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Abstract:

The goal of this work is demonstrating, through the gradient observation of a
disturbed distributed parameter systems of type linear (DDPL-systems), the possibility for reducing the
effect of any disturbances (pollution, radiation, infection, etc.) asymptotically, by a suitable choice of related
actuators of these systems. Thus, a class of asymptotically gradient remediable system (AGR-system) was
developed based on finite time gradient remediable system (GR-system). Furthermore, definitions and some
properties of this concept AGR-system and asymptotically gradient controllable system (AGC-controllable)
were stated and studied. More precisely, asymptotically gradient efficient actuators ensuring the weak
asymptotically gradient compensation system (WAGC-system) of known or unknown disturbances are
examined. Consequently, under convenient hypothesis, the existence and the uniqueness of the control of type
optimal, guaranteeing the asymptotically gradient compensation system (AGC-system), are shown and proven.

Finally, an approach that leads to a Mathematical approximation algorithm is explored.

Keywords: Asymptotic analysis, Controllability, Disturbance, Optimal control, Remediability.

Introduction:

Driven by environmental, pollution?, radiation
and infection problems 2 2, the authors have studied
the problem with regard to the gradient observation
of a class of DDPL-systems considering the
possibility —of lessening or compensating
asymptotically the effect of any disturbances. Thus,
the study constitutes a development to the case of
asymptotic type for the previous investigates to the
remediability linear parabolic problem of
different systems, introduced in the finite time case *
"and asymptotic case 489,

One can note that studying compensation
problem with respect to the gradient observation and
the so-called gradient remediability, is of
considerable interest 1°. Thus, it was shown that there
exists a system that is not remediable, however may
be gradient remediable.

Gradient remediability concept in usual and
regional case is considered and studied for DPL-
systems 1912, Regarding the asymptotic case aspect
13 the great importance of the asymptotic analysis in
systems theory 415 takes into consideration the

problem of AGC-systems and studies a prospective
extension of the development methods, in addition to
analyzing the results in finite time. Hereafter,
through likeness the relationship among the
remediability and controllability of the gradient
case has been inspected and studied in a considerable
time.

Also, the link among
remediability and controllability  in asymptotic
gradient case has been studied and analyzed.

This paper is structured as follows:

Section 2, is devoted to the introduction of the
gradient remediability concepts of type exact and
weak under convenient hypothesis.

Section 3 relates to the asymptotic form in
various cases in connection with suitable actuators
and sensors. Also, an asymptotically gradient
efficient actuators enable the guaranteeing an
asymptotic gradient compensation of weak type is
presented.

In section 4, weakly and exactly
a asymptotically gradient controllable  system
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(WEAGC-system) are defined and characterized.
Then, the link between WEAGC-system and
weakly and exactly asymptotically gradient
remediable system (WEAGR-system) are
studied and analyzed, and it is shown that AGR-
system is dependent on the appropriate sensors with
corresponding actuators.
While, in section 5, the AGR-problem through the
energy of type minimum is examined.
In the last section, the control of optimal type, is
used to obtain a mathematical algorithm approach.

Formulation of the Considered Problem:

Assume that Q stands as
an open and bounded set in IR™, with a boundary
of smooth type 9Q. Considering a class of DDPL-
system defined by the form:

pt)=AyE)+Bu@@)+f();0<t<T
®{¥ o=
2% (0) = g0

where A generates a strongly continuous semi-group
(S(t))po; Be LU X),u€el?0,T;U), U is a
space of Hilbert type is denoted the input space and
X = H(Q), the space of state.

The system (S) admits a unique solution y €

C (0, T; Hi (9)) n €1(0,T; L2()) given by

y(£) =S@)yo + f; S (£ —5) Bu (s) ds +
J; S (t—s)f (s)ds

The system (S) is augmented by the
following output (gradient observation) equation:

(0) 24, () = CVg(£) ;0 < £ <T
where C € 1:((L2 (Q))n, Y), Y is a Hilbert space

(gradient observation space) and V is the operator
defined by:
V:HE(Q) - (L2()"
v (fm oy 0%)
- =\ 7
Y ¥ 0x, 0x, "~ Oxy,
while V* its adjoint operator. Then, the gradient
observation at the final time T is given by:
2y f(T) = CVS(T)yo + CVHpu + CVFLf

where Hy and Fr are operators formulated by
Hp: L12(0,T;U) —» X
T

/u—>HTu=fS(T—s)Bu(s)ds

0
and

Fri 12(0,T; X) — X

T
f— Fyf = f S(T — $)f(s)ds

0
In the autonomous case, that is to say,
deprived of disturbance (f = 0) and control (= = 0)
the observation of gradient, zo(.) = CVS(.)yy, is
then normal. But if the system is disturbed by a term
f, the gradient observation becomes

Generally z,s(.) # CVS(.)yo. Then a
control term Bu is introduced in order to reduce, in
finite time, the effect of this disturbance according to
the gradient observation, such that: For any f €
L%(0,T; X), there exists u € L?(0,T; U) satisfying

CVHy w + CVFpf =0

The next definition 1 characterizes the gradient
remediable notion of type exactly and weakly in
finite time as follows:
Definition 1 1°
1. System (S) augmented by (0), (or (S) +
(0)) is called exactly gradient remediable
(EGR-system) on [0,T], if for every f €
L?(0,T; X), there exists a control u €
L2(0,T; U) such that CVHyu + CVF,f = 0.
2. (S)+ () is called weakly gradient
remediable (WGR-system) on [0, T], if for
every f € L?(0,T;X) and for every & > 0,
there exists a control « € L?(0,T; U) such
that ||CVHru + CVErf|ly < e.
Remark 1
The finite time gradient compensation problem is
equivalent to:
For any f € L?(0,T; X), does there exists a
control « € L2(0,T; U) such that

T T
f CVS(T — s)Bu(s)ds + f CVS(T —s)f(s)ds
0 —0 0
or equivalently
T T
jCVS(t)Bv(t)dt + jCVS(t)g(t)dt =0
0 0

whereg (t) = f (T —t)and v (t) =« (T —t).
Consequently, the finite time gradient
remediability of (S) + (E) can be also formulated as
follows:
For any g € L%(0,T; X), there exists a control v €
L?(0,T; U) satisfying Eq.1.
The characterizations consequences on the
WEGR-systems and in limited time have been
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established by Rekkab and Benhadid, and they have
shown that the remediability concept of type gradient
is a weaker than controllability of type gradient .

Asymptotic Gradient Compensation Problem:
Formalism statement:

An asymptotic analysis of the problem is
given by considering the system:

g(t) = Ay(E) +Bu(®) + f(t) ;£ >0
S0 =
%(0) = yo

augmented by the output (gradient observation)
equation:

(0un) 2 (£) = C Vgp(8) ;£ > 0

with f € L2(0, +o0; X) and w € L?(0, +oo; U).
Let us consider the following operators

Heo: L2(0,+00; U) - X

+ 0o

u - Hou = f S(s)Bu(s)ds
0

and
Fro: L2(0,4+0; X) = X

f o Eof = f S(s)f (s)ds
0

The asymptotic gradient remediability
problem was studied to consist an investigation
regarding the output operator C, the existence of an
input one B confirming the gradient compensation
asymptotically of any disturbance, that is : For any
f € L?(0,+0; X), there exists u € L2(0,+o0; U)
such that

CVHott + CVELf = 0 2

Note that the operators H,, and F,, are not
generally well defined. They are, if and only if the
following condition is verified 4
3k € L?(0, +o0; R™) such that

SOOI < k(£); V£ =0 3

Remark 2
o If(S(®)),,, is exponentially stable, that is
to say, if 35 > 0 and Ja > 0 such that

ISOI < Be™; vt =0

then Eq.3, is satisfied with k(¥) = pe %t €

L?(0,+0o0; R*), consequently H,, and F,, are well

defined. This hypothesis concern the choice of the

dynamics A of the system through the semi-group

(8(8)),., and also the input operator B.

o Actually, this work is concerned with the
operators KZ° and RZ which are defined by
KZX:L?(0,400;U) > Y
+00

u->K°u= f CVS(#)B u (£)dt
0

and
R¥:1%(0,+%0;X) » Y

foREf = | Cvs@r@
0

Then some weaker hypotheses are needed than Eq.3.
Certainly, it is supposed that 3 k € L?(0, +o0; R*)
satisfied

ICVS@®) || <k (£); V£ =0 4

In this case, K2° and R are well defined and Eq.2
becomes:

KCeuw+RZf=0
Under hypothesis Eq.4, therefore, the WEAGR-
system can be expressed in the next manner:
Definition 2

(i)  (Se)+ (0y) is called EAGR-system, if
V f € L?(0, +o0; X), there exists a control
u € L?(0,4o0; U) such that K¥u + RYf =
0.

(i)  (Se) + (0y) is called WAGR-system, if
V f € L?(0,+0; X) and every £ > 0 there
exists a control u € L?(0, +oo; U) such that
IK>w + R fllira < €.

Let us note that for T > 0; f € L?(0, +0; X)
and u € L?(0, +o00; U) and under hypothesis Eq.4, it
follows that:

T
Kuw+RZf = f CVS () Bu(t)dt
0

T
+ f CVS ()f (£)dt
+| cVS@®)Bu@)dt

+ | CcvSs @) F@)dt

~Ne— -é—'ig -é-o

T T

_ f CVS(E)Bu(t)dt + f CYS(E)f (£)de

0 0
+ [£1(T) + &,(T)]

where & (T) = [7% CVS(£)Bu(t)dt and
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&(T) = [ CVS(O)f (H)dt, with

&(T) + &(T) - 0 when T — +oo, then for any

f € L?(0,+0; X) and « € L?(0, +oo; U), it follows
that

T T
T“T f CVS(#)Bu(t)dt + f CVS()f(t)dt
0 0
=Ku+RZf

Characterization:

For the following results, let B* and C* be the
adjoint operators of B and C respectively and
(S*()t'))t>0 is considered for the semigroup of
(S(t))m) of type adjoint. Let also X', U’ and Y’ be
the dual space of X, U and Y. Under hypothesis Eq.4,
the following general characterization results are
obtained:

Proposition 1
The following properties are equivalent
(i) (Se) + (Ex) is EAGR-system.
(i) Im(RZ) = Im(KZ).
(iii) 3y > Osuchthat VO € Y', it
follows that
”S*(-)V*C*6||L2(0,+00;XI)
< y”B*S*(')V*C*9||L2(0,+00;Ul)
Proof
(i) & (ii) Derives from Definition 1. Indeed, it is
assumed that (S.,) + (E) is EAGR-system.

Let yeIm(RZ), then there exists f€
L%(0, +o0; X) such that y = RZf.
From the property of

exact asymptotic gradient remediability for the

considered system, there exists « € L?(0, +oo; U)

suchthat K>w+ RZf =0 = RZf = —K .

By the linearity of the operator K¢°, it follows that

Yy =RZf = KZ(—u), theny € Im(K°).

The other inclusion is obtained as the previous one.

Then, it follows that Im(R7) = Im(K?°).

- Conversely, it is assumed that Im(R7) =
Im(K7") and one can show that (Sy,) + (Ew) iS
EAGR-system.

Let f € L?(0,+0; X), then RZf € Im(R). Since

Im(RZ) c Im(K7), itfollowsthat R f € Im(K7°)

then there exists u € L2(0, +oo; U) such that R® f =

K u, this gives RZf — K°u = 0 and by putting

u; = —u € L2(0,+0; U). Thus REf + K u, =0

where (S) + (E) is EAGR-system.

(ii) < (iii) Derives from the fact that the adjoint

operators (RZ)* and (K£°)* of (RZ) and (K¢°)

respectively, are defined by
(RX)*:Y' > L%(0, +o0; X")
0 - (RZ)'0 =S*(.)v*C*o
and

(K&)*:Y' - L?(0,+00; U")

0 - (KX)*0 = B*(RZ)*0 = B*S*(.)V*C*0
Set P=(R)*, Q = (KZ°)* and use the following
lemma.

Lemma 1 %
Let X, Y, Z be spaces of Banach reflexive type, P €
2(X,Z) and Q € £(Y,Z). There is an equivalence
between:

Im(P) c Im(Q)
and

3y > 0 suchthat ||P*z*||, < yIIQ*Z*|ly),
vz* e Z'.
O
The following proposition 2 is proved with
regard of the weak asymptotic gradient remediability
characterization.
Proposition 2
There is equivalence between
(i)  (Se) + (0x) is WAGR-system.
(i)  Im(RZ) c Im(K2).
(iii)  Ker (B*(RZ)") = Ker ((RZ)").
Proof
(i) & (ii) Derives from Definition 1. Indeed, it is
assumed that (S,,) + (0 ) is WAGR-system.
Let f €L?(0,+%;X), then Ve>0,
L?(0, +o0; U) such that
|[K°u + R flly < &, that is to say
IREf — K& (—w)lly < &.
Set w = —u € L2(0,+o0; U), then Ve > 0, Ju, €
L?(0,+o0; U) such that ||[R®f — KX u,q|ly < &, this
gives RZf € Im(KZ), where Im(Rg’) < Im(K(°).
Conversely, assume that Im(Rz’) c Im(KZ°)
and let f € L?(0,+o0;X), then RZf € Im(KX),

du €

then Ve >0, 3Ju, € L?(0,+o;U) such that
IRCf — K& ully <e.

Putu, = —u € L?(0, +oo; U), then

Ve >0, Ju € L?(0,+o0; U) such that [[RZf +

KZully < & where (Sy,) + (Es) IS WAGR-system.

(ii) < (iii) by considering orthogonal. Indeed, it is

assumed that (S,) + (0) is WAGR-system. So,

one can show that ker(B*(RZ)*) = Ker ((RZ)").

Let 6 € IR such that B*(R7)*6 = 0.

In addition, (K°)* = B*(RZ)*, this gives 0 €

ker((KZ)*). Thus Im(K2) = (Ker ((KZ)*)*.

By Proposition 3.5, if follows that Im(R7) c

Im(K2). Then, Im(RY) c (Ker (K&Z)*)*

= Vf € 12(0,+%; X); RZf € (Ker (K&)"))*

= (RZf,0) = 0,because 6 € Ker((KZ°)")

= 6 € (Im(R®))" = Ker((RZ)"),

and then Ker(B*(RZ)*) c Ker((RZ)*) where

ker(B*(RZ)*) = ker((RZ)).
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Conversely, assume that

Ker((RZ)*) and one can show that

Im(K2).

Let f € L2(0,4+00;X) such that f € Im(RY), it

follows that Im (K2°) = (Ker ((KZ)*))*.

For every 8 € IR? such that (K°)*0 = 0 that is,

B*(RZ)*6 = 0, it follows that (RZ)*6 = 0 because

Ker(B*(RZ)*) = Ker ((RZ)*),then(RZf,6) = 0.
O

Ker(B*(RE)") =
Im(RZ) c

Asymptotic Gradient Remediability via
Actuators and Sensors:

In connection with the system (S)
motivated by (Qx, gx)1<k<p, actuators suite of type
zone with g; € L? (@) and ,Q;, = Supp (g) <
O,V k=1,..,p, with control space U = RP and B
is specified by

B:RP — X
u(t) — Bu(t) = ¥h_, Xa, Ixux(0)
and where « = (uy, ..., 1) € L*(0,+00; RP). Its
adjoint is given by

B*z = ((gl' Zl)LZ(ﬂi)' ] (gp' Zp)Lz(Qp)) € RP
5
then, the following result is obtained:
Corollary 1
(Sw) + (0y) is EAGR-systems & Iy >0
satisfied the next inequality

+00
f IS*(£)V*C*0||5 dt
0

+0oo p
<y oesT@rcoyd
0 k=1

forevery 8 €Y.

Proof
Since Proposition 1, (S,) + (0 ) is EAGR-systems
< 3y >0 with

”S*(')V*C*9||L2(0,+00;X/)

< y”B*S*(-)V*C*9||L2(0,+00;Ul)

forevery6 €Y
By using Eq.5, the formula of the operator B*,
yields that
[ENS @) 0|3 dt <

v Iy Zho (g ST T CH0))? dt
O
By supposing the output function (S.) is
specified via suite of  sensor of type zones
(D1, hy)1<12q0 hi € L2(D)), represent the
distribution zone sensor, D; =Supph;cQ,
intended for [ =1, ...,q as well as D, n D; = @ for
l +j,Y = R% and the operator C is formed by

c:(1*(@)" - RrY

y(t) = Cy(t)

<Z<h1,yq<t)>pl - Z(hq'yz(t))b )

=1

its adjoint is given by C* with for 6 = (6, ...,6,) €

RY
a a
ZXDigihir ---IZXDiHihi
i=1 i=1

e (L2(@)"

Without loss of generality, consider the system
(S,) with a dynamics A having the form

+0o0 m
Ay = Z AmZm Pmjdiz)Pmj VY € D(A)
m=1 j=1
where 44, 4,, ... are real parameters such that 1, >
Ay > A3 > .., ((pmj)lstrm is an orthogonal basis
m=1
in H} (Q) of eigenvectors for A which is
orthonormal in L2(Q), related to eigenvalues A,, with
a multiplicity r,. It is well known that A produces a
semi — group (s (t))t>0 of type
strongly continuous given by 4. 1°;

S@)y = Z m"Z(y.wm,hzm)wm,

mz1
Obviously, if sup A, =4, <0, (S(1)),.,
m=1
exponentially stable.
O
The following characterization results have obtained

Corollary 2
(Sw) + (Ex) is EAGR-systems & 3y > 0
satisfied the next inequality

Z 22 Z(C 6 W"”)z (2@)"

m=1
YZ Z 2 Z(C 0,v <Pm]) z(ﬂ))"(gk:‘PmJ)Qk
=1mz1
for every 6 = (91, ., 0q) € R4

Proof

Since Corollary 1, (Sy) + (Ew) is EAGR-
systems & Iy > 0 satisfied that v 0 =
(64, ...,04) € RY, yields that

+00
j IS* )V C* |5 dt
0

+oo P
2
<v[ D (s @7 C0)a) de
0 k=1
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Since

Sy = Z Amt Z(@/’; Pmj )12 Q) Pmj

m=1
it follows that

+00
f IS*(£)V*C*0||5 dt
0

<

+00
* * vk 2
f 157 C Ol

rw Z 2Amt Z((V C*0, <pm,)) dr

m>1

= Z %Z ((C*G,V(pmj))z
m=1_ Mj=1

n
=1

14 Tm
< __1 )2
sy 2 (gkv§0m1>L2(g_k)
m 4
k=1m=21 j=1

Proof
Since Corollary 2, (S,) + (Ex) is EAGR-systems
& 3y > 0 satisfied that v 6 = (65, ...,04) € R,

then
"m
Z 1 z C*0,V
m < ( ) <ij)

mz1

szu Z(C 0,Vm;)7 2(9))"<gk'§0m]>ﬂk

=1m=1

2
() S

Using the formula of the operator C*, in Eq.6, yields
that

(C*Q’ V(pm]>(L2(,Q))n

q
ZXDigihi
i=1

a
ZXDiGihi
=1

a
ZXDigihi
=1

and

f N i (g S IV C o) dt =

Z zath(V C*0, Pmj)0 ( Gk Pm ), At

14
zh Z
Z z 24 Z(C 0,v <Pm,) r@)" n (G PN

k=1m=21

By using Eq.6, the formula of the operator C*, the
following Corollary is obtained:

Corollary 3

(Sx) + (Ex) is EAGR-systems & 3y >0
satisfied the next inequality

q
a‘ij
Z wihi'a—xl)zz([’i)' Ve = (91, ...,Oq) € R4,

i=1

q agg
O X001t =2y
l =1

[y

Asymptotic Gradient Efficient Actuators and
Sensors:

The notion of asymptotic gradient efficient
actuator have been presented analogy to the concept
of gradient efficient actuator in finite time given as
follows:

Definition 3 *°

The suite (42, gi)i<k<p,iS called
asymptotic gradient efficient actuators (AGE-
actuators) if, (Se) + (Es) is WAGR-systems.
Proposition 3

The suite (2, gk)1<k<ps
if and only if

() ker (nfi) = Ker (B REY)

mz1

anywhere, for m > 1, M,,
(p X 1y,,) defined by

M, = ((gkr(pmj)Lz(Qk))kj'
1<j<mn,

AGIE-actuators

is the matrix of order

1<k<pand

and
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fm: 0 eR?T — fm(g)
= ((V*C*0, 01n1), (V' C*0, 0n2), ., (V' C*0, Oray. )
€ R™m

Proof
Since Proposition 3, (S,) + (0o)
systems if and only if
Ker (B*(RZ)") = Ker (RZ)”)
Let 0 € RY, then
B*(R®)* 0 = B*S*()V*C* 0 =
(91, "V C" 0)2(q))
(92,57 (IV'C" 0)12(q,)

is WAGR-

(G S" OV C B2 )

m

Z e?m0) Z(V*C* 0, Pmj)iz){dr Pmitiza,)

m=1 =1
m

z etm() Z(V*C* 0, Pmj)iz){9d2 Pmidiz(a,)

m=1 j=1

Tm

z eAm() Z(V* Cc*0, (pmj)Lz(Q)<9p; §0mj>L2(Qp)

m=1 j=1
and then, form > 1,

My (6)

Z(v*c* 0, Pmj)i2 (91 Pmidizay

Jj=1
Tm

B Z(v*c* 0, Pmj)izc) (92 Pmjdiza,)
=1

m

(V'C" 0, pmj)izca)(Gp: Pmidiz(ay)

j=1
Assume that 6 € N,,»1 Ker (M, f;n), this gives
0 € Ker My f),Vm=1=

erf AVC" 0, 0mjd iz G Pmjdizc) =0,
Vke{l 2, ..,p},Vvm > 1=
Yms1emOY Jr-"i AV°C" 0, 0mjidiz) (i Pmjday

=0,vke{l, 2, .., pL,Vym=1=
B* (RZ)"0 =0= 6 € Ker (B*(RZ)").
Where

ﬂ Ker (M. fin) € Ker (B* (RZ)Y)
m=1

that is
ﬂ Ker (My,fm) = Ker (B* (RZ)Y)

m=1

Proposition 4
The suite (L2, gx)1<k<p, 1S AGE-

actuators if and only if

Ker (V*'C*) = ﬂ Ker (Mp,fm)
m=1
Proof

Suppose that the suite
AGE-actuators to prove

Ker (V'C*) = ﬂ Ker (My, fn)
m=1

Since Proposition 2 and Proposition 3, (S.,) +
(E) is WAGR-system if and only if

ﬂ Ker (M,,f,) = Ker (B*(RX)*)

mz1

2, i) 1<k<ps 1S

= Ker ((R¢)")
it follows that for every 6 € RY,
(RZ) 6 =S"(.)vCcro
m

m=1 j=1
Assuming that 6 € Ker ((RZ)*), then
(RF) 6 =0.
Then.

(R®)* 0 = S*()V*CO
m

_ Z elm(-)Z(v*c* 0, Pmjdiz () Pmj = 0

m=1 =
Tm
(VC* 0, pmjdiz(q) Pmj =0
j=1
= VC"0=0= 6 € Ker (V'C* 09).
Hence,

=Vm=1,

Ker ((RF)*) € Ker (V*C* 0)
On the other hand, if it is assumed that 6 €
Ker (V*C*), thenV*C* 6 = 0 that is to say,
(RZF)* 0 =S"()V'C'6=0
= 0 € Ker ((RZ)").
That is to say, Ker (V*C*) € Ker ((RZ)"),
then Ker (V*C*) = ker((RZ)").
O
By analogy with the finite time case and under
a condition given by: If there exists my = 1 such that
rank G = q 7
where, form > 1, G,, is the matrix of order (q X r;;,)
defined by

n a(p
Gm = <Z (hi,ﬁ)mui)> ,
=1 ij
1<i<q and 1<j<n,

and G} is the transposal matrix of G,,, the two
following corollary’s are obtained, where the
demonstrations are similar to the finite time case
givenin %2,
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Corollary 4
The suite (2, gk )1<k<p, IS AGE —
actuators if and only if

() Ker (MG = (0)
mz1
Corollary 5
If
rank (Mpm Gl ) =q or rank My, =Ty,
Then, the suite (2, gk )1<k<p, iS AGE-actuators

Asymptotic Gradient Remediability and
Asymptotic Gradient Controllability:
The case of asymptotic relation is difficult
and requires more conditions.
Asymptotic Gradient Controllability:
Assuming the system that is described by the
following equation:
3 (@)=AyE)+Bu(t) ;£>0
i o) =
y(0) =y
and A is supposed generates a strongly

continuous semi-group (S (t))t> , such that

3k € L?(0, +o0; R) such that
VS| < k(£); v£ =0 8
Next, some sufficient conditions to
characterize the AGC-system are given in the
following results.
Definition 4
System (S,) is called
e EAGC-system ifforeveryy € € =
(12(Q))", there exists u € L2(0,+o0; U)
such  that Vyyo+VH,u=1y, oOr
equivalently ImVH,, = (L*())".
o WAGC-system if for every ¢, €
€=(L? (Q))n, and every € > 0, there exists
u € L2(0,+o0;U) such that ||Vg,+
VHo, uw — y4ll <&, or equivalently
ImVH,, = (12(2))".

Let £',U" be the dual spaces of € and U
respectively, then using Lemma 1, it is easy to show
the following results the following proposition 5
characterizes the EAGR-systems, and WAGR-
systems.

Proposition 5
The system (S,) is
(i) EAGR-systems if and only if

Jy > Osuchthatvz* € &,

Iz ler < YI(VH) 2" 120 om0

Or equivalently

Jy > Osuchthat vz* € &',

Iz"ller < VIIB*S™ (V"2 || 2 (0,400,01)

(i) WAGR-systems
Ker [(VH,)*] = {0}

if and only if

The following results in proposition 6
demonstrate that the asymptotic controllability
concept of type gradient is strongest than the
asymptotic remediability of type gradient in various
situations.

Proposition 6

If (Sy) is EAGC-system (resp. WAGC-
system), then, (S,) + (Ey), it is EAGR-system
(resp. WAGR-system).

Proof
¢ By hypothesis Eq.8, if follows that,
foro eY’,

1S* (V" C*0ll 20 4o
1

+o00 2
_ ( f ||s*(t)v*c*e||§,dt>
0

1
+00 5
= (f ||5*(t)V*||2||C*9||§,dt)
0

1
= (f; " n@s@y 1Blc ez de ) <
k|IC*O]|g, ; with k > 0.
from Proposition 5, and since (S,) is EAGC-system,
3y > 0, with
IC*Blley < VIIB*S™(DV*C* Ol 2 (0,400;u1)
then,

”S*(-)V*C*9||L2(0,+00;X/) =
M||B*S*()V*C*Oll 120 +00;un) With M = ky > 0.
By using the equivalence of part (i) and part (ii) in

proposition 1, (S,) + (E4) is EAGR-systems.
e From Proposition 5, (S,) + (Es) IS
WAGC-system and remains equivalent to,
Ker (B*(RZ)*) = Ker ((RZ)*) , that is to
say
Ker (B*(RZ)*) c Ker ((RZ)).
This is equivalent to Ker ((KZ°)*) € Ker ((RZ)"),
because (K:°)* = B*(RZ)".
For 6 € Ker ((KZ°)™"), it follows that
(K&)' = B*S*(.)V*C*0 = (VH,)*C*0 = 0,
then C*6 = 0 because Ker[(VH,)*] = {0},
and then 6 € Ker (C*) < Ker ((RZ)").
O
Remark 3
The opposite of Proposition 6 is not correct; this case
may be exemplified via the following.
Example 1
Reflect the subsequent one dimensional system of
type diffusion.
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at Y(x,t) = Ay(x, ) + f(x, 1) +Zk 1 9k (D ue(£) ;5inQ x]0,+o0o[

(509 4(x,0) = go(x) ; inQ
y(x,t) =0;

boosted via observation function allows by g sensors
of type zone

(01) 2,5 () = CVy(2)

(Z(hl. o, 1 zmq, (t»nq)

Q=10,1] glves the corresponding
operator A of type Laplace that confesses an
appropriate basis of eigenfunctions via next form

om (X)=V2sin(mnmx) ;m=>1

The correspondent eigenvalues are specified
through A,, = —m? m?; m > 1. The operator A
generates a self adjoint strongly continuous semi
group (S(t))t>0 defined by

Sy = Z
m21
is exponentially stable 1* with the transformations

e T 4 0 YO

P+oo

2]

e T T 4, (£)dE (Gre, Prn) Prm

and

e T (£ (L), P Pt

are WeII defined and since Corollary 3, (S;) +
(0,) is EAGR-systems if and only if 3 y > 0 such
that

4%
Z ZmZHZZ (Bih, m)LZ(D)

mz1

0Pm
= VZ Z 2m2m2 (G omdi2(ay) Z (9 hi = >L2(Dl>

k=1mz=21

for every 0 = (6, ...,6,) € R4

If a unique actuator (sensor) represents the input
(output) of system (S;) + (0,)**?, then the last

inequality becomes as follows:

ZZm 7'[2

m=1

>L2 (D)

o9
2 m\2 .
< Y Z 2m2m2 (g' (pm)Lz(Q) <9h: dx )LZ(D) , Vo

m=1

eER
Or equivalently,

1 0Pm 5
z 2m21T2 <h' >L2(D)

m=1

=< Y Z 2m2m2 <g (pm>L2(Q) (h

mz1
for g = @m, Withmg = 1, it is obtained that

)L2 (D)

in 90 x 10, +oo[

1 1
2mg2m? ®) S y2m02n2 (D)
this is ver|f|ed for y = 1. But the con5|dered system
(51) is not EAGC-system because it is not WAGC-
system. Indeed,
lety € L2(Q)

(VHy)" 'y = (Ho)" V'y = B* S*(.)V'y
- Z e ™0 (Y, V @) B oy
mz=21

- Z e ™ Oy, Vo N g, Om)

m21 .
for g = @, With my > 1, it follows that

(VHOO)*y_ — e_MOZTEZ(-)(y_’ V(pm())
1
= mone‘moznz(')ﬁf y(x) cos(mymx) dx
0
Putting ¢ (x) = sin(mymx), yields that
(VHy)*y

= e‘mOZ”Z(')\/if moT sin(mymx) cos(mymx) dx
0

V2

= 7e‘m02”2(') [sin?(mymx)]§ = 0

then Ker [(VH.)*] # {0} and by proposition 5, the
result is proven.

0 d
( (pmo )LZ ( ) (pmo )LZ

O
Asymptotic  Gradient Remediability  with
Minimum Energy:

Under the condition Eq.7, and the hypothesis
of WAGR-system, then in the present section the
problem of WAGR-system with Minimal Energy is
studied. Thus, through f € L?(0,+o0;X), there
exists a control of type optimal « € L?(0, +oo; RP)
ensuring, asymptotically, the gradient remediability
of the disturbance f such that K°« + RZf = 0, are
studied. That is the set defined by

D = {u € L?(0,+%0; RP): Ku + RZ f = 0}
9
is non empty. Next, the following function is
considered

J) = KRw+ RE fllfa + 1t 220 1co0mpy
The considered problem becomes : meig J(u).
u
For its resolution, one can use a modification of (H.
u. M) 4
For 8 € RY, it is noted that
1
+o * O* * vk 2
el = (f;"IB"s* OV C*6lZpdt )’
The conforming inner product is specified by

+00
(6,0). =f (B*S*(£)V*C*6,B*S*(t)V*'C*o)dt
0
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and the operator A7: R? — R defined by
ATO = KZ (K&)' 0

Then, the following proposition have obtained.
Proposition 7

If the condition Eq.7, is verified, then |||, is a
norm on R4 if and only if (S,) + (Ex) is WAGR-
system and the operator A; is invertible.
Proof
Since,

+oo 7
lell. = ( f ||B*s*(t>v*c*e||§pdt> = 0
0

= [1B*S* (V" C*O1I72(0 4 ooma) = O
= B*S*()V*'C*0 =0
= 6 € Ker (B*S*(.)V*C*) = Ker B*(RZ)"
However, from Proposition 3, it follows that
Nm=1 Ker (M, frn) = Ker (B*(RZ)")
and also Nms1 Ker (M, fr) =
Nms1 Ker (M, GE'). Indeed, let 6 € RY, then
0 € Nyt Ker (MG & (M, GE)O =
Ovm = 1.
=

0Pm;j
Z?: 123‘}’;1 (ng (pmj)(hir2?=1 axl]) =
O0vm=1vk=1,..,p.

2Ty Gl @m) (V' CT0,pmj) =0, VM 2 1,
vk=1,..,p.
& My fm)8 =0,Vm > 1.
S 0 € NpmsiKer (Mpfy).
Where Ker (B*(RZ)*) =
N1 Ker (M, GLT) this gives 6 €
Nyms1 Ker (M,,GE") and since the Corollary 4, the
result is obtained.
Alternatively the A7 is an
operator of type symmetric. Actually,
(A%Og' O-)Rq = (KC?O(KCOO)*Q'O->R‘7
= (9, KEO(KL?O)*O->R‘7 = (9, A%OO')]Rq
and positive definite. Indeed,
(AT, 0)ra = (K¢°(Kc°)" 0, 0)pa
= ((Kc°)"0, (K°) 0)12(0,400; RY)
Finally, the mapping A7 has an inverse
operator.
m
Now, the next consequence demonstrates, the
existence of an optimal control in which
guaranteed the AGR-system.
Proposition 8
For f € L?(0,+00; X), there exists a unique 6 €
R4 such that
and the control ug ; defined by :
verifies Kc"ug, + RZ’f = 0.

Moreover, it is optimal and

||u9f

= [|6y

12(0,+00; RP) *
Proof

By utilizing Proposition 7, the mapping A¢ has
inverse, now, f € L?(0,+o0; X), then there exists a
unique 6y € R? such that AF60r = —RZf and by
putting ug, = (K&)" 0y, yields that
AZO; = KZ(KE")6; =
[y CYS(£)BB*S* (£)V'C*6pdt = KPug, =
—REf = KZug, + REf = 0.
The set D defined by Eq.9, is closed, convex and not
empty.
For weD, J(u)= ”’M”iz +oRP) S0, J is
convex mapping of type strictly in D, and hence
ensures a unique minimum at w«" €D,
characterized by (u",v — u"};2(0 yoo.rpry = 0; YV €
D.
Forv e D,

(Ug, V= Ug ) 12(0+00;RP)
= ((Kc*)6r,v

- (Kgo)*ef>L2(o,+oo;mp)
= <9f' K(,?Ov - A%Oef>L2(0,+oo;]Rp)
=0

Since u* is unique, then «* = Ug, and Ug, is
optimal with
”uef

2
L2(0,+°0,' ]Rp) = ”9f

2

L%(0,40; RP)

2
*

|B*S*(OvC*o; |

O

Mathemetical Approximations
The current part of this paper, presents
important approximations augmented with an
approximation approach for AGR-system. First we
give an approximation of 6, as a solution of a finite
dimension linear system A6; =b and then the
optimal control 1t o with a comparison between the

corresponding observation noted Zug f and the

normal case.
The Approximations Approach:

o System coef ficients components:
For i,j = 1,consider a;; = (ATe;, ej)ga such that
(ei)1<i<q 1s the canonical basis of RY, it follows
that

+00
0, = j CVS(t)BB*S*(£)V*C*e; dt
0

and since N and M represent the number of
eigenfunctions of the dynamic operator A. Thus,
sufficiently large because the space have an infinite
dimension.

Then, M, N be sufficiently large:
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M ™ N "m' D P P
~ Pm'n Pmi
= Z Z Z Z (/1 +/1 )(gr: §0ml)ﬂr<gr'§0m h)QT Z ( m, ’ l)DLZ( = ’ ])DJ
m=11l=1m'=1h=1r=1
10
and b; = —(RZf, ej)ga. For the applications it is considered sufficiently large

Because N represent the number of eigenvectors  and then
(¢mj)1jsrmand really it is infinite.

ma1
N T™mr n a(p
~ mrl
- Z Z om0, )f e f (), Pmindizca A
m’=1h=1k=1
11
o The optimal control: Its function coordinates u; g f(.) are given, for
In this part, an approximation of the optimal 4 Jarge integer N, by
control ugy ; is given, WhiC*h is deﬁ*neii by: U, () = (g, S*()V*C" Hf)Lz(Dj)
’bbgf(S) =B*S*(£)V'C*6f
N Tm' n q P
Pm'n
Z 2 Z 2 0ire" ™G, Omindiz(a)) (#;hihz(m)
m'=1 h=1k=1 i=1 k
12
e (Cost: ”,ue =
The minimum energy (cost), for N sufficiently L2 (0,400, RP) )
large, is defined by +00 5 3
UO ||B*S*(t)V*C*9f||det)
1
r. 1 2 2

ZJ i zm: Zn: zq: 0 petmt (Gj> Pm’ h>L2(Q]) (a(pm yhidizy | dt

m’=1h=1k=1i=1

. The related observation: _ 0 t
The measurement information related to a Zug.f (£) = CVS(0)y° + CV o S (T)Buef () dr
given control is described by

t
+ CVf S@) f(r)dr
’ 13

Its coordinates (Zj’uef’f(.)> are
1<]<q

achieved for a specific integer N, given by:

n
it do
Z (Yo, P’ h)Lz(ﬂ)( mh by )LZ(D )
k=1
T

0., t
(gl, Om! h)LZ(QL) ( a;n h , j)LZ(Dj) f e’lm’fuj,ef(f) dt
0

M:TjM:

—mh j)i2(D;) j A (D), Qi iz () AT

14
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The Mathematical Approach:

Remember the problem considered above:

P) {Calculate u* € L?(0, +oo; U) , with
Keuw +RZf=0
So, depending on the above result., and employment
the preceding consequences in this investigation,
one can improve an algorithm which permits to
define controls suite which tends to «* of (IP). The
measurement information is specified via Eq.13 and
Eq.14.
Algorithm
First Step: Data: domain (), initial state ¢°,
disturbance  function f, sensors (D, h),
gradient of efficient actuators (o,g) and
precision threshold ¢.
Second Step: Select a truncation low of order M =
N.
Third Step: Calculate zj o: output with f = 0 and
u=0.
Fourth Step: Calculate z, : output with f # 0 and
u=0.
Fiveth Step: Resolve a finite system A6 = b such
that the parameters are represented by Eq.10 and
Eq.11.
Sixth Step:. Calculate « given by Eq.12.
Seventh Step:. Compute z, : output where f # 0
and u # 0.
Eighth Step: If||zu‘f — Zy, Olle(ﬂ) < ¢, then stop.
Otherwise,
Ninth Step: M «< M +1and N « N + 1 and return
to third step.
Ten Step: Control « of type optimal links to «*
the solution of (IP).

Conclusion:

In this paper, the problem of AGCanalysis has
been presented. Certainly, it is based on suitable
hypothesis and an appropriate choice of operators
and spaces. Furthermore, WEAGR-system and AGE-
actuators have been presented firstly. Also the
problem of WEAGC-system has been examined
under a suitable hypothesis with appropriate choice
of spaces and operators. More precisely, the
relationship between WEAGC-system and AGR-
system has been demonstrated in different important
results. Indeed, in the asymptotic case, it has been
proved that the controllability concept of gradient
type remains stronger than the remediability concept
of gradient type, that is to say, AGR-system can be
asymptotically gradient remediable but, it is not
AGC-system.

Thus, through the choice of sensors and
hypothesis of WAGR-system, the problem of EAGR-
system with minimum energy has been studied.
Moreover, the issue of how to discover an

optimal control has been examined in a way
compensateing for the influence of the disturbances
about the observation of gradient via the use of H U
M modified.

Regarding the digital processing, some
mathematical approximations are proposed, using a
multi-step algorithm.

Later, the obtained outcomes have been
introduced for class DDPL-systems and may be
interesting to  expand this work to
regional or regional bounded case with other
classes under the suitable different select of spaces,
for example, the possibility to replace the
observability concept in this paper by an asymptotic
observer.
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