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Abstract: 
This paper introduces the Multistep Modified Reduced Differential Transform Method (MMRDTM). 

It is applied to approximate the solution for Nonlinear Schrodinger Equations (NLSEs) of power law 

nonlinearity. The proposed method has some advantages. An analytical approximation can be generated in a 

fast converging series by applying the proposed approach. On top of that, the number of computed terms is 

also significantly reduced. Compared to the RDTM, the nonlinear term in this method is replaced by related 

Adomian polynomials prior to the implementation of a multistep approach. As a consequence, only a smaller 

number of NLSE computed terms are required in the attained approximation. Moreover, the approximation 

also converges rapidly over a wide time frame. Two examples are provided for showing the ability and 

advantages of the proposed method to approximate the solution of the power law nonlinearity of NLSEs. For 

pictorial representation, graphical inputs are included to represent the solution and show the precision as well 

as the validity of the MMRDTM. 

 

Key words: Adomian polynomials, Multistep approach, Multistep Modified Reduced Differential Transform 

Method, Nonlinear Schrodinger equations of power law nonlinearity. 

 

Introduction: 
The nonlinear nature of the system is vital 

especially for understanding numerous natural 

phenomena. Recently, nonlinear science has arisen 

as a prevailing field to elucidate the complexities of 

the challenging nature. Nonlinearity is an 

interesting phenomenon in nature that has been well 

known in a number of areas, ranging from chemical, 

biological, geological, fluids to solid as well as 

nonlinear optical processes in the form of large 

amplitude waves or high-intensity laser pulses. This 

interesting topic has developed in almost every field 

of science and its applications percolate across 

science. Generally, nonlinear phenomena are 

regularly modeled by nonlinear evolution equations 

with a broad range of high complexities in terms of 

various linear and nonlinear effects (1-5).    

Schrödinger equations arise in many fields 

of physics, nonlinear optics, superconductivity, 

plasma physics, and quantum mechanics. On the 

other hand, the nonlinear Schrödinger equations 

(NLSEs) serve as a critical function in various areas 

of engineering, biological and physical science. 

These equations are applicable in some applied 

fields such as protein chemistry, plasma physics, 

nonlinear optics, and liquid dynamics (6). Countless 

partial differential equations (PDEs) and ordinary 

differential equations (ODEs) have been solved by 

using approximate analytical methods such as 

Differential Transform Method (DTM) and the 

Reduced Differential Transform Method (RDTM) 

(7–10). 

For solving NLSEs of power law 

nonlinearity, Wazwaz applied the variational 

iteration method (11). Later, introduced the residual 

power series method (RPSM) and homotopy 

analysis transform method (HATM) to approximate 
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the solutions of Schrödinger equation of power law 

nonlinearity (12). Other than that, Kilic & Inc 

presented dispersive optical solitons with the 

nonlinearity of power law governed by the 

Schrödinger-Hirota equation (SHe)(13). Moreover, 

the higher-order NLSE with the non-Kerr nonlinear 

term is investigated in distinct analytical and semi-

analytical solutions by Khater et al. (14). 

Apart from that, Ray proposed a 

modification on the fractional RDTM and 

implemented it to find solutions of fractional 

Korteweg-de Vries equations (15). In this approach, 

the adjustment embraces the substitution of the 

nonlinear term by relating Adomian polynomials. 

As a result, the solutions of the nonlinear problem 

can be obtained in a simpler way with reduced 

calculated terms. Later, El-Zahar introduced an 

adaptive multistep DTM to obtain the solution of 

singular perturbation initial-value problems. It 

produces a solution in a rapidly convergent series 

that is converging in a wide time area (16). 

Multistep Modified Reduced Differential 

Transform Method (MMRDTM) for solving NLSEs 

is proposed by Che Hussin et. al (17). By using this 

method, the solutions of NLSE can be approximated 

with high accuracy. In addition, the MMRDTM also 

was experimentally tested to approximate the Klein-

Gordon equations where the obtained results 

showed that the MMRDTM is an effective and 

precise method (18). Later, Che Hussin et al. 

applied the MMRDTM to obtain the approximate 

solution of fractional NLSEs (19). Recently,  Che 

Hussin et al. solved the nonlinear KdV equation by 

using MMRDTM (20). The approximation results 

are obtained with a smaller number of computed 

terms. On top of that, the results also converge over 

a large time frame in a shorter time. 

In this paper, the modification by 

implementing Adomian polynomials and the 

multistep approach are combined to execute the 

MMRDTM for solving NLSEs of power law 

nonlinearity. In addition, we apply parametrization 

methods for generating Adomian polynomials in 

which the algorithm doesn't require tedious 

calculations of high derivatives (21). The proposed 

technique has the ability to rapidly yielding a fast-

convergent sequence of analytical approximation. 

As a result, the solutions converge in a wide time 

area. At the same time, the number of computed 

terms is also significantly reduced. 

 

Methods: 

The Development of Multistep Modified 

Reduced Differential Transform Method 
For notation purpose, the original functions 

are denoted using lowercase letter such as the letter 

𝑢 in the function 𝑢(𝑥, 𝑡), while the transformed 

functions are denoted using uppercase letter such as 

the letter 𝑈 in the function 𝑈𝑘(𝑥). Basically, the 

differential transformation of the function 𝑢(𝑥, 𝑡) =
𝑓(𝑥)𝑔(𝑡) is obtained as follows (22),  

 

 𝑢(𝑥, 𝑡) = ∑ 𝐹(𝑖)𝑥𝑖 ∑ 𝐺(𝑗)𝑡𝑗 = ∑ 𝑈𝑘

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

(𝑥)𝑡𝑘 

 

where 𝑈𝑘(𝑥) is known as the function of 𝑢(𝑥, 𝑡). 

The following definitions describe some 

fundamental properties of RDTM: 

 

Definition 1: For an analytically and continuously 

differential function  𝑢(𝑥, 𝑡) with respect to time 𝑡 

and space variable 𝑥, the differential transformation 

of  𝑢(𝑥, 𝑡) is defined by,  

 

           𝑈𝑘(𝑥) =  [
𝜕𝑘

𝜕𝑡𝑘 𝑢(𝑥, 𝑡)]
𝑡=0

             (1)  

 

where 𝑈𝑘(𝑥) is the transformed function.  

 

Definition 2. The inverse transform of 𝑈𝑘(𝑥) is 

given by, 

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘

∞

𝑘=0

.                    (2) 

 

By combining equations (1) and (2), the following 

equation is obtained, 

𝑢(𝑥, 𝑡) = ∑
1

𝑘!
[

𝜕𝑘

𝜕𝑡𝑘
𝑢(𝑥, 𝑡)]

𝑡=0

𝑡𝑘

∞

𝑘=0

.                  (3) 

                                        

To signify the core features of the RDTM, consider 

the following nonlinear PDE, 

 

𝐷𝑢(𝑥, 𝑡) + 𝑃𝑢(𝑥, 𝑡) + 𝑄𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡),           (4) 

where 𝑢(𝑥,  0) = 𝑓(𝑥) is the initial condition. Note 

that, 𝐷 =
𝜕

𝜕𝑡
 and 𝑃 is the remaining part of a linear 

operator. The nonlinear and inhomogeneous terms 

are represented as 𝑁𝑢(𝑥, 𝑡) and ℎ(𝑥, 𝑡) respectively.  

Based on the MMRDTM, the iteration 

formula can be formed as follows: 
(𝑘 + 1)𝑈𝑘+1(𝑥) = 𝐻𝑘(𝑥) − 𝑃𝑈𝑘(𝑥) −
𝑁𝑈𝑘(𝑥). (5)  

  

The functions 𝐷𝑢(𝑥, 𝑡), 𝑃𝑢(𝑥, 𝑡), 𝑁𝑢(𝑥, 𝑡) and 

ℎ(𝑥, 𝑡)  are transformed and then represented as 

𝑈𝑘(𝑥), 𝑃𝑈𝑘(𝑥), 𝑁𝑈𝑘(𝑥) and 𝐻𝑘(𝑥) respectively. 

We have 

 

𝑈0(𝑥) = 𝑓(𝑥),                             (6) 
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from the initial condition. Referring to Ray, the 

nonlinear term is denoted as follows (15), 

𝑁𝑢(𝑥, 𝑡) = ∑ 𝐴𝑛(𝑈0(𝑥), 𝑈1(𝑥), … , 𝑈𝑛(𝑥))

∞

𝑛=0

. 

Recently, Kataria and Vellaisamy proposed 

a novel method for calculating the Adomian 

polynomials (21), 

𝐴0 = 𝑁(𝑈0(𝑥)), 

𝐴𝑛(𝑈0(𝑥), 𝑈1(𝑥), … , 𝑈𝑛(𝑥))

=
1

2𝜋
∫ 𝑁 (∑ 𝑈𝑘(𝑥)𝑒𝑖𝑘𝑥

𝑛

𝑘=0

)
𝜋

−𝜋

𝑒−𝑖𝑛𝜆 𝑑𝜆,     𝑛 ≥ 1. 

It can be observed that the algorithm does not 

involve tedious calculations with high derivatives. 

By combining equations (6) and (5), the 𝑈𝑘(𝑥) 

values can be obtained through iterative calculation. 

Furthermore, the set of values {𝑈𝑘(𝑥)}𝑘=0
𝑛  of the 

inverse transformation produces the approximate 

solution as follows,  

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘

𝐾

𝑘=0

,               𝑡 ∈ [0, 𝑇]. 

For 𝑚 = 1,2, … , 𝑀, divide the interval 
[0, 𝑇] is into 𝑀 subintervals [𝑡𝑚−1, 𝑡𝑚] by equal 

step size  𝑠 =
𝑇

𝑀
  and nodes 𝑡𝑚 = 𝑚𝑠 The following 

steps are used to calculate MMRDTM. Firstly, 

apply modified RDTM to the initial value problem 

of interval [0, 𝑡1]. Then by using the initial 

conditions  

 

𝑢(𝑥, 0) = 𝑓0(𝑥), 𝑢1(𝑥, 0) =  𝑓1(𝑥), 
the approximate result 

𝑢1(𝑥, 𝑡) = ∑ 𝑈𝑘,1(𝑥)𝑡𝑘 ,            

𝐾

𝑘=0

𝑡 ∈ [0, 𝑡1] 

is obtained. At each subinterval [𝑡𝑚−1, 𝑡𝑚], the 

initial conditions  

 

𝑢𝑚(𝑥, 𝑡𝑚−1) = 𝑢𝑚−1(𝑥, 𝑡𝑚−1),   
 

(𝜕 𝜕𝑡⁄ )𝑢𝑚(𝑥, 𝑡𝑚−1) = (𝜕 𝜕𝑡⁄ )𝑢𝑚−1(𝑥, 𝑡𝑚−1) 

 

are used for 𝑚 ≥ 2 and the multistep RDTM is 

implemented to the initial value problem on 
[𝑡𝑚−1, 𝑡𝑚], where 𝑡0 is replaced with 𝑡𝑚−1. To 

produce a sequence of approximate solutions 

𝑢𝑚(𝑥, 𝑡) the step is performed and carried out 

repeatedly for 𝑚 = 1,2, … , 𝑀, such as,  

𝑢𝑚(𝑥, 𝑡) = ∑ 𝑈𝑘,𝑚(𝑥)(𝑡 − 𝑡𝑚−1)𝑘 ,        

𝐾

𝑘=0

𝑡

∈ [𝑡𝑚−1, 𝑡𝑚]. 
 

Finally, MMRDTM proposes the following 

solutions: 

 

𝑢(𝑥, 𝑡) = {

𝑢1(𝑥, 𝑡), for 𝑡 ∈ [0, 𝑡1]          

𝑢2(𝑥, 𝑡), for 𝑡 ∈ [𝑡1, 𝑡2]        
⋮   

𝑢𝑀(𝑥, 𝑡), for 𝑡 ∈ [𝑡𝑀−1, 𝑡𝑀].

 

With better computing performance, the new 

algorithm MMRDTM is straightforward for all 

values of 

𝑠. Note that, the MMRDTM reduces to the modified 

RDTM once the step size 𝑠 = 𝑇. 
 

Application of MMRDTM For Solving 

Nonlinear Schrödinger Equation of Power 

Law Nonlinearity 
Consider the NLS equation of power law 

nonlinearity (12), 

 

𝑖𝑢𝑡 + 𝑢𝑥𝑥 + 𝛾|𝑢|2𝑟𝑢 = 0                        (7) 

subject to the initial condition, 

 

𝑢(𝑥, 0) = [2(𝑟 + 1) sech2(2𝑟𝑥)]1/(2𝑟)   ,   𝑟 ≥ 1. 
 

The exact solution is  

𝑢(𝑥, 𝑡) = [2(𝑟 + 1) sech2(2𝑟𝑥)]1/(2𝑟)𝑒4𝑖𝑡 . 
Applying MMRDTM to (7) and using basic 

properties of MMRDTM, the following equation 

 𝑈𝑘+1,𝑚(𝑥) = (
𝐼

𝑘 + 1
) (

𝜕2

𝜕𝑥2
(𝑈𝑘,𝑚(𝑥))

+ 𝛾(𝐴𝑘,𝑚)).             (8) 

is obtained. From the initial condition, write 

 

 𝑈0(𝑥) = 𝑓(𝑥).                       (9) 

 

Referring to Ray the nonlinear term is denoted as 

follows (15), 

𝑁𝑢(𝑥, 𝑡) = ∑ 𝐴𝑛(𝑈0(𝑥), 𝑈1(𝑥), … , 𝑈𝑛(𝑥)).

∞

𝑛=0

 

By replacing equation (9) into equation (8), 

the 𝑈𝑘(𝑥) values can be obtained by direct iterative 

computation. Then, the 𝑛-terms approximation 

solution is obtained from the inverse transformation 

of the set of values {𝑈𝑘(𝑥)}𝑘=0
𝑛  as given below, 

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘

𝐾

𝑘=0

,          𝑡 ∈ [0, 𝑇]. 

For 𝑚 = 1,2, … , 𝑀, divide the interval [0, 𝑇] into 𝑀 

subintervals [𝑡𝑚−1, 𝑡𝑚] by equal step size 𝑠 =
𝑇

𝑀
  

and nodes 𝑡𝑚 = 𝑚𝑠. The following steps are used 

to calculate MMRDTM. Firstly, apply modified 

RDTM to the initial value problem of interval 
[0, 𝑡1]. Then by using the initial conditions,  
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𝑢(𝑥, 0) = 𝑓0(𝑥), 𝑢1(𝑥, 0) =  𝑓1(𝑥), 
the approximate result 

𝑢1(𝑥, 𝑡) = ∑ 𝑈𝑘,1(𝑥)𝑡𝑘 ,            

𝐾

𝑘=0

𝑡 ∈ [0, 𝑡1] 

is obtained. Then the multistep RDTM is 

implemented to the initial value problem on 
[𝑡𝑚−1, 𝑡𝑚], where 𝑡0 is replaced with 𝑡𝑚−1. To 

produce a sequence of approximate solutions 

𝑢𝑚(𝑥, 𝑡), the step is performed and carried out 

repeatedly for 𝑚 = 1,2, … , 𝑀 such as, 

𝑢𝑚(𝑥, 𝑡) = ∑ 𝑈𝑘,𝑚(𝑥)(𝑡 − 𝑡𝑚−1)𝑘 ,        

𝐾

𝑘=0

𝑡

∈ [𝑡𝑚−1, 𝑡𝑚]. 
 

Numerical Results and Discussion: 
We provide the following examples to 

demonstrate the robustness of the proposed method. 

For accuracy evaluation purposes, comparisons 

between the solutions obtained by the MMRDTM, 

exact solutions, and solutions obtained by the 

MRDTM are made.  

 

Example 1 

Consider the one-dimensional NLSE of power law 

nonlinearity for 𝛾 = 2 and 𝑟 = 3/2, 
 

𝑢𝑡 + 𝑢𝑥𝑥 + 2|𝑢|3𝑢 = 0                  (10) 

subject to the initial condition 

𝑢(𝑥, 0) = [5 sech2(3𝑥)]1/3. 
The exact solution of this equation is 

[5 sech2(3𝑥)]1/3𝑒4𝑖𝑡. 

 By applying the MMRDTM to equation 

(10) and using basic properties of MMRDTM, we 

have 

 𝑈𝑘+1,𝑚(𝑥) = (
𝐼

𝑘+1
) (

𝜕2

𝜕𝑥2
(𝑈𝑘,𝑚(𝑥)) +

2(𝐴𝑘,𝑚)).                            (11)  

From the initial condition, write 

 𝑈0(𝑥) = [5 sech2(3𝑥)]1/3.          (12) 

 

The comparison between exact solutions 

and approximation of MMRDTM and MRDTM are 

shown in Fig. 1. Observe that, MRDTM values 

diverge from the exact solution.  From the results, 

Fig. 1 shows an approximation of MMRDTM and 

MRDTM with 𝛾 = 2 and 𝑟 = 3/2 for 𝑡 ∈ [−1,1] 
and 𝑥 ∈ [−5,5]. Table 1 and 2 summarize the 

performance error analysis obtained by MMRDTM 

with 𝛾 = 2 and 𝑟 = 3/2 with 𝑁 = 5 for MMRDTM 

and MRDTM respectively. Therefore, it reveals that 

the solutions of the current technique for this type 

of NLS equation with power law nonlinearity are 

closed to exact solutions compared to MRDTM. 

 

Table 1. Comparison between MMRDTM and exact solution of NLSE with power law nonlinearity 
t x Absolute Error MMRDTM Absolute Error MRDTM 

0.01 

0.01 1.0012 ×  10−9 3.3904 × 10−3 

0.02 1.0000 × 10−11 3.3786 × 10−3 

0.03 1.0004 ×  10−9 3.3591 × 10−3 

0.04 1.0004 × 10−9 3.3320 × 10−3 

0.05 3.0000 × 10−11 3.2975 × 10−3 

0.02 

0.01 1.0000 ×  10−9 1.3473 × 10−2 

0.02 0.00000 1.3412 × 10−2 

0.03 0.00000 1.3324 × 10−2 

0.04 1.00000 ×  10−9 1.3197 × 10−2 

0.05 1.00000 ×  10−10 1.3038 × 10−2 

0.03 

0.01 1.0050 ×  10−9 3.1549 × 10−2 

0.02 1.0000 × 10−9 3.1277 × 10−2 

0.03 1.0050 ×  10−9 3.0840 × 10−2 

0.04 2.0025 × 10−9 3.0257 × 10−2 

0.05 1.0000 × 10−9 2.9555 × 10−2 

0.04 

0.01 1.0198  × 10−9 6.4569 × 10−2 

0.02 1.0000 × 10−10 6.3351 × 10−2 
0.03 2.0000 × 10−10 6.1403 × 10−2 
0.04 1.0050 × 10−9 5.8839 × 10−2 
0.05 1.0000 × 10−10 5.5806 × 10−2 

0.05 

0.01 1.0000 × 10−10 1.3140 × 10−1 
0.02 1.0440 × 10−9 1.2705 × 10−1 
0.03 1.0770 × 10−9 1.2011 × 10−1 
0.04 1.1180 × 10−9 1.1102 × 10−1 
0.05 2.0000 × 10−10 1.0036 × 10−1 
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a) 

 

b)  

 
c) 

 

d) 

 
e)  

 

f) 

 

Figure 1. The surface graphs of NLS equation of power law nonlinearity for 𝜸 = 𝟐 and 𝒓 = 𝟑/𝟐, 

a)exact solution (Re), b)exact solution (Im), c)approximate solution with MMRDTM (Re), d) 

approximate solution with MMRDTM (Im), e) approximate solution with MRDTM (Re), f) 

approximate solution with MRDTM (Im). 
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Table 2.   Comparison error of MMRDTM and MRDTM  
t x Exact solution Absolute Error MMRDTM Absolute Error MRDTM 

0.1 

 

0.1 1.660167981 9.4333 × 10−6 5.6585 × 10−2 

0.2 1.526619448 8.6752 × 10−6 3.0265 × 10−1 

0.3 1.345266791 7.6445 × 10−6 1.8271 × 10−1 

0.4 1.151063913 6.5407 × 10−6 2.1254 × 10−1 

0.5 0.966751165 5.4936 × 10−6 9.7276 × 10−2 

0.6 0.803005295 4.5631 × 10−6 3.7596 × 10−2 

0.7 0.662757967 3.7660 × 10−6 1.9579 × 10−2 

0.8 0.545045162 3.0971 × 10−6 1.0954 × 10−2 

0.9 0.447344248 2.5418 × 10−6 5.6815 × 10−3 

1.0 0.366750671 2.0839 × 10−6 2.7714 × 10−3 

                                                                                                                                                   

Example 2

Consider the one-dimensional NLSE with 

power law nonlinearity for 𝛾 = 2 and 𝑟 = 2 (12), 

 

𝑖𝑢𝑡 + 𝑢𝑥𝑥 + 2|𝑢|4𝑢 = 0                   (13) 

 

subject to the initial condition, 

𝑢(𝑥, 0) = [6 sech2(4𝑥)]1/4. 
The exact solution of this equation is 

[6 sech2(4𝑥)]1/4𝑒4𝑖𝑡. 

               Using the basic properties of 

MMRDTM then applying MMRDTM to equation 

(13), we can obtain 

𝑈𝑘+1,𝑚(𝑥) = (
𝐼

𝑘 + 1
) (

𝜕2

𝜕𝑥2
(𝑈𝑘,𝑚(𝑥))

+ 2(𝐴𝑘,𝑚))      (14) 

From the initial condition, write 

 𝑈0(𝑥) = [6 sech2(4𝑥)]1/4.                     (15) 

From the results, Fig. 2 shows an 

approximation of MMRDTM and MRDTM for 

NLSE with power law nonlinearity with  𝛾 = 2 

and 𝑟 = 2 for 𝑡 ∈ [−1,1] and 𝑥 ∈ [−1,1]. Table 3 

summarizes the performance error analysis obtained 

by MMRDTM and MRDTM when 𝑡 = 0.1. Table 4 

summarizes the performance error analysis obtained 

by MMRDTM, MRDTM, RPS, and HATM with 

𝛾 = 2 and 𝑟 = 2 with 𝑁 = 5.  As we can see, the 

errors of MRDTM, RPS, and HATM increase as 

time increases while MMRDTM has a minor error. 

The shape of MMRDTM graphs looks similar to 

exact solutions. Therefore, it reveals that the 

solutions of the current technique for this type of 

NLS equation with power law nonlinearity are 

closed to exact solutions compared to MRDTM, 

RPS, and HATM.  
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
Figure 2. The surface graphs of NLSE with power law nonlinearity for 𝜸 = 𝟐 and 𝒓 = 𝟐, a)exact 

solution (Re), b)exact solution (Im), c)approximate solution with MMRDTM (Re), d) approximate 

solution with MMRDTM (Im), e) approximate solution with MRDTM (Re), f) approximate solution 

with MRDTM (Im) 
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Table 3.   Comparison error of MMRDTM and MRDTM  
t x Exact solution Absolute Error MMRDTM Absolute Error MRDTM 

0.1 

 

0.1 1.505256212 8.5530 × 10−6 5.4178 

0.2 1.353323050 7.6895 × 10−6 1.7509 

0.3 1.163107591 6.6088 × 10−6 1.3865 

0.4 0.9748582442 5.5390 × 10−6 4.6482 × 10−1 

0.5 0.8068951808 4.5849 × 10−6 2.1323 × 10−1 

0.6 0.6639260037 3.7722 × 10−6 1.2904 × 10−1 

0.7 0.5448024298 3.0953 × 10−6 5.9217 × 10−2 

0.8 0.4464996636 2.5371 × 10−6 2.3977 × 10−2 

0.9 0.3657300829 2.0780 × 10−6 9.2022 × 10−3 

1.0 0.2994959915 1.7017 × 10−6 3.4502 × 10−3 

 
Table 4. Comparison between MMRDTM and exact solution of NLSE with power law nonlinearity  

t x 
Absolute Error 

MMRDTM 

Absolute Error 

MRDTM 

Absolute Error RPS 

(12) 

Absolute Error 

HATM (12) 

0.01 

0.01 1.000 × 10−11 7.368 × 10−3 3.126 × 10−4 2.605 × 10−2 

0.02 2.000 × 10−11 7.322 × 10−3 3.118 × 10−4 1.042 × 10−1 

0.03 1.000 × 10−9 7.246 × 10−3 3.105 × 10−4 2.345 × 10−1 

0.04 1.000 × 10−9 7.143 × 10−3 3.088 × 10−4 4.168 × 10−1 

0.05 0.000 7.016 × 10−3 3.065 × 10−4 6.514 × 10−1 

0.02 

0.01 1.044 × 10−9 3.195 × 10−2 1.248 × 10−3 2.532 × 10−2 

0.02 1.044 × 10−9 3.127 × 10−2 1.245 × 10−3 1.013 × 10−1 

0.03 4.000 × 10−10 3.021 × 10−2 1.240 × 10−3 2.279 × 10−1 

0.04 4.000 × 10−10 2.886 × 10−2 1.233 × 10−3 4.052 × 10−1 

0.05 4.000 × 10−10 2.735 × 10−2 1.224 × 10−3 6.332 × 10−1 

0.03 

0.01 1.000 × 10−9 1.092 × 10−1 2.801 × 10−3 2.414 × 10−2 

0.02 0.000 1.025 × 10−1 2.794 × 10−3 9.657 × 10−2 

0.03 0.000 9.205 × 10−2 2.783 × 10−3 2.173 × 10−1 

0.04 1.005 × 10−9 7.909 × 10−2 2.767 × 10−3 3.863 × 10−1 

0.05 1.000 × 10−10 6.490 × 10−2 2.747 × 10−3 6.037 × 10−1 

0.04 

0.01 7.000 × 10−10 3.875 × 10−1 4.959 × 10−3 2.254 × 10−2 

0.02 6.000 × 10−10 3.500 × 10−1 4.947 × 10−3 9.016 × 10−2 
0.03 5.000 × 10−10 2.923 × 10−1 4.928 × 10−3 2.029 × 10−1 
0.04 1.118 × 10−9 2.208 × 10−1 4.899 × 10−3 3.607 × 10−1 
0.05 6.000 × 10−10 1.436 × 10−1 4.864 × 10−3 5.636 × 10−1 

0.05 

0.01 0.000 1.270 7.710 × 10−3 2.056 × 10−2 
0.02 1.000 × 10−10 1.126 7.691 × 10−3 8.226 × 10−2 
0.03 1.000 × 10−10 9.039 × 10−1 7.661 × 10−3 1.851 × 10−1 
0.04 1.019 × 10−9 6.290 × 10−1 7.618 × 10−3 3.291 × 10−1 
0.05 6.000 × 10−10 3.321 × 10−1 7.562 × 10−3 5.142 × 10−1 

 

Conclusion:  
The series of solutions of NLSEs of power 

law nonlinearity using MMRDTM is successfully 

applied in this paper. We compared the obtained 

solutions with exact solutions and solutions 

obtained by MRDTM. The modification is done by 

replacing the nonlinear term with its Adomian 

polynomials and a multi-step approach was adapted. 

The obtained results verified that the approximate 

solutions of NLSEs of power law nonlinearity are 

obtained with high accuracy. As a conclusion, the 

MMRDTM is more effective, consistent, and 

precise than the MRDTM in obtaining an analytic 

approximate solution for these types of equations. 

All computations in this paper had been carried out 

by using Maple 13. 
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 كيبانغسان ماليزيا ، سيلانجور ، ماليزياقسم العلوم الرياضية ، جامعة لا5

 

 الخلاصة:
 حل لتقريب الطريقة هذه تطبق. .(MMRDTM) الخطوات متعدد المعدل المنخفض التفاضلي التحويل طريقة البحث يتناول 

  تحليليال تقريبتعميم ال من الممكن.  المزايا بعض لها المقترحة الطريقة.  اللاخطية القوة لقانون (NLSES) الخطية غير شرودنجر معادلات

 بـ مقارنة  .  كبير بشكل تقليله تم المحسوبة حدودال عدد فإن ، ذلك على علاوة.  ةالمقترح لطريقةا تطبيق خلال من بسرعة متقاربة سلسلةك
RDTM ،  حدود  ةمتعددب الطريقة هذه في الخطي غير الحدا استبدال تمكما Adomain  نتيجة.  الخطوات متعدد طريقة تنفيذ قبل الصلة ذات 

ا التقريب فإن ، ذلك على علاوة.  المطلوبة للتقريبNLSE حدود ل ال من أقلتم حساب عدد  ، لذلك  زمني إطار خلال بسرعة يتقارب أيض 

تم  ، التصويري للتمثيل بالنسبة  .NLSES لـ اللاخطية القوة قانون حل لتقريب المقترحة الطريقة ومزايا قدرة لإظهار مثالين تقديم تم. واسع

  كذلك. MMRDTM  وفاعلية الدقة وإظهار الحل لتمثيل الرسومية المدخلات تضمين

 

 الخطوات، متعدد المعدل المنخفض التفاضلي التحويل طريقة الخطوات، ةمتعدد طريقة ، Adomian حدود متعدد  :المفتاحية الكلمات

 .اللاخطية القوة لقانون اللاخطية شرودنجر معادلات

 
 

 

 

 


