ON SOME TYPES OF ALMOST-PERIODIC POINT IN Bi-TOPOLOGCAL DYNAMCS

S.H.AL-KUTAIBI

I.M.AL-NASIRI

Date of acceptance 21/8/2004

ABSTRACT

In this paper We introduce some new types of almost bi-periodic points in topological bitransformation groups and their effects on some types of minimaliy in topological dynamics.

INTRODUCTION

Let X be a topological space, A be any subset of X, the sets $\hat{\Lambda}$, $\bar{\Lambda}$ and A^e denote the interior, closure and complement of A respectively. A is called semi-open in X if ACA [10] then A^c is called semi-closed [6] such that every open set in X is semi-open set and every closed set in X is semiclosed set. A subset N_v of X is called a semi-neighborhood (s.nbd) of a point $x \in X$ if there exists a semi-open set A in X s.t $x \in A \subset N_x$ [2], every nbh is semi-nbh. The smallest semi-closed set containing A is called the semi-closure of Λ (sel Λ) [2] s.t Λ is semi-closed set iff Λ =sel Λ and sel Λ \subset $\bar{\Lambda}$, $p \in X$ is called semi-limit point of Λ $A \cap (U/\{p\}) \neq \emptyset$ for each semi-open set U⊂X which is containing p [2] . A family (a) of semi-open subsets of X is called a semi-open cover of X if X is a subset of the union of elements of @ and X is called a semi-compact space if every semi-open cover of X containing a finite sub cover [3], every

semi-compact set is compact, X is called locally semi-compact space if for every $x \in X$ there exist a s.nbh Ux is compact set. If G is a topological group and A⊂G then A is called a left syndatic set if there exists a compact set K⊂G s.t. G=AK and B⊂G is called a right syndatic set if G=KB [4], is called left semi-syndatic set if there exists a semi-compact set KCG s.t G=AK similar B is called right semisyndatic set if G=KB[1], every semi syndatic set is syndatic. If (X, G, π) is topological transformation right group (0, H. X) is a left topological transformation group then (II, X, G) is right-left called topological bitransformation group (T.B.G) if satisfy the condition: $(hx)g=(\theta(h,x),g)\pi=\theta(h,(x,g)\pi=h(xg))$ for every $x \in X$, $h \in H$, $g \in G$.

Definition 1: Let (II, X, G) be a T.B.G and $\Lambda \subseteq X$ then Λ is called a bi-invariant set under G and H if $H\Lambda G \subseteq \Lambda$.

^{*}Department of Mathmatics-College of education-University of Tikrit

Department of Mathmatics-College of education-University of Tikrit

Definition 2: Let (H,X,G) be a T.B.G and $x \in X$ then the set $HxG = \{hxg \mid f(x) = f(x)\}$ $g \in G, h \in H$ } is called the bi-orbit of x under G and H, the set HxG is called the bi-orbit closure of x under G and H and sel (HxG) is called an bi-orbit semi-closure of x under G and H.

Lemma 1: Let (H,X,G) be a T.B.G, $A \subseteq X$ and $g \in G$, $h \in H$ then $\overline{h} \overline{A} \overline{g} = h \overline{A} g$.

Proof: It is obvious.

Lemma 2: Let (H,X,G) be a T.B.G. $A \subset X$ and A is bi-invariant set then \bar{A} is bi-invariant set.

Proof: By using lemma 1.

Proposition 1: Let (H,X,G) be a T.B.G then the following statements are true:

- 1) If $x \in X$ then the bi-orbit of x is a smallest bi-invariant subset of X contain x
- 2) If $x \in X$ and $y \in HxG$, then HxG=HyG.
- 3) If $x \in X$ then the bi-orbit closure of x is a smallest bi-invariant subset of X contain x.
- 4) If $x \in X$ and y∈HxG then HxG⊂HvG.
- 5)The class of all bi-orbit closure under G and H covered X.

Proof:

- (1) Let HxG be the bi-orbit of x then HHxGG=HxG i.e. HxG is bi-invariant set. Let AcHxG and A is bi-invariant s.t. $x \in A$, let $a \in H \times G$ - A then there exist a $g \in G$, $h \in H$ s.t. a=hxg but this contradiction.
- (2) Since v∈IIxG then there exist a $g \in G$ s.t. y=hxg i.e. $x=h^{-1}gg^{-1}$ this means $x \in H_YG$ and $H_XG \subset H_YG$ then HxG=HyG.
- (3) Since HxG ⊂HxG then HxG is a smallest closed set contain x and the closed of bi-invariant set is bi-invariant set then HxG is smallest closed biinvariant set contain x.
- (4) It is obvious.

(5) Let $(a = \{ HxG | x \in X \})$ then $X=UH_XG\subset H_XG=U(a)$.

Definition 3: Let (II, X, G) be a T.B.G and M⊆X then M is called a b₁minimal set {b2-minimal set} in T.B.G if satisfy the following conditions:

(1) $M \neq \emptyset$, M is closed {semi-closed} bi-invariant set. (2) M is not containing closed (semi-closed) bi-invariant subset.

Proposition 2: Let (II, X, G) be a T.B.G, and M⊂X then the following statements are equivalient:

- (1) M is b₁-minimal set.
- (2)M≠Ø,M \rightarrow IxG for every x∈M.
- (3)M≠Ø. M is closed and M=HUG for every nonempty open subset U of M.

Proof:

- $(1)\rightarrow(2)$ Since M is b₁-minimal set then M is b-invariant set and closed, this_means HxGCM and HxGCM. If HxG≠M means M is not b₁-minimal set then HxG=M.
- (2)→(1) Since $M\neq\emptyset$ and M=HxG then M is b-invariant set, if A⊂M closed b₁invariant then there exist $a \in A$ s.t. M-HaG, this lead to Mc. A i.e. M-A. $(4)\rightarrow(1)$ N is b_1 -invariant set (HMG=HHUGG=HUG=M). Let $A \subset M$ and $A \neq \emptyset$, closed and bi-invariant set, then M-A is open set in M and H(M-A)G=M i.e. there exist $x,y \in M$ s.t. $x \in A, y \in M-A$ and $g \in G, h \in H$ s.t. y=hxgthis means $y \in A$ and M = A.
- $(1)\rightarrow (4)$ If M is b₁- minimal set and U∈M non-empty open set, then HUG⊂HMG =M and M-HUG ⊂M is closed set. If x∈M-HUG and g∈G, h∈H s.t. hxg∈HUG then H-HUGg-1 this means M is contain HUG biminimal set but this contradiction then M=HUG.

Lemma 3: Let (II, X.G) be a T.B.G. A.B.C⊂X are compact sets then ABC is compact subset of X.

Proof: Since $0:H\times(X\times G)\pi \to X$ is continuous map and since, A, B, C are compact sets and $0(C\times AB) = CAB$ is compact set under continuous map.

Remark: We can use the above proposition to b₂-minimal set with take difference of b₁-minimal.

Definition 4: Let $(\Pi.X,G)$ be a T.B.G and $x \in X$ then x is called b_1 -almost periodic point (b_1) if for every $nbh\ U$ of x there exist a left syndatic set $A \subseteq G$ and right syndatic set $B \subseteq H$ s.t. $BxA \subseteq U$.

Proposition 3: Let (H,X,G) be a T.B.G X is T_2 locally compact space and $x \in X$ then x is b_1 iff HxG is b_1 -minimal compact subset of X.

Proof: \rightarrow Let x be a b₁ point, Ux be a nbh of x then there exist a left syndatic set $A \subseteq G$ and right syndatic set $B \subseteq G$ s.t. $BxA \subseteq U_x$. Since A, B are syndatic set this means there exist two compact set $K \subseteq G$, $J \subseteq H$ s.t. G : AK, H = JB and $HxG = JBxAK \subseteq JU_xK$. By Lemma (3) JU_xK is compact subset of T_2 -space then it is closed set. Hence, $HxG \subseteq JU_xK$ and HxG is compact.

If $y \in HxG$ then $HyG \subseteq HxG$ i.e. $y \in JU_xK$ this means there exist $u \in U_x$ $k \in K$ and $j \in J$ s.t. y = juk and $u = j^{-1}yk^{-1}$ $\in U_x$ then $HyG \cap U_x \neq \emptyset$ hence, x is a limit point of HyG and $x \in HyG$ then HxG is b_1 -minimal compact subset of X.

←Let HxG be a b₁-minimal compact subset of X . Let U_x be a nbh of x in X. Since HxG⊆HxG⊆HUG then there exist a finite sets E⊆G,F⊆H s.t. HxG⊆FUE. Hence, HUG is an open cover HxG then its contain a finite subcover FUE.

For every $g \in G$ and $h \in H$ there exist a $u \in U, f \in F$ and $e \in F$ s.t. $h \times g = f u e$.

Let $\Lambda = \{g | hxg \in U\}$. $B = \{h | hxg \in U\}$ we prove Λ and B are right, left syndatic sets respectively. Since hxg = fue this leads to $f^{T}hxge^{-1} = u$ then $f^{T}hxge^{-1} \in U$

and $g \in AE$ and $h \in FB$ then G = AE, H = FB. Since E and F are finite set then A is left syndatic set and B is right syndatic set.

Then x is b_1 -almost periodic point.

Definition 5: Let (H, X, G) be a T.B.G and $x \in X$ then x is called b_2 -almost periodic point (b_2) if for every nbh U of x there exist a left semi-syndatic set $A \subseteq G$ and right semi-syndatic set $B \subseteq H$ s.t. $BxA \subseteq U$.

Proposition 4: Let (H, X, G) be a T.B.G, X is T_2 locally semi-compact space and $x \in X$ is b_2 point then sel(HxG) is b_2 -minimal semi-compact subset of X.

Proof: Similarly of first part of proposition 3 by supposing $x \in X$ is a b_2 point and using the statement "every nbh is semi-nbh and change compact set by semi-compact".

Proposition 5: Let (H, X, G) be a T.B.G, and sel(HxG) is b_2 -minimal semi-compact subset of X, then $x \in X$ is b_2 .

Proof: Similarly of second part of proposition 3.

Definition 6: Let (H, X, G) be a T.B.G and $x \in X$ then x is called b₃-almost periodic point (b_3) if for every nbh U of x there exist a left semi-syndatic set $A \subseteq G$ and right syndatic set $B \subseteq H$ s.t. $BxA \subseteq U$.

Proposition 6: Let (H, X, G) be a T.B.G, X is T_2 locally compact space and $x \in X$ is b_3 point then HxG is b_1 -minimal compact subset of X.

Proof: Similarly of first parts of proposition 3 by use the statement in introduction "every semi-syndatic set is syndatic".

Proposition 7: Let (H, X, G) be a T.B.G, and scl(HxG)is b_2 -minimal semi-compact subset of X, then $x \in X$ is b_3 .

Proof: Similarly of second part of proposition 3 by use the statement "every open set is semi-open".

The definition of by point (by-almost periodic point) is similar of b₃ point by suppose A is left syndatic set and B is right semi-syndatic set and we can satisfy propositions 6.7 by use it.

Definition 7: Let (II, X, G) be a T.B.G and x∈X then x is called bsalmost periodic point (b₅) if for every semi-nbh U of x there exist a left semisyndatic set A⊆ G and right semisyndatic set $B \subseteq H$ s.t. $B \times A \subseteq U$.

Proposition 8: Let (II, X, G) be a T.B.G, X is T₂ locally semi-compact space and $x \in X$ is b_5 point then sel(HxG) is b2-minimal semi-compact subset of X.

Proof: Similarly of first parts of proposition 3.

Proposition 9: Let (H, X, G) be a T.B.G, and sel(HxG)is b₂-minimal semi-compact subset of X, then $x \in X$ is b5 .

Proof: Similarly of second part of proposition 3 by suppose sel(HxG) be a b2-minimal semi-compact subset of X and let U_x be a semi-nbh of x in X

Definition 8: Let (II, X, G) be a T.B.G and $x \in X$ then x is called b₆almost periodic point (b₆) if for every semi-nbh U of x there exist a left syndatic set ∆⊆ G and right syndatic set B⊂H s.t. BxA⊂U.

Proposition 10: Let (H, X, G) be a T.B.G, X is T₂ locally semi-compact space and $x \in X$ is b_6 point then scl(HxG) is b₂-minimal semi-compact subset of X.

Proof: Let x be a b_6 point, Ux be a semi-nbh semi-compact of x then there exist a left syndatic set A⊆G and right syndatic set B⊂G s.t. BxA⊂U, Since A, B are syndatic set this means there exist two compact set K⊆G, J⊆H s.t. G=AK. H≕JB

HxG=JBxAK⊂JU₃K. By Lemma (3) JU_xK is compact subset of T₂-space closed set. Hence, then İS scl(HxG)⊂JU√K and scl(HxG) is semicompact.

If y∈scl(HxG) then scl(HyG) <u>c</u>scl (HxG) i.e. v∈JU_xK this means there exist $u \in U_x$ $k \in K$ and $j \in J$ s.t. y=jukand $u = j^{-1}yk^{-1} \in U_x$ then $HyG \cap U_x \neq \emptyset$,hence, x is a semi-limit points of HyG and x∈scl(HyG) then scl(HxG) is b₂minimal semi-compact subset of X.

Proposition 11: Let (II, X, G) be a T.B.G, and sel(HxG)is b2-minimal semi-compact subset of X, then $x \in X$ is b6.

Proof: Let scl(HxG) be a b₂-minimal semi-compact subset of X. Let U_x be a semi-nbh of x in X.

HxG⊂sel(HxG)⊂HUG there exist a finite sets $E \subset G$, $F \subset H$ s.t. HxGCFUE. Hence, HUG is an semiopen cover of sel(HxG) then its contain a finite subcover FUE.

For every g∈G and h∈H there exist a u∈U,f∈F and e∈E s.t. hxg=fue.Let $A=\{g|hxg\in U\}, B=\{h|hxg\in U\}$ prove A and B are right, left semisyndatic sets respectively. Since hxg=fue this leads to f⁻¹hxge⁻¹=u then $f^{-1}hxge^{-1} \in U$ and $g \in AE$ and $h \in FB$ then G=AE, H=FB. Since E and F are finite set then A is left semi-syndatic set and B is right semi syndatic set.

Then x is b_6 -almost periodic point.

Definition 9: Let (II, X, G) be a T.B.G and $x \in X$ then x is called b₇almost periodic point (b₂) if for every semi-nbh U of x there exist a left semisyndatic set A⊂ G and right syndatic set B⊆H s.t. BxA⊆U.

Proposition 12: Let (II. X. G) be a T.B.G, X is T₂ locally semi-compact space and $x \in X$ is by point then scl(HxG) is b₂-minimal semi-compact subset of X.

Proof: Similarly of first part of proposition 10 by suppose Λ is syndatic set.

Proposition 13: Let (H, X, G) be a T.B.G, and scl(HxG) is b_2 -minimal semi-compact subset of X, then $x \in X$ is b_7 .

Proof: Similarly of second part of proposition 11.

The definition of b₈ point (b₈-almost periodic point) is similar of b₇ point by suppose A is left syndatic set and B is right semi-syndatic set and we can satisfy propositions 12.13 by use it.

REFRENCES

1. Al-Kutaibi, S.H. 1998. On syndatic and semi-syndatic set types of identifications. J. of Science. Coll.

- Education. Tikrit University. Vol.4, No.3, (59-69).
- 2. Das, P. 1973. Note on some application of semi-open sets, pro. Math.17, (33-44).
- 3. Dorsett, C.1981). Semi -compactness and semi-separation axioms and product spaces, bull Malaysian math. soci(2) 4 pp.21-28.
- 4. Gottschalk, W.H. and Hedlund, G.A. 1955. Topological dynamics, Amer. math. Soci. Colloquium publication vol.36, providence.
- 5. Levine. N. 1963, Semi-open sets and semi-continuous in topological space, Amer. math. Monthly, 70, 36-41.

في بعض أنواع النقاط الدورية تقريباً في زمر التحويلات التبولوجية الثنائية

*سليم حسن الكتبي "اسراء منير الناصري *قسم الرياضيات كلية التربية - جامعة تكريت

الملخص

يقدم البحث بعض الانوع الجديدة من النقاط الدورية تقريبا في الزمر ثنائية التحويل التبولوجي وتأثير ها على أنواع الاصغرية في الدينامينة. التبولوجية.