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Abstract:

This paper aims to decide the best parameter estimation methods for the parameters of the Gumbel
type-I distribution under the type-Il censorship scheme. For this purpose, classical and Bayesian parameter
estimation procedures are considered. The maximum likelihood estimators are used for the classical
parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not
possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and
Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is
very important to determine an appropriate combination of a prior distribution and a loss function. Therefore,
two different prior distributions are used. Also, the Bayesian estimators concerning the parameters of interest
under various loss functions are investigated. The Gibbs sampling algorithm is used to construct the
Bayesian credible intervals. Then, the efficiencies of the maximum likelihood estimators are compared with
Bayesian estimators via an extensive Monte Carlo simulation study. It has been shown that the Bayesian
estimators are considerably more efficient than the maximum likelihood estimators. Finally, a real-life
example is also presented for application purposes.

Keywords: Bayesian Methods, Gumbel Type-I Distribution, Simulation, Type -1l Censoring.

Introduction:

The Gumbel distribution (GD) was first  estimation methods, including both classical and
proposed by Gumbel in 1941%. It is widely used in Bayesian for the two-parameter GD. Saleh® studied
meteorological phenomena, hydrology, and so on. the unknown parameters of the Gumbel type-I
GD is one of the important distributions in distribution based on the moment and modification
modeling extreme values such as maximum daily moment methods. Reyad and Ahmed® obtained E-
flood discharges and snowfalls, rainfalls, and Bayesian estimators of the GD under the type-ll
extreme temperatures, see®*. This distribution is  censored scheme. Saad et al.® introduced the
called extreme value type- | distribution. It has two Gumbel-Pareto distribution.

types. The first type is based on minimum order In survival analysis, the data sets are usually
statistics and the second type is based on maximum observed as censored samples. Type —Il censoring
order statistics. Here, the first type is discussed. type is well-known and widely used. In the type-II

It is very important to obtain the model censoring, only the first failures k<m is observed
parameters of any distribution effectively and among m units. In this censoring scheme, it is
precisely. Therefore, the GD has been studied in the assumed that a set number of subjects or items are
literature by numerous researchers. Abbas and put on a test. The integer k<m is pre-fixed, and the
Tang® obtained the Bayesian parameter estimation experiment stops as soon as the k—th failure is
methods for the Gumbel type-1l distribution.  observed, see (Kundu and Ragab'!). There are
Malinowska and Szynal® discussed Bayesian  estimations of parameters of the different
estimators for GD on kth lower record values. distributions using the type-ll censoring in the
Yilmaz et al.” compared different parameter literature. Altindag et al. ? studied maximum

834


https://dx.doi.org/10.21123/bsj.2022.6898
mailto:asumanduva@yyu.edu.tr
mailto:mahmutkara@yyu.edu.tr
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8653-6900
https://orcid.org/0000-0001-7678-8824

Open Access
Published Online First: November 2022

Baghdad Science Journal
2023, 20(3): 834-842

P-1SSN: 2078-8665
E-ISSN: 2411-7986

likelihood and maximum product spacing
estimation methods for Burr-Ill distribution using
type-Il censored samples. Nassar et al.*® discussed
E-Bayesian estimation for the simple-stress model
of exponential distribution based on the type-Il
censoring scheme. Okasha et al.'* examined the
properties and parameter estimation of Marshall-
Olkin extended inverse Weibull distribution under
type-Il censoring. Xin et al. ™ obtained the
reliability estimation of the three-parameter Burr-
type-XIl distribution under the type-ll censoring
scheme.

This paper focuses on the estimation of the
unknown parameters of the Gumbel type-I
distribution under the type-ll censorship scheme
with classical and Bayesian parameter estimation.
The maximum likelihood (ML) estimation is used
in the classical parameter estimation. The
asymptotic confidence intervals (ACIls) of the
unknown parameters are derived by using the
observed Fisher information matrix. Since Bayesian
estimators (BEs) cannot be obtained in explicit
forms, Lindley (LD) and Markov Chain Monte
Carlo (MCMC) methods are used for Bayesian
calculations. The selection of a suitable loss
function (LF) and prior distribution (PD) is of
considerable importance in the Bayesian parameter
estimation. Therefore, three different LFs are
presented, namely the squared error loss function
(SELF), the general entropy loss function (GELF),
and the weighted squared error loss function
(WSELF). Under these LFs, the normal and gamma
PDs are used for the parameters p and o,
respectively. The Bayesian credible intervals (BCIs)
are also constructed based on the Gibbs sampling
method. The performances of these estimation
methods are compared through an extensive
simulation study.

This paper aims to deal with the estimation of
the unknown parameters of Gumbel type- |
distribution based on the type-Il censoring scheme
under all these aforementioned estimation methods.

The rest of the paper is organized as follows:
In section 2, the brief information about the
Gumbel-type-l distribution is given and the ML
estimators of the parameters 1 and ¢ are presented.
The limiting distributions of the ML estimators are
also investigated. In Section 3, BEs of unknown
model parameters are obtained by using LD, and
MCMC methods. Some numerical comparisons
between the ML and Bayes estimators are provided
in Section 4. A real-life data set is used to illustrate the
computations of the ML and Bayes estimators in Section
5. Concluding remarks are presented at the end of
the paper.
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Parameter Estimation:

Let Y be a random variable from the Gumbel type-
| distribution with the location p and the scale
parameter o. It’s the cumulative distribution
function (cdf) and the probability density
functions (pdf) are given as:

Yy-u
Foimo)=1-e ")

)

—o<y<oo; puelk, >0, 1
1 (= _ (EH
Former = L ol
—o<y<ow pueR, >0 2

respectively.

Suppose that Y;,Y,,..,Y,, be independent and
identically Gumbel type -1 distributed random
variables representing the lifetimes of independent
units. Based on type-Il censoring scheme, a sample
of m identical units is put on a life testing
experiment and their lifetimes are recorded, and
only the first k failure times are considered, i.e.
vy <y < <yw).

In this study, ML and Bayesian parameter
estimation methods for Eq. 2 under the type-II
censorship scheme are discussed.

Maximum Likelihood Estimation:
The likelihood function of Eg. 2 using the type-II
censoring scheme is as follows:

L(p,o;y) = .
! m-—
S fgim o)1= Fyayma)] =

e )

Then, the log-likelihood function is given by:
InL(u,0;y) = ln( m ) — klno + Zley(j)—u _
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o ) —(m-— k)e(T)

m!
(m—-k)!

k
j=1¢€

3

el

4
By differentiating Eq. 4 with respect to the
parameters p and o, the likelihood functions derived

the following forms:

a;_r;iL =3 ﬁley(ji_” P05 k=0, s
T =Y vy - ) +

Ly, 5) oy —w) +

%Q(W)(Y(R) —w)=0 6

The ML estimators of the parameters are obtained
as the simultaneous solution of Egs. 5 and 6.

m-—k
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However, these equations have no explicit solutions
and they have to be found based on iterative
solutions. Therefore, the Newton-Raphson method
is used in this paper.

Let 6 and 1 denote the MLEs of o and p,
respectively.

Now, the asymptotic distributions of the ML
estimators of the unknown parameters are

B wo) 7

Here I71(u, o) is calculated from the inverse of the
observed Fisher information matrix I(u, o) as given
below.
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Then, the approximate 100(1 — a)confidence

intervals for the p and o, the coverage probabilities
(CPs) are:

fitZagsp/Var(@), CR, =P JV’“—’(‘M <
Zl—a/z

and ] ]
6+ Zgsp[Var(6), CP, =P JV‘;_‘Z&) <

Zl—a/z
respectively. Here, Z,,, presents the (a/2)th
percentile of the standard normal distribution.

Bayesian Inference:

In this subsection, the BEs of p and o
parameters of Eq. 2 by using the type —Il censored
scheming under SELF, WSELF, and GELF are
discussed. The loss function is very important in
Bayesian parameter estimation, see 619, One of the
well-known loss functions is SELF. It s
symmetrical so, it can be used when over and
underestimates are equally serious. However, this is
not a good criterion in most cases, see Helu and
Samawi'®. In such cases, asymmetric loss functions
can be considered. Here, BEs of the parameters
under GELF, and WSELF are discussed. These loss
functions are asymmetrical. Suppose that the
independent PDs of the parameters p and ¢ are
Normal(a,b) and Gamma (c,d) with probability
density functions

—1/u-a\2
T () ez (5) peR andmy(o) x o¢le=d0
9
Then, the joint prior density function of p, and o is

—1/u-a\2

71, 0) = 1, (), (0) e 7 (5) oot e

10
where assume that (a,b)and (c,d)are non-
negative and known. They are also hyper-
parameters of the PD.
Combining Eqg. 10 with Eg. 3, the joint posterior
distribution of p and o is obtained as

k
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Then, from Eq. 11, the posteriors of p and o are
obtained as follows:

Ti(uly, o) *
—_1(@)2 . You Y(jc)r—u B y(k;—u m—k
ez\b Hj:1e s e € o€
12
and
Ta(oly, u) &
Yp-p  2@-w Yio-u ™k
e_do-O'C_l_k H?:le o e—e a e—e o
13

respectively. The conditional PDs of p and ¢ from
Egs. 12, 13 are unknown. Therefore, two different
approximations are used, namely LD and MCMC
techniques. The details of them are briefly described
in the following sections.

Lindley’s Approximation:

Let u(u, o)be a function of p and o, then by using

Eqg. 11, the posterior expectation of an arbitrary

function u(y, o) is as follows:

i=Euo)ly) =

ffooo fooo u(pw,0)v(no)L(U, 0|y)dodu
150 Js vwo)L(i, oy)dodu

14

where v(u, a) is the joint prior density function and

L(u, aly) is the likelihood function.

The BE of u(u,o0)is the solution of Eq. 14.

However, the BEs cannot be evaluated analytically.

Therefore, the Lindley approximation method is

considered to obtain BEs of unknown parameters.

This method is introduced by Lindley in 1980%°.

By using Lindley’s approximation method, @ given

in Eqg. 14 can be approximated as:

)

u(u, o) +
~ 0.5[u11011 + Upp025 + 2U43015 + 2uy (01191 + 02102) + 2z (01201 + 02202)] 15
i~
{ +0.5[Lq11 (w1081 +2011013) + L1, (3u1011012 +uy(011022 + 2(7122)) + }
\ L1221 (011022 + 20f5) + 3Up01202,) + Loz (U1 012025 + U03,)] ) a5
u, = 2uwo) _ _ 0%u(wo) _ Ou(w,o) _
N O Bayesian Estimators under Asymmetric Loss
2 :;(’;"’),ulz =2 a”(;""), Functions Using Lindley Approximation:
‘ oo From Eq. 15, BEs of the model parameters under
 alnv(wo) _ otnv(uo) L= GELF are given below:
p1= ou L oo H1L If u (.u'! O-) = .u'_t!ul = _tlu'_(t-‘-l)lull =
a3InL _ 3%InL _ 3%InL _ %L t(t + Dy~ t+2) = = = =
o 22 T G520 12 T g be2e T s OF t;_en)u » Uz = Uzz =iz T Ung

and gy,i,j = 1,2 are given in Eq. 8.

Bayesian Estimators under Symmetric Loss
Function Using Lindley Approximation:
From Eqg. 15, BEs of p and o based on SELF are
If u(u,0)=p, ug =1L,u11 = Uz = Uy = Uy =0,
then
Asgrr = A+ 611P1 + 531152 .

+ 9-5[141116121 + 3L112611612

+ E122(511522 +267,)

+ L222512522],
and
if u(uo)=o0,u,=11uUy, = Uy = U = Uy =
0, then
OspLr = 0 + 012p1 + 0320, + 0-5[Z111611612 +
L112(611622 + 26%) + 3L15261262, + E2226122].
Here, i and & are the ML estimators of pu and o,
respectively.
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E(u™tly) = A7" + 0.5(1111611)
+01(611P1 + 621P2)
+ 0-5[z111f116121 + 3111, 61161,
+ §122ﬁ1(611622 +267)
+ L222ﬁ1312322]

Therefore, .aGELF = [E((,u_tly))]_l/t'

If u(uo)=0"tu,=—to” D y,, =
t(t+ 1o~ 2y = uyy =uy, = Uy =0,
then
E(a7ty) = 67F + 1,(812p1 + 622P2)
+ 0-5(?22522)
+0.5[L111%,6,1612
+ L1120 (611622 + 26)
+ 3L12,1,61,6,, + i222ﬁ26222]
SO, OgeLr = [E((U_tb’))]_l/t
Similarly, from Eq. 15, BEs of the parameters of
interest (i.e. p and o) under WSELF are given by:
Iffu(uo)=ptu =—p 2wy =203 up =
Uyy = Uqgp = Uy = 0, then
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1+ 0.5(1111611)
+ 11 (61191 + 62102)
+ 0-5[21111116121 + 3011201611612
+ §122ﬁ1(511522 +267,)
+ Lpp211161267;
The Bayesian estimator of p is of the following
form:

E@wlly) =

AwseLr = [E((M_lb’))]_l
The WSELF with parameter o is given by:
If u(uo)=0"Yu,=-0"2%u,, =20
Uy = Uqp = Uyy = Uy = 0 then
E(o7 y) = 67" + 01,(G12P1 + 622P2) +
0.5(i11611) + 0.5[i111ﬁ2611612 +
L11201(811622 + 26%) 4 3L12211,61,6,, +
z2221725222]
Hence, the Bayesian estimator of ¢ is Gyysgir

[E( )]

-3
) ul
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Markov Chain Monte Carlo:

Here, the Gibbs sampling method is used to
generate samples from posterior distributions of
model parameters. This method is a sub-class of the
MCMC method, see Smith and Roberts 2.
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It is clear from Eqgs. 12, 13 that the BEs of the p and
o cannot be found in closed form by using the
conditional  posterior  distribution of these
parameters. In this situation, the Metropolis-
Hasting (M-H) algorithm can be considered, see
Metropolis et al.?? and Hasting®.

The steps Gibbs sampling method are given below:
Stepsl: Seti =1 and let yuy, = fi and g, = 6.
Steps2: Use the following M-H algorithm, generate
K and o from 7 (ui-1l0;-4,¥) and
Ty (ai_llul,y)with normal proposal distributions
N(ui—1, 151" and (0;_4,135) , where I7' (i, j = 1,2)
is given in Section 2.

Step3: Seti =i+ 1.

Step4: Repeat steps 2-3 N times and obtain

(/-11; 0-1)' s (,U.N, O-N)'

Now, the BEs of the p and o based on all these
aforementioned loss functions are obtained as

follows.
~ _ 1N A _ 1N
MSELF_NZL'=1.HL" OSELF = 3y Zi=10i»
-1

N _ (1N -ttt A _
HGeLr = \y Li=1Hi » OGELF =

-1
1N —t\t
(FZao) "
and

N 1

MWSELF=( Yi=1Mi ) » OWSELF =

1 _ -1

(FZLaot)

Then, the 100(1 — y) credible interval of u and © is
obtained, see Chen and Shao?.

Methodology:

In this Section, the performances of the ML
estimators and BEs are investigated via Monte
Carlo simulation. The performances of these
estimators are compared in terms of absolute biases
(ABias) and mean square errors (MSEs) under
different sample sizes, censoring, and parameter
values. The sample sizes provided are m =
20(10)100 and u =—-1,0,1and ¢ = 0.5,1,2 are
considered. Two censoring proportions, %10 and
%30, are evaluated for each sample size and
parameter value. In the BEs, two different
informative priors are considered for p and o
parameters. Firstly the hyper-parameters a = ¢ =
d = 0,b =1, are taken into account and are called
Prior-l1. Then, the hyper-parameters, a =c=d =
4,b = 1, are chosen and are called Prior- Il. Based
on Prior-1 and Prio- II distributions, the BEs of pu
and o under SELF, GELF, and WSELF are
calculated by using both LD and MCMC methods.
MCMC samples of size 10000 are taken for the
computation. In this study, the t value under GELF
is taken ast = 1.5. Also, the maximum likelihood
estimators are computed. All the computations are
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and MSE values of ML estimators and BEs are
presented in Tables 1, 3 respectively. Results of the
ACIs, BCls and the CPs are summarized in Table 2.

conducted in Matlab R 2013 with over 10000
replications for different cases. Since the simulation
results are similar, only results based on u = 0 and

o = 1 are given in Tables 1-3. The simulated ABias

Table 1. The ABiases and the MSEs for the MLEs of p and o.

~

i é
m k ABias MSE ABias MSE
30 27 0.0299 0.0416 0.0238 0.0258
21 0.0291 0.0465 0.0355 0.0381
50 45 0.0180 0.0245 0.0162 0.0163
35 0.0244 0.0290 0.0261 0.0238
100 90 0.0063 0.0112 0.0048 0.0081
70 0.0119 0.0151 0.0114 0.0109
Table 2. The ACIs, BCIs and the CPs of p and o.
1 7]
PRIOR- | PRIOR- II PRIOR- | PRIOR -II
m k ACls BCls BCls ACls BCls BCls
27 (0.3915;0.3197)  (-03941;0.3436)  (-0.4180;0.3383) (0.6492;1.2489)  (0.6812; 1.2522) (0.7196; 1.2854)
0.9511 0.9628 0.9683 0.9516 0.9567 0.9660
30 21 (-0.447;0.3895)  (-0.4269;0.4215)  (-0.4089;0.3980)  (0.5919;1.3478)  (0.6151; 1.3139)  (0.5876; 1.3640)
0.9487 0.9533 0.9517 0.9418 0.9496 0.9443
45  (-0.3012;0.2849)  (-0.2870;0.2905)  (-0.3225;0.3320)  (0.7357;1.2320) ~ (0.7481;1.2390) ~ (0.7501; 1.2192)
0.9598 0.9632 0.9676 0.9536 0.9592 0.9560
50 35  (-0.3546;0.3058)  (-0.3317;0.3146)  (-0.3421;0.3226) (0.6759;1.2791)  (0.6858; 1.2793)  (0.6811; 1.2522)
0.9550 0.9595 0.9582 0.9522 0.9538 0.9558
90  (-0.2061;0.1981)  (-0.1944;0.1894)  (-02083;0.1912)  (0.8156;1.1617)  (0.8148;1.554)  (0.8332; 1.1752)
0.9792 0.9817 0.9847 0.9674 0.9692 0.9683
100 70 (-0.2046;0.2041)  (-0.2344;0.2245)  (-0.2117;0.2083) (0.8115;1.1671)  (0.7908;1.2012)  (0.8115; 1.1671)
09772 0.9812 0.9802 0.9710 09717 09723
Table 3. The ABiases and the MSEs for the BEs of p and .
Lindley MCMC
I [ Qa g
m k Method ABias MSE ABias  MSE ABias MSE ABias MSE
30 SELF 00130 00357 00280 00314 00097 00355 00265  0.029
27 GELF 00085 00190 00251 00285 00078 00107 00240  0.0265
WSELF 00110 00176 00260 00275 00091 00146 00248  0.0262
SELF 00205 00382 00296 00363 00184 00369 00255  0.0330
21 GELF 00126 00261 00287 00339 00106 00166 00257  0.0335
S WSELF 00113 00243 00282 00329 00112 00167 00260  0.0296
o SELF 00134 00251 00126 00128 00108 00233 00120  0.0164
& 50 45 GELF 00102 00136 00119 00105 00099 00078 00109  0.0160
i WSELF 00111 00125 00114 00100 00106 00115 00119  0.0158
I SELF 00144 00288 00194 0018 00121 00273 00177  0.0180
< 35 GELF 00088 00144 0018 00182 00075 00084 00176  0.0172
T WSELF 00104 00132 00187 00180 00108 00199 00178  0.0164
S 100 SELF 00058 00096 00031 00060 00031 00098 00026  0.0056
- 90 GELF 00031 00057 00028 00056 00020 00029 00021  0.0045
5 WSELF 00030 00052 00024 00055 00033 00055 00016  0.0042
= 70 SELF 00097 00131 0008 00107  0007L 00124 0008  0.0100
o GELF 00059 00076 00071 00086 00064 00044 00064  0.0082
WSELF 00037 00069 00074 00089 00032 00055 00070  0.0090
30 SELF 00257 00310 00228 00251 00232 00305 00257  0.0230
27 GELF 00221 00235 00200 00227 00171 00208 00242  0.019
— WSELF 00204 00218 00212 00218 00116 00201 00240  0.0210
hi SELF 00270 0033 00267 00378 00254 00224 00242  0.0358
kit 21 GELF 00183 00256 00250 00315 00143 00221 00238  0.0307
e WSELF 00155 00239 00262 00308 00119 00274 00239  0.0305
o 50 SELF 00120 00231 00145 00122 00106 00227 00124  0.0116
o 45 GELF 00102 00134 00128 00102 00099 0009 00116  0.0100
= WSELF 00110 00123 00131 00118 00101 00097 00100  0.0110
© 35 SELF 00188 00281 00191 00191 00175 00276 00196  0.0176
= GELF 00108 00147 00185 00153 00103 00125 00094  0.0164
g WSELF 00104 00136 00181 00166 00092 00132 00112  0.0160
2 100 SELF 00058 00105 00153 00140 00044 00113 00116  0.0080
a 90 GELF 00042 00063 00132 00137 00039 00033 00095  0.0082
WSELF 00049 00056 00123 00136 00048 00065 00112  0.0079
SELF 00092 00139 00217 00219 00082 00148 00184  0.0176
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70 GELF 0.0077 0.0082 0.0194 0.0199 0.0060 0.0048 0.0119 0.0144
WSELF 0.0102 0.0074 0.0204  0.0153 0.0078 0.0096 0.0145 0.0153

“The CPs are the values presented in the second row.

From Table 1-3; e Itis also clear from Table 2 that the width of the
e First of all, as the sample size increases, both the ACls is wider than the BCls in all cases (ie,
ABias and MSE values of all the estimators Prior-1 and Prior-11). Moreover, the BCI and the
decrease in all cases. It implies that all the CP wvalues based on Prior-I and Prior-1l
estimators are asymptotically efficient. distributions are closer to a nominal value of
e Similarly, in almost all cases, as the censoring 95% than the ACls.
proportion increases, the ABias and MSE values  Application:
of all the estimators increase. This section considers a real dataset given by

e When Bayesian methods are compared with the ~ Dodson® to illustrate the estimation procedure
maximum likelihood method according to ABias developed in the previous sections. This data set
and MSE values, it is seen that Bayesian  was also studied by Balakrishan and Kateri?®. They
methods demonstrate better performance than  reported this dataset for Weibull distribution under
the maximum likelihood estimation method type-1l censorship. The dataset contains 12 failure
under both Prior-1 and Prior-I1. times of identical grinders of total 20 items. The

e Among the loss functions, it is evident that as far ~ censoring scheme is type-ll censoring with k =12
as ABiases and MSEs are concerned, Bayesian ~ and m=20. Here, the logarithm of Y,(i.e.,
estimation under the GELF works the best in U =InY ) is taken. Thus, the distribution of U
most cases. It is followed by Bayesian  becomes Gumbel type-I distribution. The data set
estimation under the WSELF. corresponding to the log-failure times is given

below.

{2.5227 3.1946 4.0639 4.2195 4.2356 4.5591 45706 4.5747 4.7380 4.8133 4.8331 5.0285}

The estimators of the Gumbel type-l distribution presented in Table 4. Furthermore, the ACIls and
using MLE and Lindley and MCMC methods are BCls are presented in Table 5.

Table 4. Estimation of parameters for the real data set.

Prior-I Prior-11
Lindley MCMC Lindley MCMC
Method 7, & [ & P & 7 &
MLE 51.94 154.24 51.94 154.24 5194 154.24 51.94 154.24
SELF 5256 154.68 52.18 154.35 52.71 15455 52.17 154.36
GELF 52.35 154.92 52.54 154.18 52.60 154.87 52.38 154.45
WSELF 52.98 155.11 52.30 154.36 52.74  154.96 52.46 154.72
Table 5. Interval estimators for the real data set.
Prior-1 Prior-II
Y2 & Y2 5
ACI (-19.24; 104.65) (101.53; 206.94) (-19.24; 104.65)  (101.53;206.94)
BCI (-17.35; 102.18) (105.86; 208.47) (-18.97; 103.27)  (104.97; 207.65)

Although all the estimators are close to each Conclusions:

other, there are some differences among them. Here, the classical and Bayesian estimators
Based on the simulation results given in Tables 1-3,  are investigated for Gumbel type-l distribution
the most suitable estimators were selected. It has  under the type-ll censoring scheme based on
been observed from the simulation results that the  various censoring rates and sample sizes. In view of
estimators  obtained by Bayesian methods  classical parameter estimation, the ML estimation
outperform the ML estimators. Therefore, it is  method is used. For the Bayesian calculations, LD
recommended to use Bayesian estimators in these and MCMC methods are obtained. Then, the
examples. Bayesian estimators under different loss functions

and different prior distributions are considered.

Also, the ACIs are constructed by using the ML

estimators. The BCls are also derived based on the
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MCMC method. The performances of all the
methods discussed in the study are compared with
the Monte Carlo simulation study. When the
maximum likelihood estimators are compared to
Bayesian estimators, it is observed that Bayesian
estimators have higher efficiencies than the
maximum likelihood estimators. It is also observed
that the MCMC method performs slightly better
than the LM. Finally, the real-life examination has
illustrated the modeling capacity of the Gumbel
type-I distribution. For more efficient estimators of
the Gumbel type-I distribution, it is recommended
to use Bayesian estimation methods with prior-I
distribution and the general entropy loss function.

Considering both the simulation results and
these points, we may suggest that this study can be
further extended considering the Gumbel type-I
distribution for different censoring schemes with a
Bayesian framework under symmetric and
asymmetric loss functions.
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