The Periodic Coincidence Points of continuous maps and the Lindemann's independence Theorem For Exponentials

*Ban Jaffar Al- Ta'iy

Date of acceptance 26 / 6 / 2005

Abstract

This paper give a proof of known conditions for the existence of periodic coincidence points of continuous maps, using Lindemann theorem on transcendental numbers.

Introduction

Let M be a compact connected oriented manifold of dimension l. Let $f, g: M \rightarrow M$ be two continuous maps (for more details of compact connected oriented manifold see [3]). A point $x \in M$ is called a coincidence point if f(x) = g(x) and called a periodic coincidence point if there exists a positive integer k such that $f^k(x) = g^k(x)$, following [7]. A continuous self map f of M, induces homomorphism of rational homology of M, $f^{*q}: H^q(M) \rightarrow H^q(M)$

In [4], H. T. Ku and L. N. Mann define $g^q_{\:\:\raisebox{1pt}{\text{\circle*{1.5}}}}: H^q(M) \to H^q(M)$ by $\langle g^q_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} \alpha \cup \beta, [M] \rangle = \langle \alpha \cup g^{*(n-q)}\beta, [M] \rangle$, $\alpha \in H^q(M), \beta \in H^{n-q}(M)$.

Lemma(1) :-

If $\deg g \neq 0$ then $g_*^q = (\deg g)(g^{*q})^{-1}$.

Proof:-

See [4].

Lemma(2) :-

If $\deg g \neq 0$ and $f^{*q} \circ g^{*q} = g^{*q} \circ f^{*q}$, all q, then $(f^k)^{*q} \circ (g^k_*)^q = (f^{*q} \circ g^q_*)^k$, all k and all q.

Proof :- See [4].

n [4] the authors define the Lefschetz number to the pair of continuous maps (f, g) by $L_{f,g} = \sum_{q=0}^{n} (-1)^q Tr($ $f^{*q} \circ g_*^q)$, were Tr is the Trace of the

matrix which represent the linear transformation $f^{*q} \circ g_{*}^{q}$. Also they define the Euler characteristic of f and g by

$$\chi_{f,g}(M) = \sum_{q=0}^{n} (-1)^q \dim \text{Im}(f^{*q} \circ g^q)$$

and they prove the following Fuller coincidence theorem:

^{*}Dr.- Department of Mathematics- College of Science for Women- University of Baghdad

Theorem (3) :-

F-Salamamaps of a compact connected oriented

Suppose f, g are continuous self-maps of a compact connected oriented manifold of dimension l. If $\chi_{f,g}(M) \neq 0$, $\deg g \neq 0$ and $f^{*q} \circ g^{*q} = g^{*q} \circ f^{*q}$, all q, then there exists $x \in M$ such that $f^k(x) = g^k(x)$ for some k, $1 \leq k \leq \max[\sum_{q \text{ odd}} \dim \operatorname{Im}(f^{*q} \circ g^q)].$

M. O. Damen [1], M. B. Milinovich [5] and Ivan Niven [6,p.117] gave the Lindemann theorem which state that "Given any distinct algebraic numbers $\alpha_1, \alpha_2, ..., \alpha_m$, the values $e^{\alpha_1}, e^{\alpha_2}, ..., e^{\alpha_m}$ are linearly independent over the field of algebraic numbers i.e. $\sum_{j=1}^m a_j e^{\alpha_j} = 0$ then $a_1 = a_2 = ... = a_m = 0$."

The main result

In this section we shall give a proof of a generalization of theorem (3). Set $\lambda_0 = 0$, and let $\lambda_1, ..., \lambda_n$ be the distinct nonzero eigenvalues of $f^{*q} \circ g_*^q$, where $n = \dim \operatorname{Im}(f^{*q} \circ g_*^q)$. Let $m_q(\lambda_j)$ be the multiplicity of λ_j in $f^{*q} \circ g_*^q$, (j = 0, ..., n). We then have: Theorem (4):-

If f, g are two continuous self-

manifold M, $\deg g \neq 0$, $f^{*q} \circ g^{*q} = g^{*q} \circ f^{*q}$ and f, g have no periodic coincidence point x of period k, $1 \leq k \leq \max[\sum_{qodd} \dim \operatorname{Im}(f^{*q} \circ g^{q}), \sum_{qeven} \dim \operatorname{Im}(f^{*q} \circ g^{q})]. Then \sum_{q} (-1)^{q} m_{q}(\lambda_{0}) = \chi_{f,g}(M) \text{ and } \sum_{q} (-1)^{q} m_{q}(\lambda_{j}) = 0,$ (j = 1, ..., n).

Proof :-

Let m be the maximum dimension for which $H^q(M) \neq 0$. For q = 0, ..., m, let A_q be a matrix representing $f^{*q} \circ g_*^q$ with respect to some fixed basis for $H^q(M)$. Define

$$B_k = diag[A_0^k, -A_1^k, ..., (-1)^m A_m^k],$$

for
$$k \ge 0$$
, and set
$$E = \sum_{k=0}^{\infty} \frac{1}{k!} B_k. \qquad (1)$$

$$Tr(B_0) = Tr(\operatorname{diag}[A_0^0, A_1^0, ..., (-1)^m A_m^0]$$

$$= \sum_{q=0}^{m} (-1)^q \operatorname{dim} \operatorname{Im}(f^{*q} \circ g_*^q) = \chi_{f,g}(M$$
), for $k \ge 1$, $Tr(B_k) = \sum_{q=0}^{m} (-1)^q Tr(f^{*q} \circ g_*^q)^q$

$$g_*^q)^k = \sum_{q=0}^{m} (-1)^q Tr(f^k)^{*q} \circ (g_*^k)^q =$$

$$L_{f^k,g^k}, \text{ the Lefchetz coincidence number of } f^k \text{ and } g^k, \text{ since by hypothesis}$$

ber of f^k and g^k , since by hypothesis deg $g \neq 0$ and $f^{*q} \circ g^{*q} = g^{*q} \circ f^{*q}$. If f and g have no periodic coincidence points x, of period k, $k = 1, \ldots, \max \{$

 $\sum_{qodd} \dim \operatorname{Im}(f^{*q} \circ g_*^q), \sum_{qeven} \dim \operatorname{Im}(f^{*q} \circ g_*^q)$

 g_{\star}^{q})]then by Lefchetz coincidence point theorem $Tr(B_{k}) = 0$. We then have equating traces in (1):

$$\sum_{j=0}^{n} \sum_{q=0}^{m} (-1)^{q} m_{q}(\lambda_{j}) e^{\lambda_{j}}$$

$$= \sum_{j=0}^{n} [(-1)^{0} m_{0}(\lambda_{j}) e^{\lambda_{j}} + (-1)^{1} m_{1}(\lambda_{j}) e^{\lambda_{j}}$$

$$+ (-1)^{2} m_{2}(\lambda_{j}) e^{\lambda_{j}} + \dots + (-1)^{m} m_{m}(\lambda_{j}) e^{\lambda_{j}}$$

$$+ e^{\lambda_{j}}]$$

$$= m_{0}(\lambda_{0}) e^{\lambda_{0}} - m_{1}(\lambda_{0}) e^{\lambda_{0}} + m_{2}(\lambda_{0}) e^{\lambda_{0}}$$

$$+ \dots + (-1)^{m} m_{m}(\lambda_{0}) e^{\lambda_{0}} + m_{0}(\lambda_{1}) e^{\lambda_{1}}$$

$$- m_{1}(\lambda_{1}) e^{\lambda_{1}} + m_{2}(\lambda_{1}) e^{\lambda_{1}} + \dots + (-1)^{m} m_{m}(\lambda_{1}) e^{\lambda_{1}}$$

$$- m_{1}(\lambda_{n}) e^{\lambda_{1}} + m_{2}(\lambda_{n}) e^{\lambda_{n}} + \dots + (-1)^{m} m_{m}(\lambda_{n}) e^{\lambda_{n}}$$

$$- m_{1}(\lambda_{n}) e^{\lambda_{n}} + m_{2}(\lambda_{n}) e^{\lambda_{n}} + \dots + (-1)^{m} m_{m}(\lambda_{n}) e^{\lambda_{n}}$$

But the A_q are the rational matrices, so the eigenvalues $\lambda_0,...,\lambda_n$ are the distinct algebraic numbers, and we can apply the theorem of Lindemann to conclude that each of the coefficients in equation (2) vanishes, i. e.

$$\sum_{q} (-1)^{q} m_{q}(\lambda_{0}) = \chi_{f,g}(M) \text{ and } \sum_{q} (-1)^{q} m_{q}(\lambda_{j}) = 0 \text{ , } (j = 1, ..., n) \text{ . So}$$

$$\sum_{j=0}^{n} \sum_{q=0}^{m} (-1)^{q} m_{q}(\lambda_{j}) e^{\lambda_{j}} = m_{0}(\lambda_{0}) e^{\lambda_{0}} - m_{1}$$

$$(\lambda_{0}) e^{\lambda_{0}} + ... + (-1)^{m} m_{m}(\lambda_{0}) e^{\lambda_{0}} = \chi_{f,g}(M) e^{\lambda_{0}}. \quad \Box$$

The following corollary is the special case of theorem (4), when g homotopic to the identity map which proved by F. B. Fuller [2]:-

Corollary (5) (Fuller)

Suppose f, g are continuous self - maps of a compact connected oriented manifold of dimension l. If $\chi_{f,g}(M) \neq 0$ and g homotopic to the identity map then f has a periodic fixed point.

References

- 1. Damen, M.O. and N. C. Beaulieu, 2003, On Two High Rate Algebraic Space Time Codes, IEEE Trans. Inform. Theory.
- 2. Fuller, F. B, 1963, Periodic trajectories of a one parameter semigroup, Bull. Amer. Math. Soc. 69: 409 410. MR 26 # 4002.
- 3. Guillemin, Victor and Alan Polack,,1974 Differential Topology, PrenticeHall, Englewood Cliffs, N.J.
- 4. Ku, H.T., M. C. Ku and L. N. Mann, 1994, Extensions and applications

- of Fuller's theorem on periodic points, Hokkaido Math. J. 23(2): 301-317.
- 5. Milinovich, M. B., 2004, Irrationality, Transcendence, and Approximation, unpublished 1 December,.
- 6. Ivan, Niven, 1956, Irrational
- numbers, Math. Assoc. Amer. Carus Monograph No. 11 Wiley, New York, MR 18, 195.
- 7. Staecker, C, 2004, Nielsen coincidence classes, and coincidence sets of lifts unpublished, 29 October

مبرهنة ليندمان على الأعداد الغير جبرية

بان جعفر الطائي*

*مدرس قسم الرياضيات - كلية العلوم للبنات - جامعة بغداد

الخلاصة

xلیکن M مطوی متر اص متر ابط ولتکن f و g دو ال مستمره معرفه علی M . یقال ان g نقطه تطابق اذا کان g و یقال انها نقطه دوریه متطابقه اذا وجد g بحیث ان . g . g . g . g . g .

هذا البحث يعطي برهان الشروط المعروف لوجود النقاط الدوريه المتطابق لدوال مستمره بأستخدام مبر هنة ليندمان على الأعداد الغير جبريه.