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Abstract:

This paper introduces the Multistep Modified Reduced Differential Transform Method (MMRDTM).
It is applied to approximate the solution for Nonlinear Schrodinger Equations (NLSEs) of power law
nonlinearity. The proposed method has some advantages. An analytical approximation can be generated in a
fast converging series by applying the proposed approach. On top of that, the number of computed terms is
also significantly reduced. Compared to the RDTM, the nonlinear term in this method is replaced by related
Adomian polynomials prior to the implementation of a multistep approach. As a consequence, only a smaller
number of NLSE computed terms are required in the attained approximation. Moreover, the approximation
also converges rapidly over a wide time frame. Two examples are provided for showing the ability and
advantages of the proposed method to approximate the solution of the power law nonlinearity of NLSEs. For
pictorial representation, graphical inputs are included to represent the solution and show the precision as well
as the validity of the MMRDTM.

Key words: Adomian polynomials, Multistep approach, Multistep Modified Reduced Differential Transform
Method, Nonlinear Schrodinger equations of power law nonlinearity.

Introduction:

The nonlinear nature of the system is vital plasma physics, and quantum mechanics. On the
especially for understanding numerous natural other hand, the nonlinear Schrédinger equations
phenomena. Recently, nonlinear science has arisen (NLSEs) serve as a critical function in various areas
as a prevailing field to elucidate the complexities of ~ of engineering, biological and physical science.
the challenging nature. Nonlinearity is an These equations are applicable in some applied
interesting phenomenon in nature that has been well fields such as protein chemistry, plasma physics,
known in a number of areas, ranging from chemical, nonlinear optics, and liquid dynamics (6). Countless
biological, geological, fluids to solid as well as  partial differential equations (PDEs) and ordinary
nonlinear optical processes in the form of large differential equations (ODEs) have been solved by
amplitude waves or high-intensity laser pulses. This using approximate analytical methods such as
interesting topic has developed in almost every field Differential Transform Method (DTM) and the
of science and its applications percolate across Reduced Differential Transform Method (RDTM)
science. Generally, nonlinear phenomena are (7-10).

regularly modeled by nonlinear evolution equations For solving NLSEs of power law
with a broad range of high complexities in terms of nonlinearity, Wazwaz applied the variational
various linear and nonlinear effects (1-5). iteration method (11). Later, introduced the residual

Schrédinger equations arise in many fields power series method (RPSM) and homotopy
of physics, nonlinear optics, superconductivity, analysis transform method (HATM) to approximate
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the solutions of Schrddinger equation of power law
nonlinearity (12). Other than that, Kilic & Inc
presented dispersive optical solitons with the
nonlinearity of power law governed by the
Schrédinger-Hirota equation (SHe)(13). Moreover,
the higher-order NLSE with the non-Kerr nonlinear
term is investigated in distinct analytical and semi-
analytical solutions by Khater et al. (14).

Apart from that, Ray proposed a
modification on the fractional RDTM and
implemented it to find solutions of fractional
Korteweg-de Vries equations (15). In this approach,
the adjustment embraces the substitution of the
nonlinear term by relating Adomian polynomials.
As a result, the solutions of the nonlinear problem
can be obtained in a simpler way with reduced
calculated terms. Later, El-Zahar introduced an
adaptive multistep DTM to obtain the solution of
singular perturbation initial-value problems. It
produces a solution in a rapidly convergent series
that is converging in a wide time area (16).

Multistep Modified Reduced Differential
Transform Method (MMRDTM) for solving NLSESs
is proposed by Che Hussin et. al (17). By using this
method, the solutions of NLSE can be approximated
with high accuracy. In addition, the MMRDTM also
was experimentally tested to approximate the Klein-
Gordon equations where the obtained results
showed that the MMRDTM is an effective and
precise method (18). Later, Che Hussin et al.
applied the MMRDTM to obtain the approximate
solution of fractional NLSEs (19). Recently, Che
Hussin et al. solved the nonlinear KdV equation by
using MMRDTM (20). The approximation results
are obtained with a smaller number of computed
terms. On top of that, the results also converge over
a large time frame in a shorter time.

In this paper, the modification by
implementing Adomian polynomials and the
multistep approach are combined to execute the
MMRDTM for solving NLSEs of power law
nonlinearity. In addition, we apply parametrization
methods for generating Adomian polynomials in
which the algorithm doesn't require tedious
calculations of high derivatives (21). The proposed
technique has the ability to rapidly yielding a fast-
convergent sequence of analytical approximation.
As a result, the solutions converge in a wide time
area. At the same time, the number of computed
terms is also significantly reduced.

Methods:
The Development of Multistep Modified
Reduced Differential Transform Method

For notation purpose, the original functions
are denoted using lowercase letter such as the letter
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u in the function u(x,t), while the transformed
functions are denoted using uppercase letter such as
the letter U in the function U, (x). Basically, the
differential transformation of the function u(x,t) =
f(x)g(t) is obtained as follows (22),

u(x, t) = ZO F()x! ; G(Ht) = ’; Uy, (x)tk

where Ui (x) is known as the function of u(x,t).
The following definitions describe  some
fundamental properties of RDTM:

Definition 1: For an analytically and continuously

differential function wu(x,t) with respect to time t
and space variable x, the differential transformation

of u(x,t) is defined by,

Ue() = [z, 0)] M

t=0
where U (x) is the transformed function.

Definition 2. The inverse transform of U,(x) is
given by,

u(x, t) = Uy (x)t*. (2)
;k

By combining equations (1) and (2), the following
equation is obtained,

1 [9k
“@”=Zabﬁ
k=0

To signify the core features of the RDTM, consider
the following nonlinear PDE,

tk.
0

u(x, t)] 3

t=

Du(x,t) + Pu(x,t) + Qu(x,t) = h(x,t), (4)
where u(x, 0) = f(x) is the initial condition. Note
that, D = % and P is the remaining part of a linear

operator. The nonlinear and inhomogeneous terms

are represented as Nu(x, t) and h(x, t) respectively.
Based on the MMRDTM, the iteration

formula can be formed as follows:

(k + DUpy1(x) = Hi(x) — PU(x) —

NU (x). (5)

The functions Du(x,t), Pu(x,t), Nu(x,t) and
h(x,t) are transformed and then represented as
Up(x), PUp(x),NU,(x) and H,(x) respectively.
We have

Up(x) = f(x), (6)
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from the initial condition. Referring to Ray, the
nonlinear term is denoted as follows (15),

Nu(x, t) = Z A (UG, Us (), o, Un ()
n=0

Recently, Kataria and Vellaisamy proposed
a novel method for calculating the Adomian
polynomials (21),
Ap = N(Uo(x)),
An(UO(x); Ul (X), ey Un(x))

n
1 (" . )
2—f N (Z Uk(x)e‘kx> e"mtdy, n>1.
Tl \f5

It can be observed that the algorithm does not
involve tedious calculations with high derivatives.
By combining equations (6) and (5), the U (x)
values can be obtained through iterative calculation.
Furthermore, the set of values {U,(x)};-, of the
inverse transformation produces the approximate
solution as follows,

K
u(x, t) = U (x)t*,
; f

For m=1,2,..,M, divide the interval
[0,T]is into M subintervals [t,,_q,t,] by equal
step size s = % and nodes t,, = ms The following

steps are used to calculate MMRDTM. Firstly,
apply modified RDTM to the initial value problem
of interval [0,t;]. Then by using the initial
conditions

t €[0,T].

u(x,0) = fo(x),

the approximate result

K
W = ) Upn@rh,  telot]
k=0

is obtained. At each subinterval [t,,_q,t;], the
initial conditions

u; (x,0) = f1(x),

um(x' tm—l) = um—l(x: tm—l);
(a/at)um(x' tm—l) = (a/at)um—l(x: tm—l)

are used for m > 2 and the multistep RDTM is
implemented to the initial value problem on
[tm-1,tml, Where t, is replaced with t,,_,. To
produce a sequence of approximate solutions
Uy, (x,t) the step is performed and carried out
repeatedly for m = 1,2, ..., M, such as,

K

U (x,t) = U ,m(x)(t — - )k, t
; f )

S [tm—lr tm]-
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Finally, MMRDTM proposes the following
solutions:
uy(x,t),fort € [0,t4]
uCx,t) = u,(x, t),for:t € [tq, o]

upy (x,t),fort € [ty_q, tyl.
With better computing performance, the new
algorithm MMRDTM is straightforward for all
values of
s. Note that, the MMRDTM reduces to the modified
RDTM once the step size s = T.

Application of MMRDTM For Solving
Nonlinear Schrodinger Equation of Power
Law Nonlinearity

Consider the NLS equation of power law
nonlinearity (12),
U + Uy +y|ul?u=0 (7)
subject to the initial condition,

u(x,0) = [2(r + 1) sech?(2rx)]V/" | r > 1.
The exact solution is
u(x, t) = [2(r + 1) sech?(2rx)]/ (M) e4it,

Applying MMRDTM to (7) and using basic

properties of MMRDTM, the following equation

Ugsrm(x) = (#) (aa—xzz (Uk,m(x))

+y (Ak,m)>- (8)

is obtained. From the initial condition, write

Up(x) = f(x). €))
Referring to Ray the nonlinear term is denoted as
follows (15),

Nu(x, t) = z A (UG, Us (), o, Un ()
n=0

By replacing equation (9) into equation (8),
the U, (x) values can be obtained by direct iterative
computation. Then, the n-terms approximation
solution is obtained from the inverse transformation
of the set of values {U (x)}}-, as given below,

K

ulx,t) = ) Ug(x)tk, t €[0,T].

Form = 1,2, 1\/; divide the interval [0, T] into M
subintervals [t,,_1,t,] by equal step size s =%
and nodes t,, = ms. The following steps are used
to calculate MMRDTM. Firstly, apply modified

RDTM to the initial value problem of interval
[0, t;]. Then by using the initial conditions,
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u(x,0) = fo(x), u(x,0) = fi(x),

the approximate result

K
u (x,t) = 2 U1 (0t t €[0,t,]

k=0
is obtained. Then the multistep RDTM is
implemented to the initial value problem on
[tm-1,tm]l, Where t, is replaced with t,,_,. To
produce a sequence of approximate solutions
Uy (x,t), the step is performed and carried out
repeatedly for m = 1,2, ..., M such as,
K

Uy (x,t) = Upm () (£ = t— )k, t
; . :
€ [tm—lr tm]-

Numerical Results and Discussion:

We provide the following examples to
demonstrate the robustness of the proposed method.
For accuracy evaluation purposes, comparisons
between the solutions obtained by the MMRDTM,
exact solutions, and solutions obtained by the
MRDTM are made.

Example 1
Consider the one-dimensional NLSE of power law
nonlinearity fory = 2 and r = 3/2,

Up + Uyy + 2|ul3u =0 (10)
subject to the initial condition
u(x,0) = [5 sech?(3x)]/3.
The exact solution of this equation is
[5 sech?(3x)]}/3e*t,
By applying the MMRDTM to equation
(10) and using basic properties of MMRDTM, we

have
I 92
Uk+1,m(X) = (m) (@ (Uk,m(x)) +
2(Aiem)). (11)
From the initial condition, write
Uy(x) = [5 sech?(3x)]/3. (12)

The comparison between exact solutions
and approximation of MMRDTM and MRDTM are
shown in Fig. 1. Observe that, MRDTM values
diverge from the exact solution. From the results,
Fig. 1 shows an approximation of MMRDTM and
MRDTM with y =2and r=3/2 for t € [-1,1]
and x € [-5,5]. Table 1 and 2 summarize the
performance error analysis obtained by MMRDTM
withy = 2 and r = 3/2 with N = 5 for MMRDTM
and MRDTM respectively. Therefore, it reveals that
the solutions of the current technique for this type
of NLS equation with power law nonlinearity are
closed to exact solutions compared to MRDTM.

Table 1. Comparison between MMRDTM and exact solution of NLSE with power law nonlinearity

t X Absolute Error MMRDTM Absolute Error MRDTM
0.01 1.0012 x 107° 3.3904 x 1073
0.02 1.0000 x 10711 3.3786 x 1073
0.01 0.03 1.0004 x 10~° 3.3591 x 1073
0.04 1.0004 x 10~° 3.3320 x 1073
0.05 3.0000 x 10711 3.2975 x 1073
0.01 1.0000 x 107° 1.3473 x 1072
0.02 0.00000 1.3412 x 1072
0.02 0.03 0.00000 1.3324 x 1072
0.04 1.00000 x 107° 1.3197 x 1072
0.05 1.00000 x 10710 1.3038 x 1072
0.01 1.0050 x 107° 3.1549 x 1072
0.02 1.0000 x 10~° 3.1277 x 1072
0.03 0.03 1.0050 x 107° 3.0840 x 1072
0.04 2.0025 x 107° 3.0257 x 1072
0.05 1.0000 x 107° 2.9555 x 1072
0.01 1.0198 x 10~° 6.4569 x 1072
0.02 1.0000 x 10710 6.3351 x 1072
0.04 0.03 2.0000 x 10710 6.1403 x 1072
0.04 1.0050 x 10~° 5.8839 x 1072
0.05 1.0000 x 10710 5.5806 x 1072
0.01 1.0000 x 10°1° 1.3140 x 107!
0.02 1.0440 x 107° 1.2705 x 107t
0.05 0.03 1.0770 x 10~° 1.2011 x 107t
0.04 1.1180 x 10~° 1.1102 x 107t
0.05 2.0000 x 10710 1.0036 x 107!
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a) b)
Real Part Imaginary Part

Figure 1. The surface graphs of NLS equation of power law nonlinearity for y =2 and r = 3/2,
a)exact solution (Re), b)exact solution (Im), c)approximate solution with MMRDTM (Re), d)
approximate solution with  MMRDTM (Im), e) approximate solution with MRDTM (Re), f)

approximate solution with MRDTM (Im).
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Table 2. Comparison error of MMRDTM and MRDTM

t X Exact solution Absolute Error MMRDTM Absolute Error MRDTM
0.1 1.660167981 9.4333 x 107 5.6585 x 1072
0.2 1.526619448 8.6752 x 107 3.0265 x 1071
0.3 1.345266791 7.6445 x 107 1.8271 x 1071
0.4 1.151063913 6.5407 x 107 2.1254 x 1071
0.1 0.5 0.966751165 5.4936 x 107 9.7276 x 1072
0.6 0.803005295 45631 x 107 3.7596 x 1072
0.7 0.662757967 3.7660 x 10~ 1.9579 x 1072
0.8 0.545045162 3.0971 x 10 1.0954 x 1072
0.9 0.447344248 2.5418 x 10~ 5.6815 x 1073
1.0 0.366750671 2.0839 x 10~ 2.7714 x 1073
Example 2
Consider the one-dimensional NLSE with From the results, Fig. 2 shows an

power law nonlinearity fory = 2 and r = 2 (12),
Uy + Uy + 2|ul*u=0 (13)

subject to the initial condition,
u(x,0) = [6 sech?(4x)]Y/*.

The exact solution of this equation is
[6 sech?(4x)] /4e*it,

Using the basic properties of
MMRDTM then applying MMRDTM to equation
(13), we can obtain

I 92
Ugsrm(x) = (k—-|-1> <ﬁ (Uk,m(x))

+ Z(Ak,m)> (14)

From the initial condition, write
Uy(x) = [6 sech?(4x)]'/4. (15)

841

approximation of MMRDTM and MRDTM for
NLSE with power law nonlinearity with y =2
andr =2 for t € [-1,1] and x € [—1,1]. Table 3
summarizes the performance error analysis obtained
by MMRDTM and MRDTM when t = 0.1. Table 4
summarizes the performance error analysis obtained
by MMRDTM, MRDTM, RPS, and HATM with
y=2andr =2 with N =5. As we can see, the
errors of MRDTM, RPS, and HATM increase as
time increases while MMRDTM has a minor error.
The shape of MMRDTM graphs looks similar to
exact solutions. Therefore, it reveals that the
solutions of the current technique for this type of
NLS equation with power law nonlinearity are
closed to exact solutions compared to MRDTM,
RPS, and HATM.
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Imaginary Part

Real Part

c)

Real Part

Figure 2. The surface graphs of NLSE with power law nonlinearity for y =2 and r = 2, a)exact
solution (Re), b)exact solution (Im), c)approximate solution with MMRDTM (Re), d) approximate
solution with MMRDTM (Im), e) approximate solution with MRDTM (Re), f) approximate solution

with MRDTM (Im)
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Table 3. Comparison error of MMRDTM and MRDTM

t X Exact solution Absolute Error MMRDTM Absolute Error MRDTM

0.1 1.505256212 8.5530 x 107° 5.4178
0.2 1.353323050 7.6895 x 107° 1.7509
0.3 1.163107591 6.6088 x 10~° 1.3865
0.4 0.9748582442 5.5390 x 107° 4.6482 x 1071

0.1 0.5 0.8068951808 45849 x 1076 2.1323 x 1071
0.6 0.6639260037 3.7722 x 107° 1.2904 x 1071
0.7 0.5448024298 3.0953 x 107° 5.9217 x 1072
0.8 0.4464996636 2.5371 x 107° 2.3977 x 1072
0.9 0.3657300829 2.0780 x 107° 9.2022 x 1073
1.0 0.2994959915 1.7017 x 10 3.4502 x 1073

Table 4. Comparison between MMRDTM and exact solution of NLSE with power law nonlinearity

t

X

Absolute Error

Absolute Error

Absolute Error RPS Absolute Error

MMRDTM MRDTM (12) HATM (12)

0.01 1.000 x 10~11 7.368 x 1073 3.126 x 107* 2.605 x 1072

0.02 2.000 x 10711 7.322 x 1073 3.118 x 107* 1.042 x 1071

0.01  0.03 1.000 x 107° 7.246 X 1073 3.105 x 107* 2.345 x 1071
0.04 1.000 x 107° 7.143 x 1073 3.088 x 107* 4168 x 1071

0.05 0.000 7.016 x 1073 3.065x 107* 6.514 x 1071

0.01 1.044 x 107° 3.195 x 1072 1.248 x 1073 2.532 x 1072

0.02 1.044 x 107° 3.127 x 1072 1.245 x 1073 1.013 x 1071

0.02  0.03 4.000 x 10710 3.021 x 1072 1.240 x 1073 2.279 x 1071
0.04  4.000 x 1071° 2.886 x 1072 1.233 x 1073 4.052 x 1071

0.05 4.000 x 10710 2.735 x 1072 1.224 x 1073 6.332 x 1071

0.01 1.000 x 107° 1.092 x 1071 2.801 x 1073 2.414 x 1072

0.02 0.000 1.025 x 107* 2.794 x 1073 9.657 x 1072

0.03  0.03 0.000 9.205 x 1072 2.783 x 1073 2.173 x 1071
0.04 1.005 x 10~° 7.909 x 1072 2.767 x 1073 3.863 x 1071

0.05 1.000 x 10710 6.490 x 1072 2.747 x 1073 6.037 x 1071

0.01 7.000 x 10710 3.875x 107! 4959 x 1073 2.254 x 1072

0.02 6.000 x 10710 3.500 x 1071 4.947 x 1073 9.016 x 1072

0.04 0.03 5.000 x 10710 2.923 x 107! 4928 x 1073 2.029 x 1071
0.04 1.118 x 107° 2.208 x 107! 4.899 x 1073 3.607 x 1071

0.05 6.000 x 10710 1.436 x 1071 4.864 x 1073 5.636 x 1071

0.01 0.000 1.270 7.710 x 1073 2.056 x 1072

0.02 1.000 x 10710 1.126 7.691 x 1073 8.226 x 1072

0.05 0.03 1.000 x 10710 9.039 x 1071 7.661 x 1073 1.851 x 1071
0.04 1.019 x 10~° 6.290 x 1071 7.618 x 1073 3.291 x 1071

0.05 6.000 x 10710 3.321x 107! 7.562 x 1073 5.142 x 1071

Conclusion: Acknowledgment:

The series of solutions of NLSEs of power
law nonlinearity using MMRDTM is successfully
applied in this paper. We compared the obtained
solutions with exact solutions and solutions
obtained by MRDTM. The modification is done by
replacing the nonlinear term with its Adomian
polynomials and a multi-step approach was adapted.
The obtained results verified that the approximate
solutions of NLSEs of power law nonlinearity are
obtained with high accuracy. As a conclusion, the
MMRDTM is more effective,
precise than the MRDTM in obtaining an analytic
approximate solution for these types of equations.
All computations in this paper had been carried out

by using Maple 13.
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