A study of Fermi hole for some atomic systems

Khalil H. AL-Bayati * Kassem A. Mohammed ' Khalid O. AL-Baiti ***

Date of acceptance 28/5/2005

Abstract

The electron correlation effect for inter-shell can be described by evaluating the Fermi hole $\Delta f(r_{l2})$ and partial Fermi hole $\Delta g(r_{l2}, r_l)$ for Li atom comparing with Be⁺ and B²⁺ ions (Li-Like ions) using the approximation of Hartree-Fock wavefunction. Each plot of the physical properties in this work is normalized to unity. All results are obtained numerically by using computer programs.

WAVEFUNCTION APPROXIMATION

The Hartree-Fock (HF) atomic wavefunctions are independent particle-model approximations to non-relativistic Schrodinger equation for stationary states. The single determinant can be written as the antisymmetrized product of all occupied HF spin-orbital for atoms.

$$\Phi_{HF}(123...N) = A\Pi(123...N)$$
...(1)

Where A is the antisymmetrized operator given by [1]:

$$A = \frac{1}{\sqrt{N!}} \sum_{P} (-1)^{P} P$$
... (2)

 $(-1)^p$ takes the values +1 and -1 for even and odd permutation, P is any permutation of the electron, and the

factor $\frac{1}{\sqrt{N!}}$ introduced to ensure that

the wavefunction is normalized. The product II(123...N) in equation (1) can be defined as[2]:

$$\Pi(123\cdots N) = \phi_1(1)\phi_2(2)\phi_3(3)\cdots\phi_N(N)$$
.....(3)

The Hartree-Fock spin-orbital ϕ are designated by the numerals 1,2,3...N starting with the lowest orbital with spin. Consequently all odd integers for α spin and all even ones for β spin[3,4].

For our purpose the wavefunction can be written as

$$\Phi_{HF}(123...N) = \sum_{i < j}^{N} A_{ij}^{mn} (-1)^{P} AII_{ij}$$
......(4)

Dr.-Physics Dept.-College of Science for Women-University of Baghdad.

^{**} Physics Dept.-College of Education (Ibn-AL-Haitham)-Baghdad University
*** Physics Dept.-College of Education (Ibn-AL-Haitham)-Baghdad University

Um-Salama Science Journal

Where the pair function A_{ij}^{mn} can be defined as [2]:

$$A_{ij}^{mn} = \phi_i(m)\phi_j(n) - \phi_j(m)\phi_i(n)$$
.....(5)

And Π_{ii} represents the product of all occupied HF-spin orbital except $\phi_i(m)$ and $\phi_j(n)$. i and j represent spin orbital labels, also m and n referred to electron labels.

Equation (1) can be expressed in the term of Slater determinant as follows[5]:

$$\phi_{HF}(123\cdots N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_{i}(1)\phi_{i}(2) & \dots & \phi_{i}(N) \\ \phi_{i}(1)\phi_{i}(2) & \dots & \dots & \phi_{i}(N) \\ \dots & \dots & \dots & \dots \\ \phi_{N}(1)\phi_{N}(2) & \dots & \dots & \phi_{N}(N) \end{vmatrix}$$

...(6)

The HF or analytic self-consistent field atomic wavefunction provided the uncorrelated description of each atom. For any atom or ion, the Hartree-fock spatial orbital may be [6]:

$$\Phi = \sum_{i=1}^{j} c_i \chi_i$$

...(7)

Where C_i represents the constant coefficient yield from the SCF method to minimized the total energy.

And the basis function χ , is the standard normalized Slater-type orbital (STO's) which given by:

$$\chi_{n\ell m}(r,\theta,\phi) = R_{n\ell}(r)Y_{\ell m}(\theta,\phi)$$
.....(8)

Where $R_{\mu\nu}(r)$ represented the second part of the wavefunction and

$$R_{n\ell}(r) = N_{n\ell m} S_{n'}(r)$$
(5)

 $N_{n\ell m}$ is The normalization constant and given as:

$$N_{n\ell m} = \frac{(2\zeta)^{n+\frac{1}{2}}}{[(2n)!]^{\frac{1}{2}}}$$
...(10)

and

$$S_{n\ell}(r) = r^{n-1}e^{-(-\zeta/r)}$$
...(11)

where $S_{m}(r)$ is called Slater type orbital (STO's).

and $Y_{\ell m}(\theta, \phi)$ represented the angular part of the wavefunction.

Fermi hole calculations

In this work we will calculate the Fermi hole $\Delta f(r_{I2})$ and the partial Fermi hole $\Delta g(r_{I2}, r_I)$ for Li-like ion

The two-density function $\Gamma_y(r_1,r_2)$ for Li-like ions can be expressed for the singlet state inter-shell KL(IS) after integrated over all spins and angular functions as:

$$\Gamma_{KL(5)}(r_1, r_2) = \frac{1}{2} \left[R_{LS}^2(r_1) R_{2S}^2(r_2) + R_{2S}^2(r_1) R_{LS}^2(r_2) \right]$$
...(12)

and for the triplet state inter-shell $KL(^3S)$:

$$\begin{split} & f_{KL(^3S)}(r_1,r_2) = \\ & \frac{1}{2} \begin{bmatrix} R_{1s}^2(r_1)R_{2s}^2(r_2) + \\ R_{2s}^2(r_1)R_{1s}^2(r_2) - 2R_{1s}(r_1)R_{2s}(r_1)R_{1s}(r_2)R_{2s}(r_2) \end{bmatrix} \end{split}$$

(1) Calculation method of Fermi hole $\Delta f(r_{12})$:

Fermi hole can be defined as a difference between the inter-particle distribution function $f(r_{l2})$ for triplet state KL (^{3}S) and singlet state KL (^{l}S).

$$\Delta f(r_{12}) = f_{KL(^3S)}(r_{12}) - f_{KL(^4S)}(r_{12})$$
.....(14)

 $f(r_{12})$ for the both states for Li-Like ions can be written as [7]:

$$f(r_{l2}) = 0.5r_{l2} \begin{bmatrix} \int_{r_{l}}^{\infty} r_{l} dr_{l} \int_{r_{l}-r_{l2}}^{r_{l}+r_{l2}} \Gamma(r_{1}, r_{2}) r_{2} dr_{2} \\ + \int_{0}^{r_{l1}} r_{l} dr_{l} \int_{r_{l}-r_{l}}^{r_{l2}+r_{l}} \Gamma(r_{1}, r_{2}) r_{2} dr_{2} \end{bmatrix}$$

..(15)

2 Calculation method of partial Fermi hole $\Delta g(r_{I2}, r_I)$:

Following the definition of Fermi hole, the partial Fermi hole is defined as a difference between the partial distribution function $g(r_{12}, r_1)$ for triplet state KL (3S) and singlet state KL (4S).

$$Ag(r_{12}, r_{1}) = g_{kL_{1}/N_{1}}(r_{12}, r_{1}) - g_{KL_{1}/N_{1}}(r_{12}, r_{1})$$
...(16)

The partial distribution function $g(r_{t2},r_t)$ for the both state for Li-Like can be calculated as following[8]:

$$g_{KLPST}(r_{L}, r_{T}) = 0.5r_{T}r_{L} \int_{r_{T}+r_{T}}^{r_{T}+r_{T}} \frac{\int_{r_{T}+r_{T}}^{r_{T}+r_{T}} \Gamma(r_{T}, r_{T})r_{T}dr_{T}}{r_{T}+r_{T}}$$
(17)

RESULTS, DISCUSSION AND CONCLUSION

(1) Fermi hole $\mathcal{N}_{r}(r_{l2})$ results and discussion:

The probability of finding the inter-particle distribution $f(r_{12})$ between electrons unlike and like spins in KL shell for Li-Like ions can be observed in the curves (A) and (B) presented in fig.(1), fig.(3) and fig.(5) for Z-3.4 and 5 respectively. At small r_{12} the $f(r_{12})$ distribution function will be influenced mainly by the electron pair behavior when the outer electron has penetrated the K-shell. For the KL('S) curve, the existence of Fermi effect produces a flat region at small r_{12} whereas, by marked contrast, the $KL(^{\prime}S)$ curve is seen to possess a small local maximum. Clearly, when the K-and L-shell electrons have different spin assignments but are both described by orbitals of s-type symmetry, a double occupancy can occur in the K-shell region. The maximum values and their locations of the density distribution function $\max f(r_D)$ are tabulated in table (1) of curves A and B which are presented in fig.(7). This figure shows as Z increases, the maximum probabilities of the inter-particle density distribution function $f(r_D)$ for singlet and triplet state are increasing

and they are observed that the locations of these maxima decrease as Z become large. Fermi hole is plotted as a difference between $f(r_{12})$ of $KL(^3S)$ shell (triplet state) and shell $KL(^1S)$ shell (singlet state) for a series of Z for Li-Like ions in fig.(2), fig.(4) and fig.(6). Inspection of fig.(8) which shows as Z increases, the radius of Fermi hole decreases and it is observed that the depth of Fermi hole increases as Z become large, all that because the nuclear charge is increasing. The radius and the area of the holes for groups of Li are tabulated in table (2).

(2) The partial Fermi hole $\Delta g(r_{t2}, r_t)$ results and discussion:

The $g(r_{12},r_1)$ diagrams (surfaces KL('S)-and contours) for and KL(3S)-shells for group Li-Like ions presented in figs. (9,10,11,12), show the change in behavior of the inter-particle probability functions as the position of the test electron is varied. These surfaces have their main characteristics located about the $r_{12} = r_1$ diagonal line and parallel to the r_{12} axis for small r_1 . In addition, and as expected, when Z increases the pattern contracts towards the origin and the magnitude of these densities increases. The diagonal distribution is again asymmetric with the $r_{12} = r_1$ axis: the maximum is always slightly on the right hand side (RHS) of $r_{12} = r_1$ axis for any selected and fixed r₁ value outside the K-shell.From the comparison between the $g(r_{12},r_1)$ surfaces and Contours for the KL('S)and $KL(^3S)$ - shells, it can be seen that a difference exists only at $\approx r_k$. Since there is no Fermi effect in KL('S), it can also be seen that the removal of mini K-shell density causes the main characteristics to move towards the origin slightly. The contour diagrams shows that the $g(r_{12},r_1)$ becomes more diffuses and decreases in magnitude as Z increases for Li iso electronic sequences. The locations and the maximum values of the partial density distribution function $g(r_{12},r_1)$ when r_1 fixed and r_{12} is varied then r_{12} fixed and r_1 is varied of $KL({}^{1}S)$ and $KL({}^{3}S)$ for the Li-like ions are tabulated in table (3).

A partial Fermi hole as a difference between triplet state $KL(^3S)$ and singlet state $KL({}^{1}S)$ is plotted as a surface diagrams of the series of Z in the fig.(13) for Li-Like ions. And it is plotted as a contour diagrams of the series of Z in the fig.(14) for Li-Like ions. The surface diagrams shows that the depth of partial Fermi hole is increases and the radius is decreases as Z increasing and the contour diagrams shows a Fermi hole becomes more diffuses and decreases in magnitude as Z increases. The size of the partial Fermi hole, as presented in the fig.(15) and can be studied clearly by the fig.(16), surface and the contour diagrams for Li-Like ions.

Conclusions

From the present work, we deduce some notes for some atomic properties and Fermi hole and Coulomb hole.

- 1. Due to the Fermi effect, the $f(r_{12})$ for the $KL(^3S)$ -shell gives a flat region at small r_{12} and this result approves—the definition of Fermi hole whereas, the result for the $KL(^{-1}S)$ -shell do not exhibit a flat region due to a Coulomb repulsion between unlike spin orbitals.
- 2. As Z increases, the maximum probabilities of the inter-particle distribution function $f(r_{12})$ for singlet and triplet state increases and also the locations of these maxima decreases as Z increases.
- 3. The magnitude density of $g(r_{12},r_{1})$ for singlet and triplet state increases as Z increases.

Vol 2 (2) 2005

Um-Salama Science dournal

- 4. The radius of Fermi hole decreases and the depth of Fermi hole increase as Z increases.
- 5. As Z increases, the depth of partial Fermi hole increases and the radius decreases.

Table (1) The locations and the maximum values of the inter-particle density distribution function $f(r_D)$ for the L1-like ions.

Atom or Ion	Siscil	ra	f(rid)
ц	KL(¹s)	0.5	0.016924
		3.2	0.26752
,	KL(³ a)	3.2	0.26634
Be*	КЦ')	0.4	0.044626
161221 (166)	•	2.0	0.462221
aren (11)	KL(³s)	1.9	0.460295
r ama	KL(¹a)	0.3	0.073301
. ← B ²⁺		1.4	0.64674
- 1	KL(3s)	1.4	0.64557

Table (3) The locations and the maximum values of the partial density distribution function $g(r_D, r_d)$ for HF wavefunction, when r_L fixed and r_D is varied then r_D fixed and r_L is varied for the Li-like ions.

atom or Shell	Shell	when re is fixed			when ru is fixed		
		rı	rn	8(12.13)	r ₁₂	<u>rı</u>	Krure
	KL(¹S)	0.36	3.1	0.19118	3.2	0.36	0.19097
LI T	KL(3S)	0.35	3.1	0.19235	3.2	0.36	0.19207
	KL('S)	0.28	1.9	0.46188	2.0	0.26	0 46008
Be*	KL(¹ S)	0.25	3.1	0.17191	1.9	0.35	0.11711
	KL(¹ S)	0.20	1.5	0.58092	1.4	0.22	0.8313
B2*	KL(3S)	0.20	3.0	0.14603	1.4	0.34	0.056699

Table (2) the radius and the area of Fermi hole $_{*}y_{+}(r_{i_{2}})$ using Hactree-Fock approximation for Li-Like ions.

$A_F(r_{tr})$				
Atom or Ion	Radius r ₁₂ ≈ a.u	Area of Fermi hok		
<u>Li</u>	0.935	0,009648		
He'	0.658	0.017342		
1121	0.510	0.021964		

(B)
Fig.(1) The inter-particle distribution function $f(e_L)$ for Li atom
(A) $KL(^{J}S)$ (B) $KL(^{J}S)$

Fig.(2) Fermi hole as a difference between the inter-particle destribution function $f(r_D)$ for Li atom

Fig.(4) Fermi hole as a difference between the inter-particle distribution function f(rid) for Be ion

Fig.(5) The inter-particle distribution function $f(r_{12})$ for B² ion (A) $KL(^{3}S)$ (B) $KL(^{3}S)$

Fig.(6) Fermi hole as a difference between the inter-particle distribution function $f(r_D)$ for B^{2+} ion

Fig (7) The inter-particle distribution function $f(r_1)$ for Li atom, Re' ion and B²⁺ ion (A) $KLC^{T}S$) (B) $KLC^{T}S$

Fig. (8) Fermi hole as a difference between the inter-particle distribution function $f(r_{12})$ of $KL(^{J}S)$ and $KL(^{J}S)$ for Li atom, Be^{*} ion and B^{2*}

Fig.(4-9) The Surfaces of the partial distribution function $g(r_{1,k}r_i)$ of KL (tS) for (A) Li atom (B) Be* ion (C) B** ion

Fig.(4-10) The Contours of the partial distribution function $g(r_{12},r_1)$ of $KL(^1S)$ for (A) Li atom (B) Be⁺ ion (C) B²⁺ ion

Fig. (4-15) The surfaces of the size of partial Fermi hole as a difference between the partial distribution function $g(r_D, r_i)$ of $KL(^1S)$ and $KL(^1S)$ for

(A) Li atom

(B) Be* lon

(C) B^{2*} lon

Fig. (4-16) The Contours of the size of partial Fermi hole as a difference between the partial distribution function $g(r_1, r_0)$ of $KL(^3S)$ and $KL(^4S)$ for

(A) Li atom

(B) Be* ion

(C) B^{2*} ion

References

- Sims, J. S. and S. A. Hagstrom, 1975 Combined configuration

 interaction - Hylleraas studies of atomic states. Physical Review A, Vol.11, No.2, P. 418.
- Al-Bayati, K.H..Um.Salama Science ournal, ollege f cience for Women, University of Baghdad-Vol.2Year 2004. Evaluation of the one-electron expectation values for different wave functions
- 3. Weiss, A.W1963 wavefunctions and oscillator strengths for the Lithium isoelectronic sequence, J. Chem.Phys.,39,1262
- Clementi and C.Roetti, E. 1974
 Atomic Data and Nuclear Data 14,177
- Johnson, W.R. 2002 "Lecture on Atomic Physics", Department of physics university of Notredam, Notredam, Indiana, U.S.A..

- Bunge, C.F. J.A. Barrientos And .
 A.V. Bunge, 1993 Roothaan –
 Hartree Fock ground state atomic wave function, Atom. Data Nucl. Data Tables, 53,133.
- Coulson and A.H.Neilson, C. A. 1961 Electron Correlation in the Ground state of Helium. Proc. Phys. Soc., 78,831.
- 8. AL-Bayati, K. H. 1984 Electron correlation in the (1s² 2s) ² S and (1s² 2p) ² P states of the Lithium isoelectronic sequence in position and momentum space. PhD. Thesis, Leicester University, England.

دراسة فجوة فيرمى لبعض الأنظمة الذرية

* *قاسم عزيز محمد *خليل هادي البياتي * *خالد البيت

*قسم الفيزياء - كلية العلوم للبنات -جامعة بغداد

الخلاصة

تأثير الرابطة الالكترونية للمدار البيني يمكن دراسته بواسطة فجوة فيرمي (٢١٥) و فجوة فيرمي ا لجزئية (العزادة الليثيوم Li مقارنة مع ايونات B+2 ، Be ايونات المشابهة لليثيوم L.i باستخدام الدالة الموجية لهارتري فوك التقريبية كل رسم للخصائص الفيزياوية في هذا العمل يحقق شرط المعيارية للواحد كل النتانج تم حسابها عدديا باستخدام برامج حاسوبية

^{* *}قسم الفيزياء - كلية التربية ابن الهيثم -جامعة بغداد

^{**} حاليا تدريسي في جامعة حضر موت - اليمن