo-ring K.

Proposition 7

Let M: K — [—o0, o] be a finitely null-additive
relative to the o-ring ¥ such that 9(®) = 0. Then
M is a finitely weakly null-additive relative to the
o-ring XK.

Proof:

Let D4, D,, ... Dy be a disjoint sets in & such that
MMD,) =0,vn=1,2,.., k.  Consider Dy,q =
®and C, = Dy;q Vn=1,2,..,k Then M(C,) =
0 and
M(Ug=1Dn) = M(D; U Uf=1 Cn)

=IM(D,) since W is finitely null-
additive

=0
Hence 9t is a finitely weakly null-additive relative
to the o-ring I of a set U.
Theorem 4

Let M: K - [—o0,00] be a continuous from
below at D and 9t(®) = 0. Then Mt is a countably
weakly null-additive relative to the o-ring if and
only if 3 is a finitely weakly null-additive relative
to the o-ring XK.

Proof:
=) direct from Proposition 7.
Conversely)

Let M be a continuous from below at D and
M is a finitely weakly null-additive relative to the
o-ring . Assume that D,, D, ... be disjoint sets in
K andMD,) =0, vyn=1,2,... and let D=
UZ, Dy. If Dy = UK_; Dy, then Dy T D, since M
continuous from below at D, then 9(Dy) — W(D).
But 9t is a finitely weakly null-additive, then
M(Dy) = M(UK_, D,)) = 0. So, we have,
gﬁ(D) = liInk—mo 9:R(Dk)

= limy M (UK, D,) =0.

Hence, M (Up=, Dy,) = 0, therefore M is countably
weakly null-additive.
Proposition 8

Every finitely additive relative to the o-ring is a
finitely weakly null-additive relative to the o-ring.
Proof:

LetM: K — [—o0,0] be a finitely additive
relative to the o-ringXK  of a set U and
D4,D,,...Dg be a collection of disjoint sets in K

such that 9M(D,) =0,vn=1,2,..,k. Then
Yr=1M(Dy) = 0 and  M(Uj-,Dy) =
Yk_ M(D,) since M is finitely additive

=0

Hence, M is a finitely weakly null-additive relative
to the o-ring K of a set U.

The converse of proposition 8 is not true as
showing in the following example.
Example 5

Let U ={1,2,3} and K = P(U). Define a set
function M: K — [—o0, 0] by:

_ (0 if D=7dor{1}

D) = {1 otherwise
Then Mt is a finitely weakly null-additive relative to
the o-ring I of a set U, but not finitely additive.
Definition 5 -2

Let D4, D5, ... be subsets of a set U, if D, > D, ©

- and Ng=,D; =D, then D; decrease to D; and
write D, | D.

Definition 6 *

Let D4,D,,... €X and D, ! &, if M (D,) = 0
then a set function I is called continuous from
above at @.

Theorem 5

Let MK — [—oo,00] is finitely additive
relative to the o-ring XK, if 9 is continuous from
above at @, then it's countably weakly null-additive
relative to the o-ring.

Proof:

Let Dy,D,, .. be disjoint sets in XK such
that M(D,) = 0,vn = 1,2,... and let D= Up~, Dy
If D =UX_,D,.Now,D=D,UD“ =D, U (DN
D) =Dy U (D\Dy). Since M is finitely additive,
then 9(D) = M( Dy) + WM(D\Dy ), but (D\Dy) | @
and M is continuous from above at @, thus 9N
(D\D,) — 0 and hence M(Dy) — WM(D). Since M is
finitely additive, then from proposition 8 implies
that 9 is finitely weakly null-additive. Hence
M(Dy) = M (Ug=1Dy) = 0.
but (D) =
limy, o M (Dy) = limy,o M (UK_1 D,) = 0), 50
IM (Upz1 Dy,) = 0, therefore M is countably weakly
null-additive relative to the o-ring.

The converse of above theorem is not true as
showing in the following example.

Example 6

Let U ={a,b,c} and K = P(U). Define a set
function M: K — [—oo, 0] by:

_ (0 if D=®or{b}

D) = {1 otherwise
Then 9t is a countably weakly null-additive relative
to the o-ring K of a set ‘U, but not finitely additive.
Proposition 9

Let K be a o-ring of aset U and M: K — [0, o]
be a set function relative to the o-ring X.

1- If 9 is measure, then I is finitely weakly
null-additive.
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2- If MY is an outer measure, then Wk is finitely
weakly null-additive.

Proof:

1- Let D;,D,,...Dy be a collection of disjoint sets
in X andM(D,) =0,vn=1,2,..,k. Then
SK_1M(D,) = 0. Hence  M(UK_;Dy) =
Yk_1IM(D,) since Mt is measure

=0
Therefore, M is finitely weakly null-
additive.

2- Let D4, D,, ... D be a collection of disjoint sets
in X and M(D,) = 0,vn = 1,2, ..., k. Consider
D, =®,Vn >k, then Unz1 Dy =
UX_;D,vn>k and M(D,) = 0,vn. Hence
Y= M(D,) = 0. Since M is  an outer
measure, then M(Up=1Dn) < Yme1 M(Dy).
Therefore,

Em(ngl Dn) =M(Upz1Dp) <
Yn=1T(Dy) =0.

Now, let D,=®,Vn>KksinceD, S
Un=1Dn Vn=1,2,.. and M is an outer
measure, then M(D,) < M(Up=, Dy,). But
U Dy = UK_; D,V n >kand M(D,) =
0,vn. Thus 9M(UX_;D,)=>0. Hence
M(UX_, Dy) = 0. Therefore, M is finitely
weakly null-additive.

Proposition 10

Every countably additive relative to the o-ring is
a finitely weakly null-additive relative to the
o-ring.

Proof:

LetM: K — [—oo,00] be a countably additive
relative to the o-ringZ&K  of a set U and
D,,D,,...Dy be a collection of disjoint sets in K
such that 9M(D,) =0,vn =1,2,...,k. Consider
D, =®,Vvn>k, then U2;D, =UK_,D,Vn>
k and 9M(D,) =0,vn. Hence, Yn—;M(D,) =
0 and
M(UK=1Dn) = M(UsZ; D)

= Yn=1IM(Dn)
countably additive

=0
Therefore, MM is a finitely weakly null-additive
relative to the o-ring X of a set U.

The converse of proposition 10 is not true as
showing in the following example.
Example 7

Let U ={1,2,3} and K = P(U). Define a set
function M: K — [—o0, 0] by:

_ (0 if D=dor{1}
D) = {5 otherwise
Then Mt is a finitely weakly null-additive relative to

the o-ring I of a set U, but not countably additive.

since W is

In the end of this section we give the relation
between finitely weakly null-additive and countably
weakly null-additive in following proposition.
Proposition 11

Let M: K — [—o0, 0] be a set function relative
to the o-ring K such that 0t(dP) = 0. Then every
countably weakly null-additive relative to the
o-ring is a finitely weakly null-additive relative to
the o-ring.

Proof:

Let be a countably weakly null-additive
relative to the o-ringX  of a set U and
D4,D,,...Dy be a collection of disjoint sets in K
such that 9(D,) =0,vn =1,2,...,k. Consider
D, =®,vn>k, then UZ,D, =UK_,D,Vn>
k and M(D,) = 0,V¥n. Hence Y, M(D,) = 0.
Which implies that to,
M(U§=1Dn) = M(U7Z; Dy)
countably weakly null-additive
Therefore, M is a finitely weakly null-additive
relative to the o-ring K of a set U.

The converse of proposition 11 is not true as
shown in the following example.

Example 8

LetU = Nand KX = P(N). Define a set function
M: K > [—o0, 0] by:

_ (0 ifD=dorD={n}, neN
D) = {1 otherwise
Then 9t is a finitely weakly null-additive relative

to the o-ring X of a set U, but not countably
weakly null-additive.

= 0 since M is

Conclusions:

In this article, the concepts of finitely null-
additive and finitely weakly null-additive have been
introduced as a generalization of countably null-
additive and countably weakly null-additive
respectively and some properties of these concepts
have been discussed such as the linear combination
of finitely null-additive relative to the o-ring X is a
finitely null-additive. Every countably null-additive
relative to the o-ring & is a finitely null-additive.
Every finitely null-additive relative to the o-ring K
is a null-additive. If 9M:K — [—oc0,0] is
continuous from below at D and 9(®) = 0, then
I is a countably null-additive if and only if Mt is a
finitely null-additive. Every finitely null-additive
relative to the o-ring K is a finitely weakly null-
additive. If 9M: K — [—o0, ] is continuous from
below at D and 0t(P) = 0, then M is a countably
weakly null-additive if and only if 9t is a finitely
weakly null-additive. Every countably additive is a
finitely weakly null-additive. Every countably
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weakly null-additive is a finitely weakly null-
additive.
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