Periods for Transversal Coincidence Maps on Compact Manifolds With a given Cohomology (Homology)

Ban Jaffar Al- Ta'iy

Date of acceptance 7/9/2005

ABSTRACT

Let M be a compact connected smooth manifold such that its rational cohomology (homology) is $H^{j}(M;Q) \approx Q$ ($H_{j}(M;Q) \approx Q$) if $j \in J \cap \{0\}$ $H^{j}(M;Q) \approx \{0\}$ ($H_{j}(M;Q) \approx \{0\}$) otherwise, were J is a subset of the set of natural numbers N with cardinal 1 or 2. A C^1 maps f, $g: M \to M$ is called transversal coincidence maps if for all $m \in N$ the graph of f^m intersects transversally the graph of g^m at each point $(x, f^m(x) = g^m(x))$ such that x is a coincidence point of f^m and g^m .

This paper study the set of periods of f and g by using the Lefschetz coincidence numbers for periodic coincidence points.

INTRODUCTION

Let M be a compact connected manifold of dimension n, let f, g: $M \rightarrow M$ be two continuous maps . a coincidence point of f and g is a point xof M such that f(x) = g(x). The point $x \in M$ is periodic coincidence point with period m if $f^m(x) = g^m(x)$ but $f^{k}(x) \neq g^{k}(x)$ for all k = 1, ..., m-1, (see [7,8]). Let per(f,g) denote set of all periods of periodic coincidence point of f and g.

For each $p \ge 0$ define the endomorphism $\theta_P: H_p(M;Q) \to H_p(M;Q)$ of the rational homology groups, as the composition round the following square

$$H_{p}(M;Q) \xrightarrow{f_{*p}} H_{p}(M;Q)$$

$$\approx D_{p} \qquad \theta_{p} \qquad \approx D_{p}$$

$$H^{n-p}(M;Q) \xleftarrow{g^{*n-p}} H^{n-p}(M;Q)$$

where D_p is Poincare duality isomorphism or its inverse . Then the Lefschetz coincidence number $L_{f,s}$ of f and g is defined by $L_{f,g} = \sum_{0 \le p \le n} (-1)^p Trace \theta_p.$

$$L_{f,g} = \sum_{0 \le p \le n} (-1)^p Trace \theta_p.$$

By Lefschetz coincidence point theorem if $L_{f,g} \neq 0$ then f and g have coincidence point (see [4]). It is not true (in general) that if $L_{f^m,g^m} \neq 0$ then f and g have periodic coincidence points of period m. It could have periodic

^{*} Dr.- Department of Mathematics- College of Science for Woman- University of Baghdad J. of Um-Salama For Science

coincidence points with period some proper division of m. Therefore, we will use the Lefschetz coincidence numbers for periodic coincidence points introduced in [1], more précisely, for every $m \in N$ define the Lefschetz coincidence numbers of period m, $l(f^m, g^m)$ as follows

$$l(f^m, g^m) = \sum_{r/m} \mu(r) L_{\frac{m}{f^r}, g^{\frac{m}{r}}}$$

where $\sum_{r/m}$ denotes the sum over all

positive divisor r of m, and μ is the Moebius function defined by

$$\mu(m) = \begin{cases} 1 & \text{if} & m=1, \\ 0 & \text{if} & k/m \text{ for som } k \in \mathbb{N}, \\ \text{(-1)} & \text{if} & m=p, p, distinguishing } \end{cases}$$

Acording to the inversion formula (see for instance [6]).

$$L_{f^m,g^m} = \sum_{r/m} l(f^r,g^r).$$

If $l(f^m, g^m) \neq 0$ then f and g have a periodic coincidence point of

m (see [2]). This is almost the case when f and g are transversal maps.

A C^1 maps f and $g: M \to M$ defined on a compact C^1 smooth manifold is called transversal coincidence maps if $f(M) \subset \operatorname{Int}(M)$ and $g(M) \subset \operatorname{Int}(M)$ and if for all $m \in N$ at each point x such that $f^m(x) = g^m(x)$, we have $\det(df^m(x) - dg^m(x)) \neq 0$, i.e. 1 is not an eigenvalue of $df^m(x) - dg^m(x)$, (were $df^m(x)$ and $dg^m(x)$ are the

derivative of f^m and g^m at x respecti-

vely). From [3] it is note that if f and g are transversal coincidence maps then

for all $m \in N$ the graph of f^m intersects transversally the graph of g^m at each point $(x, f^m(x) = g^m(x))$. Since for transversal coincidence maps f and g the coincidence points of f^m and g^m are isolated and f^m is compact then the number of coincidence points of f^m and f^m is finite for every f^m . The following theorem is important in this

paper and it was proven in [2].

Theorem (1):-Let $f, g: M \rightarrow M$ be a transversal

coincidence maps on a compact conne-

cted manifold M of dimension n. Suppose that $l(f^m, g^m) \neq 0$ for some $m \in N$.

a) If m is odd then m ∈ per (f, g).
 b) If m is even then {m62, m} ∪ per (f period

$$g)\neq\emptyset$$
.

The results in theorem (1) are in general difficult to apply because of the computation of $l(f^m, g^m)$. If the rational cohomology (homology) groups are simple then the computation of $l(f^m, g^m)$ become easier. This paper deal with transversal coincidence maps on a compact manifold M with rational cohomology (homology).

$$H(MQ \approx QH_j(MQ \approx Q) \text{ if } j \in J \setminus \{0\},$$

 $H'(MQ) \approx \{0\}, \{H_j(MQ) \approx \{0\}\} \text{ otherwise}$ (1)

Here J is a subset of the set of natural numbers N with cardinality 1 or 2.

Transversal coincidence maps with such cohomology (homology) are nontrivial maps for which to compute the numbers $l(f^m, g^m)$ and apply theorem(1) to obtain information about their sets of periods.

THE MAIN RESULTS

Let $f,g:M\to M$ be a transversal maps and suppose that the rational cohomology (homology) of M satisfies (1). Let (a_j) be the 1×1 integer matrix defined by the homology endomorphism $\theta_j:H_j(M;Q)\to H_j(M;Q)$, where $\theta_j=D_j^{-1}g_{*n-j}D_jf^{*j}$, for each $j\in J\cap\{0\}$. Then

$$L_{f^m,g^m} = \sum_{j \in J \cup \{0\}} (-1)^j a_j^m \text{ for all } m \in \mathbb{N} .$$

Therefore, if m > 1 the Lefschetz coincidence number of period m will be

$$\begin{split} l(f^{m}, g^{m}) &= \sum_{r/m} \mu(r) L_{f^{\frac{m}{r}}, g^{\frac{m}{r}}} \\ &= \sum_{r/m} \mu(r) \left[\sum_{j \in J \cup \{0\}} (-1)^{j} a_{j}^{\frac{m}{r}} \right] \\ &= \sum_{j \in J \cup \{0\}} (-1)^{j} \sum_{r/m} \mu(r) a_{j}^{\frac{m}{r}}. \end{split}$$

For each $m \in N$ we define the polynomial

$$Q_m(x) = \sum_{r/m} \mu(r) x^{\frac{m}{r}}.$$

Then, if m > 1 we can write $l(f^m, g^m) = \sum_{j \in J \cup \{0\}} (-1)^j Q_m(a_j)$ (2)

Set $m = p_1^{\alpha_1} ... p_n^{\alpha_n}$ here $p_1, ..., p_n$ are distinct primes. The next proposition is proven in [2].

Proposition (2):-Let $m \in N$.

- a) If m is odd then Q_m is an odd function, i. e., $Q_m(x) = -Q_m(-x)$.
- b) If 4/m then Q_m is an even function, i. e. $Q_m(x) = Q_m(-x)$.
- c) If 2 6m and 4 Φ m then $Q_m(x) = Q_{\frac{m}{2}}(x^2) Q_{\frac{m}{2}}(x)$.
 - **d)** $Q_{m}(0) = 0$.
 - e) If m > 1, then $Q_m(1) = 0$.
- f) If m > 2, then $Q_m(-1) = 0$.
- g) For all $i \in N$ we have $Q_m^{(i)}(1) \ge 0$, where $Q_m^{(i)}(x)$ denote the i-th derivative of $Q_m(x)$ with respect to the variable x.
- h) $Q_m(x)$ is positive and increasing in in $(1, \infty)$.
- i) If m is even then the function $Q_m(x)$ is positive and decreasing in $(-\infty, -1)$. Furthermore, if 4Φ m we

have that $Q_m(x) \le Q_m(-x)$ for all x

 \in [1, ∞).

j) If m > 2, then $Q_m(1.6) > 2$.

The main results on the set of periods of periodic coincidence points of transversal coincidence maps following

from the next two theorems:-

Theorem (3):-

a)

Let $f,g: M \to M$ be a transversal coincidence maps. Suppose that the rational cohomology (homology) of M satisfies (1) with $J = \{p\}$. Denote by (a_j) the 1×1 integer matrix defined by the induced homology endomorphism $\theta_j: H_j(M;Q) \to H_j(M;Q)$ for each $j \in J \cap \{0\}$ then the following statements hold.

$$l(f,g) = L_{f,g} = a_0 + (-1)^p a_p$$
.

- b) $l(f^2, g^2) = 0$ if and only if P is even and $\{a_0, a_p\} \subset \{0,1\}$, or p is odd and $a_0 = a_p$ or $a_0 + a_p = 1$.
- c) If $\{a_0, a_p\} \subset \{-1, 0, 1\}$, then $l(f^m, g^m) = 0$ for every natural number m > 2.
- d) If $\{a_0, a_p\} \not\subset \{-1, 0, 1\}$ and m > 1 is odd, then $l(f^m, g^m) = 0$ if and only if $a_0 + (-1)^p a_p = 0$.
- e)if $\{a_0,a_p\}$ $\not\subset$ $\{-1,0,1\}$ and 46m, then $l(f^m,g^m)=0$ if and only if p is odd and $a_0=\pm a_p$.
- f) If $\{a_0, a_p\} \not\subset \{-1, 0, 1\}$, m > 2 is even and $4 \oplus m$, then $l(f^m, g^m) = 0$ if and only if p is odd and $a_0 = a_p$.

Proof :-

From the definitions of l(f,g) and $L_{f,g}$ it follows

$$l(f,g) = L_{f,g} = Trace(\theta_0) + (-1)^p Trace(\theta_p) = a_0 + (-1)^p a_p.$$

Which prove a). From (2) we get $l(f^2, g^2) = Q_2(a_0) + (-1)^p Q_2(a_p),$ and from proposition 2 (c) we get

$$Q_2(x) = x^2 + x$$
. Therefore,

$$l(f^{2}, g^{2}) = (a_{0}^{2} - a_{0}) + (-1)^{p} (a_{p}^{2} - a_{p}).$$

$$= (a_{0}^{2} + (-1)^{p} a_{p}^{2}) - (a_{0} + (-1)^{p} a_{p}).$$

Assume p is odd then

$$l(f^2, g^2) = (a_0 - a_p)(a_0 + a_p + 1).$$

 $l(f^2, g^2) = 0$ if and only if $a_0 = a_p$ or $a_0 + a_p = 1$. Assume that p is even then
$$l(f^2, g^2) = (a_0^2 + a_p^2) - (a_0 + a_p).$$
 $l(f^2, g^2) = 0$ if and only if $a_0^2 + a_p^2 = a_0 + a_p$, or equivalently $\{a_0, a_p\} \subset$

 $\{0,1\}$. Therefore, b) is proven.

From (2) we get $l(f^m, g^m) = Q_m(a_0) + (-1)^p Q_m(a_p)$. If $a_0 = a_p = 0$ then from d), $Q_m(0) = 0$, so $l(f^m, g^m) = 0$ for every natural number m. Similar from statement e) and f) of proposition (2) we get $l(f^m, g^m) = 0$ for every natural number m. Therefore, c) is proven.

Let m be odd from (2) we get $l(f^m, g^m) = Q_m(a_0) + (-1)^P Q_m(a_P).$ From a) and h) of proposition (2) we have that $Q_m(x)$ is an increasing odd function in $(-\infty, -1) \cap (1, \infty)$. Assume that $\{a_0, a_n\} \not\subset \{-1, 0, 1\}$ then $l(f^m, g^m) = 0$ if and only if $Q_m(a_0) +$ $(-1)^p Q_m(a_n) = 0$ or equivalently $a_0 + (-1)^p a_p = 0$. Hence d) is proven. Assume that 4 6 m. From b), h) and i) of proposition (2), we have $Q_m(x)$ is an even function, increasing in $(1, \infty)$, and $Q_m(x) = Q_m(-x)$ for all $x \in [1, \infty)$. Assume $\{a_0, a_p\} \not\subset \{-1, 0, 1\}$. Then

from (2) we get that

 $l(f^m, g^m) = Q_m(a_0) + (-1)^p Q_m(a_p) = 0,$ if and only if p is odd and $a_0 = \pm a_p$. Hence e) is proven.

Assume that m > 2 is even and $4 \Phi m$. From (2) we get $l(f^m, g^m) = 0$ if and if $Q_m(a_0) + (-1)^p Q_m(a_p) = 0$.

Assume that $\{a_0, a_p\} \not\subset \{-1,0,1\}$. From statements h) and i) of proposition (2) we have that $Q_n(a_0)$ and $Q_n(a_p)$ are positive.

So, if p is even then $l(f^m, g^m) \neq 0$.

In the rest of the proof of statement f) suppose that p is odd. Then $l(f^m, g^m) = 0$ if and only if $Q_m(a_0) = Q_m(a_p)$. By proposition 2 (h), $Q_m(x) = Q_m(a_p)$. By proposition 2 (h), $Q_m(x) = Q_m(x)$ is positive and increasing in $(1, \infty)$. So, if $a_0, a_p > 0$ then $l(f^m, g^m) = 0$ if and only if $a_0 = a_p$. Now assume that $a_0, a_p < 0$. By proposition 2 (c) we have that $Q_n(x) = Q_m(x^2) - Q_m(x)$ with m/2 odd. Then $l(f^m, g^m) = 0$ if and only if $Q_m(a_0^2) - Q_m(a_0) = Q_m(a_p^2) - Q_m(a_p)$, or equivalently $Q_m(a_0^2) + Q_m(a_0) = Q_m(a_p^2) + Q_m(a_0) = Q_m(a_0^2) + Q_m(a_0) = Q_m(a_0^2) + Q_m(a_0^2) = Q_m(a_0^2) + Q_m(a_0^$

 $a_0, a_p < 0$ then from proposition 2 (h) $l(f^m, g^m) = 0$ if and only if $a_0 = a_p$. So, in the rest of the proof of f) assume that $a_0 < 0 < a_p$.

Consider $0 < a_p < -a_0$. Since $l(f^m, g^m) = 0$ if and only if $Q_m(a_0^2) + Q_m(a_0^2) = that$

 $Q_{\frac{m}{2}}(a_p^2) - Q_{\frac{m}{2}}(a_p)$, and $0 < a_p < |a_0|$,

by statements a) and h) of proposition (2) we obtain that $Q_{\frac{m}{2}}(a_0^2) + Q_{\frac{m}{2}}(|a_0|) >$

 $Q_{\underline{m}}(q_p) - Q_{\underline{m}}(q_p)$, hence $k(f^{\bullet}, g^{\bullet}) \neq 0$. So we can assume that $0 < -a_0 < a_p$.

By proposition 2 (g) we have that $Q_m(x) = \sum_{k=1}^m A_k(x-1)^k$ with $A_k = Q_m^{(k)}(1)/k! \ge 0$. Therefore, since $l(f^m, g^m) = 0$ if and only if $Q_m(a_p) = \sum_{k=1}^m A_k(a_p-1)^k = \sum_{k=1}^m A_k(a_0-1)^k = Q_m(a_0)$, it follows that if $|a_0|+1 < a_p-1$, then $Q_m(a_p) > Q_m(a_0)$, and consequently $l(f^m, g^m) \ne 0$. Hence, since $0 < -a_0 < a_p$ the unique cases that remain to consider are $|a_0|+1 = |a_p|-1$ and

Assume that $a_0 + 1 = a_p - 1 = b$. So $a_p = b + 1$ and $a_0 = 1 - b$. Therefore, since

 $\left|a_{0}\right|+1=a_{p}.$

 $\{a_q, a_p\} \not\subset \{-1, 0, 1\}$ we get that $b \ge 1$. Now $l(f^m, g^m) = 0$ if and only if $Q_m(b+1) = Q_m(-b+1)$, or equivalently $Q_{\underline{m}}((b+1)^2) - Q_{\underline{m}}(b+1) = Q_{\underline{m}}((b-1)^2) Q_{\underline{m}}(1-b)$ (see proposition 2 (c)). Since m6 is odd from proposition 2(a) $l(f^m, g^m) = 0$ if and only if $Q_{\underline{m}}((b+1)^2) +$ $Q_{\frac{m}{2}}(b+1) = Q_{\frac{m}{2}}((b-1)^2) + Q_{\frac{m}{2}}(b-1),$ or equivalently $\sum_{k=0}^{\infty} R_{k} [(b+1)^{2} - 1]^{k} = \sum_{k=0}^{\infty} R_{k} [b^{k} + (b-1)^{2} - 1)^{k} + (b-2)^{k}],$ because $Q_{\underline{m}}(x) = \sum_{k=1}^{m} B_k (x-1)^k$, with $B_k = Q_{\underline{m}}^{(k)}(1) / k! \ge 0$. Therefore, since $[(b+1)^2-1]^k = b^k(b+2)^k > b^k[2+(b-2)^k] >$ $b^{k}[1+(b-2)^{k}]+(b-2)^{k}=b^{k}+$ $(b-1)^2-1)^k+(b-2)^2$ if $b \ge 2$, and $[(b+1)^2-1]^k > b^k + ((b-1)^2-1)^k + (b-2)^k$ if b=1, it follows that $l(f^m, g^m) \neq 0$. Finally assume that $|a_0|+1=a_p=b+1$. So, $a_0 = -b$. Therefore since $\{a_0, a_p\}$ $l(f^{m}, g^{m}) = 0$ if and only if $Q_{m}(b+1) = Q_{m}(-b)$, or equivalently $Q_{\underline{m}}((b+1)^2) - Q_{\underline{m}}(b+1) =$ $Q_{\underline{m}}(b^2) - Q_{\underline{m}}(-b)$ (see proposition 2(c)). Since m62 is odd, from proposition 2(a) $l(f^m, g^m) = 0 \text{ if and only if } Q_{\frac{m}{2}}((b+1)^2) = Q_{\frac{m}{2}}((b+1)^2) = Q_{\frac{m}{2}}(b+1) + Q_{\frac{m}{2}}(b^2) + Q_{\frac{m}{2}}(b)$ or equivalently.

 $\sum_{k=1}^{\frac{m}{2}} B_k [(b+1)^2 - 1]^k = \sum_{k=1}^{\frac{m}{2}} B_k [b^k + (b^2 - 1)^k + (b - 1)^k].$ Therefore, since $[(b+1)^2 - 1]^k = b^k (b+2)^k > 2$ $[(b-1)^k + 1](b+2)^2 > (b-1)^k (b+2) + 2$ $b^k = b^k + (b^2 - 1)^k + (b-1)^k \text{ if } k \ge 2 \text{ and } b \ge 1$, and $[(b+1)^2 - 1]^k > b^k + (b^2 - 1)^k + 2$ $(b-1)^k \text{ if } k = 1 \text{ ,and } b \ge 1 \text{ ;it follows that}$ $l(f^m, g^m) \ne 0 \text{ . Hence f) is proven . } \square$ From theorem (1) and theorem (3)

Corollary (4):In the assumptions of theorem (3)
the following statements hold.

it follows easily the following corollary.

a) If $a_0 + (-1)^p a_p \neq 0$, then $1 \in per(f,g)$.

b) If neither p is even and $\{a_p\}\subset\{0,1\}$,nor p is odd and $a_0=a_p$ or $a_0+a_p=1$ then $\{1,2\}\cup per(f,g)\neq\emptyset$.

c) If $\{a_0, a_p\} \subset \{-1, 0, 1\}$, then the unique periods m that can be forced

from the numbers l(f",g")are 1 and 2.

d) If $\{a_0, a_p\} \not\subset \{-1, 0, 1\}$ and $a_0 + (-1)^p a_p \neq 0$, then $\{3, 5, 7, ...\} \subset per(f, g)$. e) If $\{a_0, a_p\} \not\subset \{-1, 0, 1\}$, p is odd, $a_0 \neq \pm a_p$, 4 6 m, and $m \notin per(f, g)$, then $\{m62, m\} \subset per(fg)$. f) If $\{a_0, a_p\} \not\subset \{-1, 0, 1\}$, p and m>2 are even $m \notin per(f,g)$, then $\{m62,2m\}$ $\subset per(f,g).$ g) If $\{a_0, a_p\} \not\subset \{-1, 0, 1\}$, p is odd, $a_0 \neq a_n$, m>2 is even and 4 Φ m, then

The following corollary is the special case of theorem (3) when gthe identity map.

 $\{m62, m\} \cup per(f, g) \neq \emptyset.$

Corollary (5):-

Let $f, g: M \rightarrow M$ be a transversal coincidence maps. Suppose that g is the identity map and the rational homology on M satisfies (1) with J =

 $\{p\}$. Denote the (a_i) the 1×1 integer matrix defined by the induced **homology** $f_{i}: H_{i}(M;Q) \rightarrow H_{i}(M;Q)$ for each $j \in N$. Then the following statements holds.

a)
$$l(f,g) = L_{f,g} = 1 + (-1)^p a_p$$
.
b) If $l(f^2,g^2) = 0$ if and only if $a_p \in \{0,1\}$.
c) If $m > 2$ $l(f^m,g^m) = 0$ and only if $a_p \in \{-1,0,1\}$.

Proof :-

Since g is the identity map then for each $k \in N$ g^{*k} is the identity map, so (a_i) the 1×1 integer matrices defined on the induced homology $\theta = f_{\pi} : H(M,Q)$ $\rightarrow H_i(M;Q)$, were $i \in \{0, p\}$ and since $H_0(M;Q) \approx Q$, M is connected, then

consequently f^0 is the identity map (see [5] for more details), so $a_0 = 0$.

From the definition of l(f,g) and $L_{f,g}$ we get that $l(f,g)=L_{f,g}=1+(-1)^p a_p$, this proves a).

From (2) we get $l(f^m, g^m) =$ $(-1)^p Q_n(a_p)$, so $l(f^2, g^2) = (-1)^p Q_n(a_p)$. From proposition (2) we get that, $Q(x)=x^2-x$. So, $Q_2(a_p) = a_p^2 - a_p = a_p(a_p - 1)$, and consequently $, l(f^2, g^2) \neq 0$ if and only if $a_n \in \{0,1\}$. So, b) is proven.

If m>2 then from statements d), e), and f) of proposition (2) we obtain $l(f^m, g^m) = 0$ if $a_p \in \{-1, 0, 1\}$. Now we assume that $a_p \notin \{-1,0,1\}$. From statements a) ,h) and i) of proposition (2) it follows that $l(f^m, g^m) = (-1)^p Q_m(a_p) \neq 0$. Hence c) follows .

From theorem (1) and corollary (5) it follows the following corollary

Corollary (6) :-

In the assumptions of corollary (5) if we assume that $a_n \notin \{-1,0,1\}$ then the following statements hold.

- a) $\{1,3,5,7,...\} \subset per(f,g)$.
- b) If m is even and m ∉ per (f, g) , then $\{m 62, 2m\} \subset per(f, g)$.

Let S be the set of $(z_1, z_2, z_3) \in Z_0^3$ then with $Z_0^3 = \mathbb{Z} \setminus \{-1,0,1\}$ satisfying at least one of the following conditions:

- All the components have the same
- 2) $|z_i| < \max\{z_i\}$ if z_i is the component that has different sign.
- 3) $|z_i| > \sum_{j \neq i} |z_j|$.

Theorem (7) :-

Let $f, g: M \rightarrow M$ be a transversal coincidence maps. Suppose that the rational cohomology (homology) on M satisfies (1) with $J=\{p,q\}$. Denote by (a_j) the 1×1 integer matrix defined by the induced homology endomorphism $\theta_j: H_j(M;Q) \rightarrow H_j(M;Q)$ for each $j \in J \cap \{0\}$. Assume that p is even (respectively odd). Then the the following statements hold.

- a) Let m > 1 be odd. If q is even
 (respectively odd) and (a₀,aゥ,aզ) ∈ S
 ,or q is odd (respectively even) and
 (a₀,aゥ,-aզ) ∈ S, then l(f™,g™)≠0.
 b) Let m > 1 be even. If q is even
- (respectively odd), or q is odd (respectively even) and $(|a_0|, |a_p|, \neg |a_q|)$ $\in S$, then $l(f^m, g^m) \neq 0$. Proof:-

Assume pis even. The case pis odd follows in a similar way. Also suppose that m > 1 is odd, q is even and (a_0, a_p, a_q) $\in S$. If a_0, a_p and a_q have the same sign, then from (2) $l(f^m, g^m) = Q_m(a_0) + (-1)^p Q_m(a_p) + (-1)^q Q_m(a_q) = Q_m(a_0) + Q_m(a_p) + Q_m(a_q)$ have the same sign. From statements a) and h) of

proposition (2) we have $Q_m(a_0), Q_m(a_p)$ and $Q_m(a_q)$ are an increasing odd functions in $(1,\infty)$, it follows that $l(f^m, g^m) = Q_m(a_0) + Q_m(a_p) + Q_m(a_q) \neq 0$.

Assume $a_q < -1$ and $1 < a_0 \le a_p$, if $|a_p| < a_0$ (i. e. $|a_q| < \max\{a_0, a_p\}$) it follows that $l(f^m, g^m) = Q_m(|a_0|) + Q_m(|a_p|) - Q_m(|a_q|)$ $> Q_m(|a_p|) - Q_m(|a_q|) > 0$ i. e., $l(f^m, g^m) \ne 0$.

If $|a_q| > |a_0| + |a_p|$ we have that

 $Q_m(|a_q|) > Q_m(|a_0| + |a_p|) = \sum_{k=1}^m A_k(|a_0| + |a_p| - 1)^k,$

because by proposition 2(g) we have that $Q_m(x) = \sum_{k=1}^m A_k (x-1)^k$ with $A_k =$

 $Q_m^{(k)}(1)/k! \ge 0$. Since $(|a_0| + |a_p| - 1)^k > [(|a_0| - 1) + (|a_p| - 1)]^k \ge (|a_0| - 1)^k + (|a_p| - 1)^k$, we obtain that

 $\sum_{k=1}^{m} A_{k} (|a_{0}| + |a_{p}| - 1)^{k} > \sum_{k=1}^{m} A_{k} (|a_{q}| - 1)^{k} + \sum_{k=1}^{m} A_{k} (|a_{p}| - 1)^{k} = Q_{m} (|a_{0}|) + Q_{m} (|a_{p}|)$ Hence

 $Q_{m}(|a_{q}|) > Q_{m}(|a_{0}| + |a_{p}|) > Q_{m}(|a_{0}|) + Q_{m}(|a_{p}|), \quad (3)$ and consequently $l(f^{m}, g^{m}) \neq 0$.

Now a ssume that q is odd. Then $l(f^m, g^m) = Q_m(a_0) + Q_m(a_p) - Q_m(a_q) = Q_m(a_0) + Q_m(a_p) + Q_m(-a_q)$, and since $(a_0, a_p, -a_q) \in S$ the argument of the above case can be again to obtain that $l(f^m, g^m) \neq 0$, so a) is proven.

Assume that m > 1 is even. By

statements b),h) and i)of proposition(2) function $Q_m(x)$ is positive in(- ∞ ,-1) \cap

 $(1,\infty)$. Therefore, if q is even (f',g')=

 $Q(q_0)+Q(q_0)-Q(q_0)$ and consider two cases. $case\ 1:4\ 6\ m$.By proposition 2(b) the function $Q_m(x)$ is even . Therefore, $l(f^m,g^m)=Q_m(|a_0|)+Q_m(|a_p|)-Q_m(|-a_q|)$. From the assumptions we have that $(|a_0|)+|a_p|+|a_q|)\in S$.So we can repeat the the arguments of the proof of statement a) and obtain $l(f^m,g^m)\neq 0$.

case $2:4 \ \Phi \ m$. We have $|a_q| < \max\{|a_0|,|a_p|\}$ or $|a_q| > |a_0| + |a_p|$, because $(|a_0|,|a_p|,-|a_q|) \in S$ we assume that the first inequality holds .Then from statements h) and i) of proposition (2), $l(f^m,g^m) =$. Since $(|a_0|,|a_p|,-|a_q|)$

proof of statements a), and obtain $l(f^m, g^m) \neq 0$.

Now assume that the second inequality holds. Then by statements c) and a) of proposition (2), and by (3) $Q_m(-|a_0|+|a_p|)=Q_m(|a_0|+|a_p|)^2)+Q_m(|a_0|+|a_p|)\geq Q_m((|a_0|+|a_p|)^2)+Q_m(|a_0|+|a_p|)\geq Q_m(|a_0|^2)+Q_m(|a_p|^2)+Q_m(|a_0|+|a_p|)> Q_m(-|a_0|)+Q_m(|a_0|^2)+Q_m(|a_0|^2)+Q_m(|a_0|)+Q_m(|a_p|)= Q_m(-|a_0|)+Q_m(-|a_p|)$. Therefore, from statements h) and i) of proposition (2) and by (3) $l(f^m,g^m)=Q_m(a_0)+Q_m(a_p)-Q_m(a_q)\leq Q_m(-|a_0|)+Q_m(-|a_p|)-Q_m(-|a_q|)<$

 $Q_{m}(-(|a_{0}|+|a_{p}|))-Q_{m}(|a_{q}|) \leq Q_{m}(|a_{0}|+|a_{p}|)-Q_{m}(|a_{q}|) \leq Q_{m}(|a_{0}|+|a_{p}|)-Q_{m}(|a_{q}|) \leq 0$. Hence b) is proven. \Box

From theorem (1) and theorem (7)
then
it follows immediately the following
corollary

In the assumption of theorem (7)

Corollary (8) :-

the following statements hold

a) Let m > 1 be odd. If q is even

(respectively odd) and $(a_0, a_p, a_q) \in S$,or q is odd (respectively even) and $(a_0, a_p, -a_q) \in S$, then $\{3, 5, 7, \dots\} \subset S$

b) Let m > 1 be even. If q is even (respectively odd), or q is odd (respectively even) and $(|a_0|, |a_p|, -|a_q|)$ $\in S$, then $\{m \ 6 \ 2, m\} \cup per(f, g) \neq \emptyset$. $Q_m(|a_p|) - Q_m(-|a_q|)$

 $\in S$ we can repeat the arguments of the

REFERENCES

per(f,g).

- Dold, A., 1983, Fixed point indices of iterated maps, Invent. Math. 74: 419-435.
- Guillammon, A., Jarque, X., Llibre,
 J., Ortega, J. and Torregrosa, J., 1995,
 Periods for transversal maps via
 Lefschetz numbers for periodic points, Trans. Amer. Math. Soc. 347: 4779-4806.
- 3. Guillemin, V.and Polack, A., 1974,

- Differential Topology, Prentice Hall, Englewood Cliffs, N.J.
- Mukherjea, K. K., 1974, Survey of coincidence theory, Global analysis and its application, Vol. III (Lectures, Internat. Sem. Course, Internat. Centre Theoret. Phys. Triste, 1972) p. 55 - 64. Internat. Atomic Energy Agency, Vienna,.
- Munkres, J., 1984, "Elements of Algebraic Topology", Addison -Wesley.
- Niven, I. and Zuckerman, H. S., 1980, "An introduction to the theory of numbers"., fourth edition , John Wiley & Sons, New York.
- Saveliev, P., 2005 Applications of Lefschetz numbers in control theory Internet.
- Saveliev, P., 2001, The Lefschetz coincidence of maps between manifolds of different dimentions, Topology Appl. 116 (1):137-152.

الدوريات لدوال متطابقة مستعرضة على مطوي مرصوص معطى له الدوريات الكوهومولوجية (الهومولوجية)

بان جعفر الطائي *

* قسم الرياضيات - كلية العلوم للبنات - جامعة بغداد

المستخلص

ليكن M مطوي مرصوص مترابط املس بحيث ان الكوهومولوجية (الهومولوجية) له تحقق $H^{J}(M;Q)\approx Q(H_{j}(M;Q)\approx \{0\})$ و $j\in J\cap \{0\}$ اذا كان $H^{J}(M;Q)\approx Q(H_{j}(M;Q)\approx Q)$ خلافا لذلك حيث J مجموعة جزئية من مجموعة الاعداد الطبيعية وعدد عناصر ها 1 أو 2.

الرسم $m \in N$ من النوع $f,g:M \to M$ الرسم $f,g:M \to M$ الرسم البياني ل $f,g:M \to M$ يتقاطع مستعرضا مع الرسم البياني ل $g^m(x)$ عند كل نقطة $g^m(x)=g^m(x)$ بحيث ان g نقطة تطابق ل g^m و g^m .

هذا البحث يتناول الدوريات ل f و g بأستخدام اعدا د لبشز للتطابق لنقاط متطابقة دورية .