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Abstract:

This paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in
two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the
Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-
Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of
the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The
analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the
solutions are stable with small space-steps and at any time levels.
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Introduction:

This work is concerned with the two- order partial differential equations, see for instance
dimensional vorticity-transport-equation (VTE), > In fluid dynamics, the numerical solutions of
which is a nonlinear time-dependent partial various Mathematical models, including problem
differential equation: (1)-(2), have been studied by some authors, see for
do _ 1 (0% | 0% P\ (dw P\ (0w instance ®’.

—=—(=+=)-=)=2)+ (=) () @ . :
at R (6932 63;2) (6y) (6x) (ax) (ay) @) It is known that problem (1)-(2) is used to
w=— (%4-%) , @) study the unsteady flow problem in two-

dimensional space. In other words, it can be used
for solving the two-dimensional  viscous
incompressible  flow. In addition, the two-
dimensional vorticity transport equation can be used
in some applications, such as analysis of laminar to
turbulent flow transition, studies on free and mixed
convection and the modeling of turbulent flows. For
more details about the importance, derivation and

for (x,y) € D,t > 0,
with the following initial and boundary conditions:
w(x,y,0) = wo(x,y), Px,¥,0)=1e(x ), (3)
(x,y)eED,t >0,
w(x,y,t) =9Yx,y,t) =0, (4)
(x,y)eoD ,t>0,
where w refers to the vorticity function, and
Y refers to the stream function, and R > 0 is the the applications of this problem, see *°.

Reynolds number, D ={(x,y): a<x<b; a< In fact, this problem cannot be solved
y < b} and dD = {(a,y), (b,y), (x,a), (x,b)}; and analytically due to the nonlinear terms that appear
wo, Yo are smooth nonnegative functions satisfying i, equation (1). So that since the last decades,
equation (2). o _ problem (1)-(2), with different initial-boundary
Due to the various applications of time-dependent conditions, has been solved numerically by some

partial differential equations in various fields of authors using several methods, such as the Petrov-
science, since last century, many authors have been  Gjerkin finite element method %, finite difference
interested in studying the analytical and numerical schemes, see for instance ™%, and the boundary-
solutions of such types of problems including linear  4omain integral method V. Because of the poor

equations, nonlinear equations, partial integro-  gpapility properties of explicit finite difference
differential equations, and time-space fractional-
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methods, the implicit methods are more
recommended to compute the numerical solutions
of initial-boundary value problems in two or more
dimensions-space. The Crank-Nicolson method is
one of the most recommended implicit methods for
solving many types of second order linear problems
with constant coefficients due to its high order of
convergence and unconditional stability. However,
it is not always guaranteed that Crank- Nicolson
method is stable and applicable for other types of
problems such as nonlinear problems, problems
with variable coefficients and problems with
nonlinear boundary conditions. In this work, the
Crank-Nicolson finite difference scheme is used to
solve problem (1)-(4). Moreover, it is shown that
the proposed scheme is consistent and stable.

This paper is divided into seven sections. In
the second section, the discrete formulas of
equations (1) and (2), using Crank-Nicolson
scheme, are derived. In the third section, the matrix
forms of the Crank-Nicolson finite difference
equations are presented. The consistency of the
discrete difference equations is studied in the fourth
section. In the fifth section, the stability condition
for the matrices form is discussed. In the sixth
section, the Crank-Nicolson discrete scheme is used
to compute the numerical solutions of problem (1)-
(4) with a certain initial function and a fixed value
to the Reynolds number. Moreover, the numerical
simulations for the vorticity and stream functions
are shown in two-dimensional spaces and at
different time levels. Finally, some conclusions and
future works are stated in the seventh section.

The Discrete Problem

For convenient computations, let h refers to the
space-step in x and y directions. In addition, let k
refers to the time-step, such that:

Xo = a, xX; = xo +ih, Xm =D,
Yo=a  Yi=Yyotjh, Ym =D,
for h=(Mb—-a)/m ; i,j= 1,2,3, m-1,
and t, =nk, for k>0 ; =012,
Consider that w;; and v are the apprOX|mate
values to  w(x;,y;, n) and ¢ (x;, yj, tn),

respectively.
In addition, the discrete-space D}
follows:

DY ={(xuyjtn); ,j =012..m;n =0}
Taking Taylor expansion to w(x,y,(n+ 1)k)
about w(x, y, nk), it follows:

w(x,y, (n+ k)=

ij,Is defined as

-)w(x, y, nk).
This implies that
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w(x,y,(m+ k) = exp(k %)w(x, y, nk)
(5)

The last equation can be rewritten as follows:

ko
exp (— E&) w(x,y,(n+ Dk)
k0
= exp (2 at) w(x,y,nk)
By equation (1), the last equation becomes:
k 1(82 8%\ oy o
eXp(‘E[§<F+F> "3y ox
oY 8
+— o ay])w(x y,(n+ k)
k 1/0%2 8%\ oy o
-5 (5+57) -y
+ Gty

Next, the partial derivatives w,,yy, w, and ¥,
are approximated by the first-order central finite
difference operators, 6,,5,, and the partial
derivatives, w,, ,wy, are approximated by the
second-order central finite difference operators,
8%, ,8%,, respectively, and w,, are replaced by

w{fj ,1/){3, respectively, then the above equation
becomes:
exp (= KL (252 4 &5 _ (¥ (&)
2|R\ h2 " R2 2h ) \2h
69511]?] 63’ n+1
+(T 21)|) i
2[R\ nz " R2 2h ) \2h

S,

()5

For simplicity, the last equation can be rewritten as
follows:

exp <_% (5296 + 52y) + . (5y¢lr.lj)(5x)
(6xwu)(6y))

= exp (55 (6% +6%) ~ 5 (5,050 +

L(0)(8,)) ol
where r = k/h? .

Taking the Taylor expansion for each side
in the above equation, and truncating after second
terms yield that:

<1__(52 +6%)) +5 = (5,97)(5)
(axwl,)(m)
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(145 (5% +6%)) =L (3,87) 60 +

L(6)(8,)) ©)
i,j=123,...m—-1, n=012,..
Next, the spatial derivatives in equation (2) are
approximated by the central finite difference
operator of second order as follows:

S22 T
ofy =~z + ) 0
For simplicity, equations (6) and (7) can be
rewritten as follows:

2r r
n+1 n+1 n+1 n+1
(1 + F) Wij T 5R (wi+1,j tw 7t w

n+1
+ wj ;"

T
+1 +1
*t3 (Wl — - ) (0ET — 0l

T
n n n+1 n+1
~3 (e — i) (@i — ol
2r r
— n n n n
= (1 - F) w;j+ SR (wiﬂj twiiqjt Wi

+ w{fj_l)
r
- g (¢{,lj+1 - lpgj—l)(wyﬂ.j - “’ln—l.j)

r
+5 (Wl =¥ ) (@F — @),
and
_hzw?j = ¢?+1,j + ¢?—1,j + lp?jﬂ + ¢3j—1 -
LU
,j=123,...m-1, n=0,12,..
Finally, in the discrete space, D;; , the initial-
boundary conditions (3) and (4) become:
w?,j = wo(x;, 1), lpgj = Po(xi, ¥1), (8)
i,j =012 ....m
wg,j = wfn_j =wly=wiy =0, (9
L,j=123,....m—-1,n>0

The Matrix Form

The difference equations (6) and (7) of Crank-
Nicolson method can be presented in matrix form as
follows:

r r r
(I-=C+Z VFA—Z V'B) ™! =

2R 8 8
T r_Tyn ryn n
(1+5-C-viaA+ZViB)w®, (11)
R =Cy", n=012,.. (12
where V' = Ay™,V}' = By™", (13)
0" = (0l1, W31, e, Wi—11; W2,
WF 2y ooy W1 25 wees WL 1> DO =15 o r Opy—1 m—1)
, (14)
Yt =

< 11’?,1;1/)21' '1/);111—1,1i l/)?,z: Wﬁfz; >
)

coWmo125 S5 Ve Yom-1 - Ym-1m-1
(15)
M;, M,, A and B take the following forms:
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0 L 0
A= -1; O "11
0 —I, 0 (m—1)2x(m-1)2
By 0
B = B . ,
0 By (m-1)2x(m-1)2
0 1 0
B, = -1 0 1
0 -1 0 (m—-1)x(m-1)
Cy L 0 7
c=| h G h :
0 L ¢ d(m-1)2x(m-1)>?

)

0 1 -4 lgm-1xm-1)
and I, 1, are the identity matrices of order (m — 1)?,
(m — 1), respectively.
Remark 1 At each advance time level (n +1), to
find the numerical solution of problem (1)-(4) using
Crank-Nicolson discrete scheme (6) and (7), the
following procedure is applied:
e Solve the linear system (12), to compute the
vector ™.
e By (13), find the vectors V*, V' .
e Substitute V*, V' in (11) and solve the
resulting linear system (11), to obtain the
solution w™*1 .

Consistency of the Discrete Problem

In this section, the local truncation errors
(consistency errors) of the Crank-Nicolson discrete
difference equations are estimated. In addition, the
orders of accuracy are shown.
Theorem 1 Let T/ and 7/ be the local-truncation-

errors, at a mesh point (x;,y;,t,) , of the discrete
equations (6) and (7), respectively. There are
positive constants Cy, C,, C5, such that:

|T{3| < C,k? + C,kh? |Ti’_‘j| < C3h2.

Proof: Set w|{fj = w(xl-,yj, tn),

YIF = Y(xi ) tn),

By the Crank-Nicolson difference equation (6), it
follows that
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1——(52 +52y)
+g(6yl»b|i,j)(8x) = (8w17)(6y)

r
+ 2R (6296 + 523/) - 8 (‘Sywl?j)(‘gx)

n _
Ti,j -

s
+5 G116 ol

+1 _ 9
Since  wli!;" = exp(k E)wlgj
By truncating after the second term, it yields that

w|n+1 < 2
Thus

9
= @[T - wlfy) +
[ (8%0l7y + 82,018 +5 = (8,1 (80l

—§(5x¢| DI )][2+k—

62
k2
+ ot?
Truncating the Taylor expansion in the above
equation yields that

0
1+k—+k?*—
ot

ow 2w
Tl_ n 2
TR
k 0%w 0%w

2w + e+ o)
Al o0
+ O(hz)]
5 [ae 00| 5w
+ O(hz)] [2 + k% + kZ%

By equation (1), it yields that

" (a%’ ) (35) (32

9t R\ ox?
)=t
Tl = 0(k?) + 0(kh?),
or T/ = 0(k? + kh?)
By assuming that, in the domain D;';,all partial
derivatives of w,y are bounded, there are positive
constants C; ,C, € R such that
T < C k? + C,kh?
For the difference equation (7), the local truncation
error at the mesh point(x;, y;, t,), takes the form:

" 8% 1L | 8% YIL,
Ty = olfy + (L +

J
h? h? )

n+1
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Truncating the Taylor expansion in the above
equation yields that

N 9%y Y
Tirjlj :w|3j+(m+ay > +0(h2)
By equation (2), it yields that
%y | %P
olfy +(GE+ 50 =0.
So, Tl"] = 0(h?), this implies that there is C; > 0

such that

|Ti7j| < C3h?
Definition 1 *® A difference equation of a parabolic
equation is called consistent, if the following
condition is satisfied:

LTE -0, as hk-O0

Based on Definition 1 and Theorem 1, the following
theorem can be proved.

Theorem 2 The difference equation of Crank-
Nicolson scheme (6) and (7) is consistent.

Stability of the Discrete Problem
In this section, the stability for the matrix

form (11) and (12) are discussed.
The matrix form Crank-Nicolson scheme (11) and
(12) can be rewritten as follows:
"l =H, ", Vn,

1) (16)

where

_1 r
Hn—(l——C+ vpA-TViB) (1+5C—
LVIA+IVIB).
Theorem 3 Based on a constant time-step, the
necessary and sufficient condition for stability of

the matrix form (16) of the Crank-Nicolson scheme
is

|H,| <1, foralln. (17)
where ||Hy |l = maxs|As|,  (18)

As(s =1,2,...,(m —1)?) are the eigenvalues of
H, .

Proof: This theorem can be proved easily following
the same technique used in **

Numerical Experiment

The Crank-Nicolson difference equations
(6) and (7) are used in this section to find the
numerical solution of problem (1)-(4), with R =1,
and the following initial function:

wo(x,y) = (1 —x2)(1—y?), -1<x<1,
-1<y<1 (19)

Moreover, in order to study the numerical
convergence, different space-steps (h=

0.4,0.2,0.1)and a small fixed time-step k =
0.002 are considered in the computations.

Based on the type of the initial function (19), the
solution of problem (1)-(4) with (19) is symmetric
and positive. Therefore, it is sufficient to find only
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the first M components of the numerical solution
vectors, w™, Y™ , at each time level.
(m-1)?

M —_ 2

- —1)2

w if misodd

In addition, for each of h = 0.4, h = 0.2, and at the
time level n, the errors bounds will be computed
that show, at some fixed meshes-points, the
differences between the numerical
solutions (wp,¥p) and (wh /. P /2) With respect
to hand h/2, respectively, as follows:
Z(x,y)en|w;f(X.Y)—wﬂ/z(x.Y) |

if miseven
where

Ep(w) = -
Zeey) |w"(z_y§ Vi) | 20)
x,y)Er| PR Y )™ Wh/2 A
ER(y) = =2
where 7w ={(xy),s.t.x=—-1+ih;y=—-1+

jh;i=1234;j=12;h=0.4}.

Results and Discussions:

The numerical results are presented in the
next tables, where Matlab software is used in the
computational processes. In Tables 1, 2 and 3, the
numerical results are shown, for h = 0.4,0.2,0.1 , at
the time-levels 100, 200 and 400, respectively. In
Table 4, the formula (20) is used to compute the
errors bounds of numerical solutions, for h =
0.4,0.2, at time-levels: n = 100,200, 400. In table
5, the numerical values of the norm ||H,, ||, , defined
in (18), are shown, for h = 0.4,0.2,0.1, at time-
levels: n = 100,200 and 400.

From Tables 1-3, it is observed that the
numerical values for vorticity and stream are
decreasing as time level increases. In addition,
Table 4 shows that at a fixed time level, the
corresponding error bounds decrease, as the space
grids are refined. This indicates that the numerical
solution is convergent. On the other hand, at any
fixed space-step, the corresponding errors decrease
as time increases. Moreover, Table 5 shows that the

Numerical: numerical results are stable (condition (17) is
satisfied) with any space-step and time level.
Table 1. Numerical solutions (w,¥), n = 100 (t = 0.2)
h 0.1 0.2 0.4
(xy) w ') ) ' w '
(-0.6,-0.6) 0.1364 0.0279 0.1373 0.0282 0.1413 0.0297
(-0.2,-0.6) 0.2209 0.0451 0.2223 0.0457 0.2282 0.0480
(0.2,-0.6) 0.2200 0.0451 0.2215 0.0456 0.2271 0.0479
(0.6,-0.6) 0.1349 0.0278 0.1360 0.0282 0.1396 0.0296
(-0.6,-0.2) 0.2191 0.0450 0.2204 0.0456 0.2262 0.0479
(-0.2,-0.2) 0.3561 0.0729 0.3583 0.0739 0.3667 0.0775
(0.2,-0.2) 0.3556 0.0729 0.3578 0.0738 0.3660 0.0775
(0.6,-0.2) 0.2182 0.0450 0.2198 0.0456 0.2252 0.0478
Table 2. Numerical solutions (w,¥), n = 200 (t = 0.4)
h 0.1 0.2 04
(x,y) ® ' ) ' w '
(-0.6,-0.6) 0.0505 0.0104 0.0512 0.0106 0.0538 0.0114
(-0.2,-0.6) 0.0819 0.0168 0.0829 0.0171 0.0871 0.0184
(0.2,-0.6) 0.0817 0.0168 0.0828 0.0171 0.0869 0.0184
(0.6,-0.6) 0.0503 0.0103 0.0510 0.0105 0.0535 0.0113
(-0.6,-0.2) 0.0816 0.0168 0.0826 0.0171 0.0867 0.0184
(-0.2,-0.2) 0.1323 0.0271 0.1340 0.0276 0.1407 0.0297
(0.2,-0.2) 0.1322 0.0271 0.1339 0.0276 0.1406 0.0297
(0.6,-0.2) 0.0814 0.0167 0.0825 0.0171 0.0866 0.0184
Table 3. Numerical solutions (w,y), n =400 (t = 0.8)
h 0.1 0.2 04
x,y) ) ' ) ' w '
(-0.6,-0.6) 0.0070 0.0014 0.0072 0.0015 0.0079 0.0017
(-0.2,-0.6) 0.0114 0.0023 0.0117 0.0024 0.0128 0.0027
(0.2,-0.6) 0.0114 0.0023 0.0117 0.0024 0.0128 0.0027
(0.6,-0.6) 0.0070 0.0014 0.0072 0.0015 0.0079 0.0017
(-0.6,-0.2) 0.0114 0.0023 0.0117 0.0024 0.0128 0.0027
(-0.2,-0.2) 0.0184 0.0038 0.0189 0.0039 0.0208 0.0044
(0.2,-0.2) 0.0184 0.0038 0.0189 0.0039 0.0208 0.0044
(0.6,-0.2) 0.0114 0.0023 0.0116 0.0024 0.0128 0.0027
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Table 4. Errors bounds: Ex (), E}(w)

n h h(¥) h(®)
100 0.4 0.0024 0.0059
0.2 6.1250e-04 0.0015
200 04 0.0014 0.0044
0.2 3.3750e-04 0.0011
400 04 3.2500e-04 0.0012
0.2 1.0000e-04 3.1250e-04
Table 5. |[H, |l = maxg|Ay|
n h |Hnll2
0.4 0.990436
100 0.2 0.990190
0.1 0.990128
0.4 0.990473
200 0.2 0.990233
0.1 0.990172
0.4 0.990492
400 0.2 0.990255
0.1 0.990195

Numerical Simulations

The discrete graphs of vorticity and stream

functions (for h = 0.1) at time levels n = 0,200
and 400are presented in Figures 1, 2 and 3,
respectively. Clearly, by Figs. 1-3, it is observed
that the discrete graphs for vorticity and stream are
decreasing as time increases and that supports the
numerical results.

I nitial vorticity

¥ T x

Initial stream

¥ T X

b. Stream Graph
Figure 1. Numerical solutionsatt =0
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0.2+

0154

o
L

Vorticity

¥ ; F X

a. Vorticity Graph

0.025

Stream

b. Stream Graph
Figure 2. Numerical solutions at t = 0.4

Vorticity

a. Vorticity Graph

-3
x10

Stream

b B b3

b. Stream Graph
Figure 3. Numerical solutionsat ¢t = 0.8
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Conclusions:

This paper is concerned with the numerical
solutions of the vorticity transport equation with
homogenous Dirichlet boundary conditions using
Crank-Nicolson finite difference scheme. From this
work, the following conclusions are pointed out:

1- Crank-Nicolson finite difference scheme is
consistent. Moreover, the order of the local
truncation error has the form: 0(k? + kh?).

2- At a fixed time level, the corresponding
error bounds decrease, as the space grids
are refined. This indicates that the
numerical solution is convergent.

3- At any fixed space-step, the corresponding
errors decrease as time increases.

4- Table 5 shows that the numerical results are
stable with any space-step and time level.

5- Tables (1- 3) and Figures (1- 3) show that
the numerical values for vorticity and
stream are decreasing as time level
increases.

For future work, the following directions may

be considered:

1. Other finite difference schemes can be
proposed to find the numerical solution of
problem (1)-(4), such as implicit Euler
scheme.

2. One could solve problem (1)-(4), with a
certain initial function using different
consistent  finite  difference  schemes
including the present one in order to make a
numerical comparison between the results
regarding stability and error bounds.

3. With a very large Reynolds number, the
nonlinear terms in equation (1) are
dominated, so that may affect the stability
properties of the proposed scheme.
Therefore, in this case, other numerical
methods should be adapted to solve the
problem.
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