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Abstract: 
          In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation 

of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-

Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the 

dimension of the null space is equal to two.  The nonlinear Ritz approximation for the nonhomogeneous 

Camassa-Holm equation has been found as a function of codimension twenty-four.  
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Introduction:  
         There are a lot of mathematical, physical, 

chemical, and engineering phenomena that are 

shown as nonlinear problems so can be described 

these problems as a nonlinear Fredholm operator.              

𝑔(𝑥, 𝛾) = 𝜑, 𝑥 ∈ 𝑆 ⊆ 𝑋, 𝜑 ∈ 𝑌, 𝛾 ∈ 𝑅𝑛             1                

When 𝑔 is a smooth Fredholm map with zero 

indexes and S is an open subset of Banach spaces. 

One of them is 𝑌. Write the other one as 𝑋. To 

solve these problems may be used the method of 

reduction to the dimensional equation by solving this 

equation, 

𝜃(𝜉, 𝛾) = 𝛽, 𝜉 ∈ 𝐸, 𝛽 ∈ 𝑁,                               2 

When 𝐸  and 𝑁  are smooth manifolds of finite 

dimensional and 𝜃: 𝑅𝑛 → 𝑅  is a smooth function. 

The Lyapunov-Schmidt method can reduce Eq. 1 to 

Eq. 2, in which Eq. 2 has the same properties as Eq. 

1, in particular topological properties (multiplicity) 

and analytical properties (bifurcation diagram), 

which are found in 1. So that to study Eq. 1 it is 

sufficient to study Eq. 2. 

            Nonlinear problems are one subject of the 

greatest important subjects of mathematical 

phenomena possess received a great interest in 

scientific research in the last decades because of their 

wide set of geometry and scientific applications. 

Many of these studies focus on getting the 

bifurcation solutions of some equations, especially 

nonlinear partial differential equations (PDEs) that 

occur in Engineering, Physics, or mathematics. Also, 

in the Lyapunov-Schmidt method, the solutions in 

unlimited dimensional spaces coincide with the 

solutions in limited dimensional spaces. Therefore, 

the method is an important method in modernistic 

Mathematics to find analytical solutions. Many 

researchers have dealt with this method; it was 

previously called the alternative method by the 

researcher Krasnoselskii 1956 2 who used it to study 

Bifurcation for extremely without boundaries while 

the implicit function theory was unable to be used. 

Sapronov and his group. For example, in 3 used the 

homogeneous solution to have the linear Ritz 

approximation represented by the function 𝒲(ζ, λ) 

of the functional in Eq.1. Lyapunov-Schmidt method 

was also used to study boundary value problems, 
which can be seen in 4-7. Abdul Hussain, Mayada8 

and Mizeal9, study a bifurcation equation for a 

nonlinear system given by two algebraic equations.  

           Abdul Hussain 10 introduces a general method 

for finding nonlinear Ritz approximation of 

nonlinear Fredholm functionals. He introduces an 

example for finding a nonlinear Ritz approximation 

of the functional corresponding to the Duffing 

equation.  Also, Abdul Hussain, 2015 10 used a 

modified Lyapunov-Schmidt method to get a 

nonlinear Ritz approximation of the functional 

corresponding to the following equation  
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𝑑4𝑣

𝑑𝑥4 + 𝛼
𝑑2𝑣

𝑑𝑥2 + 𝛽𝑣 + 𝑣 + 𝑣2 + 𝑣3 = 0, 

with boundary conditions  

   𝑣(0) = 𝑣(2𝜋) = 𝑣′′(0) = 𝑣′′(2𝜋) = 0    
                    

it is shown that the nonlinear Ritz approximation is 

a function given by, 

 

Ŵ(ξ, δ) = 𝑐1ξ20 + 𝑐2ξ18 + 𝑐3ξ16 + 𝑐4ξ14 + 𝑐5ξ12

+ 𝛼1ξ10 + 𝛼2ξ8 + 𝛼3ξ6 + 𝑐6ξ4

+ 𝛼4ξ2 +  O(|ζ|20)  
+  O(|ζ|20)O(|δ|) 

where ξ = (𝜉1, 𝜉2), δ = {𝑐1,2,3,4,5,6, 𝛼1,2,3,4} such 

that 𝑐, 𝛼 are parameters. 

           In 11 Murtada used Lyapunov-Schmidt 

reduction (LSR) to study bifurcation solutions and 

the bifurcation diagram of the following nonlinear 

system 

√2𝜋𝜆1𝑋1 − 𝑋1𝑋2 − 𝑋2𝑋3 − 𝑋3𝑋4 = 0 

√2𝜋𝜆2𝑋2 − 𝑋1
2 − 2𝑋1𝑋3 − 2𝑋2𝑋4 = 0 

√2𝜋𝜆3𝑋3 + 3𝑋1𝑋2 − 3𝑋1𝑋4 = 0 

√𝜋𝜆4𝑋4 + 2√2𝑋1𝑋3 + √2𝑋2
2 = 0 

           In 2017 Rosen 12 has been studied to modify 

the Lyapunov-Schmidt method to find a nonlinear 

Ritz approximation for nonlinear Fredholm 

functional defined by the nonlinear fourth ODE. In 

his study, he considered the following cases, 

1. 𝑣 = 𝐷(2)(ζ), 

2. 𝑣 = 𝐷(2)(ζ) + 𝐷(3)(ζ), 

3. 𝑣 = 𝐷(2)(ζ) + 𝐷(3)(ζ) + 𝐷(4)(ζ), 

4. 𝑣 = 𝐷(2)(ζ) + 𝐷(3)(ζ) + 𝐷(4)(ζ) + 𝐷(5)(ζ). 

where 𝐷(𝑘)(ζ) are homogeneous polynomials of 

degree 𝑘 = 1,2,3,4,5 and  ζ ∈ R. 

          In the last years, Kadhim13 studied the 

bifurcation solution of extremes of the functions of 

codimensions eight and five at the origin by using 

Lyapunov-Schmidt reduction (LSR). In previous 

works, the presence and absence of 𝑢 shaped 

solutions were studied using the Lyapunov-

Schmidt method and Ritz linear approximation. 

As for our work, we study the presence and the 

absence of 𝑢 + 𝑣 solutions using the modified 

Lyapunov-Schmidt method and the nonlinear 

Ritz approximation. 
       The goal of this paper is to find the nonlinear 

Ritz approximation of the functional corresponding 

to the nonhomogeneous Camassa-Holm equation.  

 

Materials and Methods: 

Methods: 

Proposition 14. Suppose that the triple {𝑝, 𝜑, 𝑁 } is 

an elliptic finite dimensional reduction for the 

functional 𝑉  on a set Ω from the smooth Banach 

manifold M. Then the marginal map 𝜑 locates a one-

to-one corresponding between the critical points for 

the functional 𝑉 and the critical points for the key 

function 𝑊. 

 

Lyapunov-Schmidt reduction (LSR)  

           The LSR was first suggested by Schmidt 

1908 14. He discovered this method to get the 

solutions to operator equations. It is a method 

employed to solve the problems that possess 

variational property and the problems that do 

unpossessed variational property 1. Variational 

problems can be solved in other ways like Boubaker 

Polynomials15, but LSR has been successfully 

exercised to solve different nonlinear partial 

differential equations, as well as it has succeeded 

in finding bifurcation solutions to the equations, 

for example, Zainab and Mudhir 16, they found the 

bifurcation solutions for the equation of sixth order 

with boundary conditions using the Lyapunov-

Schmidt method in the variational case. This method 

gives as follows:   

           Let  𝐸  and 𝐾  are real Banach spaces and 

𝐺: 𝐸 → 𝐾  be a nonlinear Fredholm operator with 

zero index, when 𝐺 is defined by 

𝐺(𝑧, 𝛾) = 0,   𝑧 ∈ 𝐸, 𝛾 ∈ ℝ𝑛. 
           Written the spaces 𝐸 and 𝐾 as a direct sum, 

𝐸 = 𝑊 ⊕ 𝑊⊥, 
𝐾 = 𝑊̃ ⊕ 𝑊̃⊥ 

where dim(𝑊) = dim(𝑊̃ ) = 𝑛   are subspaces of 

 𝐸  and  𝐾   respectively, the orthogonal spaces of 

 𝑊 and  𝑊̃   in  𝐸  and 𝐾  are 𝑊⊥ and 𝑊̃⊥ 

respectively. Wherefore exist projections 𝑃: 𝐸 → 𝑊 

& (𝐼 − 𝑃): 𝐸 → 𝑊⊥  defined by  𝑃𝑧 = 𝑤  &   (𝐼 −
𝑃)𝑧 = 𝑣 . where 𝑒1, 𝑒2, … , 𝑒𝑘   a basis of space W, 

then ∀ 𝑧 ∈ 𝐸  is written in a unique way: 

𝑧 = 𝑤 + 𝑣, 𝑤 ∈ 𝑊, 𝑣 ∈ 𝑊⊥,

𝑤 =  ∑ 𝑥𝑖𝑒𝑖

𝐾

𝑖=1

 . 

         In the same way, exists projections  𝑄: 𝐾 →
𝑊̃  and  (𝐼 − 𝑄 ): 𝐾 → 𝑊̃⊥ defined by  

𝑄𝐻(𝑧, 𝛾) = 𝐺1(𝑧, 𝛾)      &     (𝐼 − 𝑄)𝐻(𝑧, 𝛾) =
𝐺2(𝑧, 𝛾) . 

where   𝑔1, 𝑔2, … , 𝑔𝑘   is the  basis  for  space  𝑊̃  

then 

𝐻(𝑧, 𝜆) = 𝐻1(𝑧, 𝛾) + 𝐻2(𝑧, 𝛾), 
𝐻1(𝑧, 𝛾) ∈ 𝑊̃, 𝐻2(𝑧, 𝛾) ∈ 𝑊̃⊥ , 

𝐻1(𝑧, 𝛾) = ∑ 𝑣𝑖(𝑧, 𝛾)𝑔𝑖

𝑘

𝑖=1

 ,    𝐻2(𝑧, 𝛾) ⊥ 𝑊̃  . 

It concludes that, 

𝐻(𝑧, 𝛾) = 𝑄𝐻(𝑧, 𝛾) + (𝐼 − 𝑄)𝐻(𝑧, 𝛾) = 0. 
Hence, the result from it 

𝑄𝐻(𝑧, 𝛾) = 0 
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(𝐼 − 𝑄)𝐻(𝑧, 𝛾) = 0 
or                                                                     

𝑄𝐻(𝑤 + 𝑣, 𝛾) = 0 
(𝐼 − 𝑄)𝐻(𝑤 + 𝑣, 𝛾) = 0. 

       From implicit function theorem, exists a map 

θ: 𝑊 → 𝑊⊥ that is smooth defined by, θ(𝑤, 𝛾) = 𝑣  
and 

(𝐼 − 𝑄)𝐻(𝑤 + θ(𝑤, 𝛾), 𝛾) = 0. 
             To get the solutions of the equation 

𝐻(𝑧, 𝛾) = 0  at the neighborhood about a point 𝑧 =
𝑏 it is sufficient to get solutions to the equation, 

𝑄𝐻(𝑤 + θ(𝑤, 𝛾), 𝛾) = 0 . 
The above equation is called bifurcation equation11. 

 

Modify Lyapunov-Schmidt method for the 

nonhomogeneous nonlinear differential 

equations (MLSM) 
             Modify Lyapunov-Schmidt method is a 

procedure for obtaining the nonlinear Ritz 

approximation to a Fredholm functional. MLSM is 

similar to the Lyapunov-Schmidt reduction but the 

MLSM is based on finding the particular solution of 

the operator Eq. 1 in the nonhomogeneous cases as 

follows: 

            Suppose the nonlinear operator which is 

Fredholm with zero index  𝑓: 𝐸 → 𝐹 such that  

     𝑓(𝑢, 𝛾) =  Ψ, 𝛾 ∈  𝑅𝑛, 𝑢 ∈ Λ ⊂  𝐸              3                

Where  𝐸, 𝐹 are real Banach space, Ψ = 𝜀𝜑 (𝜀-small 

parameter) is a continuous function and 𝛬 ⊆ 𝐸 is 

open. let's say the operator  𝑓 possesses  a variational 

property, this means, there is a functional 𝑉: 𝛬 ⊂
𝐸 → 𝑅, such that  𝑓 = 𝑔𝑟𝑎𝑑𝐻 𝑉 when  𝛬 is a 

bounded domain. Written  operator 𝑓 as:                             

𝑓(𝑢, 𝛾) = H𝑢 + 𝑁𝑢 = Ψ, Ψ ∈ F 

Where  𝐻 =
𝜕𝑓

𝜕𝑢
(𝑢0, 𝛾) is Frechet derivative of the 

operator 𝑓 about the point 𝑢0  and its linear 

continuous Fredholm operator and 𝑁 represents the 

nonlinear operator for 𝑓. Applied the LSR, we get 

the following decomposition   

𝐸 = 𝑊 ⊕ 𝑊⊥,   𝐹 = 𝑊̂⨁𝑊̂⊥ 

where 𝑊 = 𝑘𝑒𝑟 𝐻 is the null space of the operator 𝑓, 

(here  𝑑𝑖𝑚 𝑊 = 𝑑𝑖𝑚 𝑊̂ = 2) and 𝑊⊥, 𝑊̂⊥  the 

orthogonal complements of the subspaces 𝑊, 𝑊̂ 

respectively. If 𝑒1, 𝑒2is an orthonormal set in 𝑊 such 

that 𝐻ei = αi(𝛾)ei, αi(𝛾) is a continuous function, 

where  𝑖  =  1,2 then ∀ 𝑢 𝜖 𝐸 can be expressed in 

the unique format, 

𝑢 = 𝑤 + 𝑣,    𝑤 = 𝜉1𝑒1 +  𝜉1𝑒2 ∈ 𝑊,    𝑊 ⊥ 𝑣
∈ 𝑊⊥,   𝜉𝑖 = 〈𝑢, 𝑒𝑖〉, 

When  〈. , . 〉  represents the inner product in Hilbert 

space ℋ. So  there  are projections  𝑝: 𝐸 → 𝑊  &  𝐼 −
𝑝: 𝐸 → 𝑊⊥  defined by  𝜔 = 𝑝𝑢  &  (𝐼 − 𝑝)𝑢 = 𝑣 . 

Similarly, there exist two projections 𝑄: 𝐹 → 𝑊 and 

𝐼 − 𝑄: 𝐹 → 𝑊̂⊥ defined by 

  

𝑓(𝑢, 𝛾) = 𝑄𝑓(𝑢, 𝛾) + (𝐼 − 𝑄)𝑓(𝑢, 𝛾)                        

Or                                                                             4                                                                                                        

𝑓(𝜔 + 𝑣, 𝛾) = 𝑄𝑓(𝜔 + 𝑣, 𝛾) + (𝐼 − 𝑄)𝑓(𝜔 + 𝑣, 𝛾) 

And we get  

𝑄𝑓(𝜔 + 𝑣, 𝛾) = Ψ1,      Ψ1 ∈ 𝑊 

(𝐼 − 𝑄)𝑓(𝜔 + 𝑣, 𝛾) = Ψ2, Ψ2 ∈ 𝑊̂⊥ 

Where Ψ = Ψ1 + Ψ2 ,  Ψ1 = 𝑡1𝑒1 + 𝑡2𝑒2   and here 

assume that, 

 Ψ2 = 𝑎1𝑡1
2 + 𝑎2𝑡1𝑡2 + 𝑎3𝑡2

2 

where a𝑖, 𝑖 = 1,2,3 are constants  and t𝑖, 𝑖 = 1,2 are 

parameters. 

By implicit function theorem getting 

𝑀(𝜉, 𝛽) = 𝑉(θ(𝜉, 𝛽), 𝛽), 𝜉 = (𝜉1, 𝜉2, … , 𝜉𝑛)⊥ 

Where 𝑑𝑒𝑔 𝑀 ≥ 2, the functional 𝑉  has the linear 

Ritz approximation represent by a function 𝑀  

defined by 

𝑀(𝜉, 𝛽) = 𝑉(∑ 𝜉𝑖𝑒𝑖, 𝛽𝑛
𝑖=1 ) = 𝑀0(𝜉) + 𝑀1(𝜉, 𝛽)                                               

5 

Where 𝑀0(𝜉)  represents a homogenous polynomial 

with degree 𝑛 ≥ 3 s.t  𝑀0(0)  =  0 &  𝑀1(𝜉, 𝛽) is a 

polynomial function of degree < 𝑛. If 𝑞1, 𝑞2, … 𝑞𝑚 

are the coefficients to the quadratic terms for the 

function 𝑀1(𝜉, 𝛽), then can be written the function 

𝑀1(𝜉, 𝛽)  in the formula,   

𝑀1(𝜉, 𝛽) = 𝑀2(𝜉, 𝛽) + ∑ 𝑞𝑘𝜉𝑘
2

𝑚

𝑘=1

 

Where 𝑑𝑒𝑔 𝑀2 =  𝑑, 2 <  𝑑 <  𝑛. 

          The functional 𝑉   has a nonlinear Ritz 

approximation, it's a function 𝑀 defined by  

𝑀(𝜉, 𝛽) = 𝑉 (∑ 𝜉𝑖𝑒𝑖 + θ (∑ 𝜉𝑖𝑒𝑖, 𝛽

𝑛

𝑖=1

) , 𝛽

𝑛

𝑖=1

) 

When θ(ω, β) = 𝑣(x, ξ, β), 𝑣 ϵ N⊥. Taylor's 

expansion to the functions μk(ξ) and 𝑣(x, ξ, β) will 

be used to determine the nonlinear Ritz 

approximation for the functional V, by assuming as 

following: 

𝑞𝑘 = 𝑞̂𝑘 + 𝜇𝑘(𝜉) = 𝑞̂𝑘 + ∑ 𝐷𝑘
𝑗

𝑟

𝑖=2

(𝜉),    

𝑘 = 1, … , 𝑚 

𝑣(𝑥, 𝜉, 𝛽) = ∑ 𝐵𝑗

𝑟

𝑖=2

(𝜉) 

Where 𝐷𝑘
(𝑗)

(𝜉) and 𝐵(𝑗)(𝜉) are polynomials with 

degree j  which be homogenous, have coefficients 

𝜇𝑘𝑖 and 𝑣𝑗𝑖(𝑥, 𝛽) respectively, 𝜉 =
(𝜉1, 𝜉2, … , 𝜉𝑛).since 

𝑄𝑓(𝑢, 𝛾) = 〈𝑓(𝑢, 𝛾), 𝑒1〉𝑒1 + 〈𝑓(𝑢, 𝛾), 𝑒2〉𝑒2 = Ψ1 

It follows that 

〈𝐻𝑢 + 𝑁𝑢, 𝑒1〉𝑒1 + 〈𝐻𝑢 + 𝑁𝑢, 𝑒2〉𝑒2 = Ψ1 
Hence  

𝑞1𝜉1𝑒1 + 𝑞2𝜉2𝑒2 + 〈𝑁𝑢, 𝑒1〉𝑒1 + 〈𝑁𝑢, 𝑒2〉𝑒2

= Ψ1,         𝑞𝑖 = 𝛼𝑖(𝛾) 
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  𝑞1𝜉1𝑒1 + 𝑞2𝜉2𝑒2 + [∫ 𝑁(𝑤 + 𝑣)𝑒1Ω
]𝑒1 +

[∫ 𝑁(𝑤 + 𝑣)𝑒2Ω
]𝑒2 = Ψ1,                                      6 

From Eq. 4 it follows that 

(𝐼 − 𝑄)𝑓(𝑢, 𝛾) = 𝑓(𝑢, 𝛾) − 𝑄𝑓(𝑢, 𝛾). 
From 𝐻(𝜔 + 𝑣) + 𝑁(𝜔 + 𝑣) = Ψ2 it follows that  

 𝐻𝑣 + 𝑁(𝑤, 𝑣) + 𝑞1𝜉1𝑒1 + 𝑞2𝜉2𝑒2 = Ψ2,           7                                              

Substituting the values of   𝑞i, μi(ξ) and 𝑣(x, ξ, δ) in 

Eq.6 and Eq.7 yields 

[𝑞̂1 + ∑ (𝐷1
𝑗𝑟

𝑗=2 (𝜉) + 𝐷2
𝑗
(𝜉))]𝜉1𝑒1 + [𝑞̂2 +

∑ (𝐷1
𝑗𝑟

𝑗=2 (𝜉) + 𝐷2
𝑗
(𝜉))]𝜉2𝑒2 + [∫ 𝑁(𝑞1𝜉1𝑒1 +

Ω

𝑞2𝜉2𝑒2 +    ∑ 𝐵𝑗𝑟
𝑗=2 (𝜉)𝑒1] 𝑒1 +  [∫ 𝑁(𝑞1𝜉1𝑒1 +

Ω

𝑞2𝜉2𝑒2   ∑ 𝐵𝑗𝑟
𝑗=2 (𝜉)𝑒2] 𝑒2 = Ψ1                              8 

 

 H(∑ 𝐵𝑗𝑟
𝑗=2 (𝜉)) + 𝑁(𝑞1𝜉1𝑒1 + 𝑞2𝜉2𝑒2 +

∑ 𝐵𝑗𝑟
𝑗=2 (𝜉)) + [𝑞̂1 + ∑ (𝐷1

𝑗𝑟
𝑗=2 (𝜉) +

   𝐷2
𝑗
(𝜉))]𝜉1𝑒1 +  [𝑞̂2 + ∑ (𝐷1

𝑗𝑟
𝑗=2 (𝜉) +

            𝐷2
𝑗
(𝜉))]𝜉2𝑒2 = Ψ2                                         9    

                                                   

           To calculate the functions 𝑣(x, ξ, β) & μk(ξ) 

equate the coefficients of  𝜉 = (𝜉1, 𝜉2, … , 𝜉𝑛) in Eq.8 

to find the value of 𝜇𝑘𝑖 and after some calculation 

from Eq.9, it is getting a linear ODE in the variable 

𝑣𝑗𝑖(𝑥, 𝛾). Solving the equation which appears one 

can get the value to  𝑣𝑗𝑖(𝑥, 𝛾). 

          In the following section, we give two examples 

to find a nonlinear Ritz approximation for the 

functional corresponding to the nonhomogeneous 

Camassa-Holm Equation and Benjamin-Bona-

Mahony equation as an application of the Modify 

Lyapunov-Schmidt method given above. 

 

Results: 

Nonlinear Ritz Approximation for the 

Camassa-Holm Equation (CH)  
            This section applied MLSM given in the 

previous section for finding nonlinear Ritz 

approximation for the functional corresponding to 

the nonhomogeneous Camassa-Holm equation.  

         Camassa and Holm in 199317, used the 

Hamiltonian method to find a new model for a 

completely integrable shallow water wave equation,  

𝑧𝑡 + 2𝐾𝑧𝑥 − 𝑧𝑥𝑥𝑡  + 3𝑧𝑧𝑥  = 2𝑧𝑥𝑧𝑥𝑥 + 𝑧𝑧𝑥𝑥𝑥,                                       
10 

where 𝑡 is the time,  𝑧 is the speed of the fluid in 𝑥 

trend and K is a constant number. Eq. 10 is known as 

Camassa-Holm (CH) equation. Moreover, in newly 

years, Camassa-Holm was generalized to the 

following equation, 

𝑧𝑡 + 2𝐾𝑧𝑥 − 𝑧𝑥𝑥𝑡 +
1

2
[𝑓(𝑧)]𝑥 = 2𝑧𝑥𝑧𝑥𝑥 + 𝑧𝑧𝑥𝑥𝑥,                                              

11 

when 𝑓 (𝑧) is a function of 𝑧 and [𝑓(𝑧)]𝑥  is the 

derivative of 𝑓 for 𝑥. 

        Eq. 10 can obtain from Eq.11 by putting 𝛼 = 3 

and 𝛽 = 0 in the function 𝑓 (𝑧)  = 𝛼𝑧2  + 𝛽𝑧3. Let 

 𝑧(𝑥, 𝑡)  = 𝑤( 𝑦), 𝑦 = 𝑥 − 𝛼𝑡,  when 𝛼  the wave 

velocity. Eq. 11 transformed to the following 

ordinary differential equation for a variable 𝑤( 𝑦),  

𝛼𝑤′′ + 𝛽𝑤 +
3

2
𝑤2  − (

1

2
 (𝑤′)2 + 𝑤𝑤′′) = 𝜓     12                                                

where  ′ =  
𝑑

𝑑𝑦
  and 𝛼, 𝛽 are parameters. 

        Abdul Hussain provided a model in 10 for 

finding non-linear approximation and bifurcation 

solutions of differential equations of the fourth-

order. The present section includes an example for 

finding the bifurcation of Eq. 12 with the coming 

boundary conditions which satisfy Eq. 10, 

𝑤(0)  = 𝑤(1)  = 0, 
where 𝑤 = 𝑤( 𝑦), 𝑦 ∈ [0, 1]. 
 

        To obtain a nonlinear approximation for the 

Camassa-Holm equation. Firstly, write Eq. 12 as a 

nonlinear Fredholm operator as follows: 

     𝑔(𝑤, 𝛾) = 𝛼𝑤′′ + 𝛽𝑤 +
3

2
𝑤2  − (

1

2
 (𝑤′)2  +

                                𝑤𝑤′′)                                         13 

when 𝑔: E ⟶ 𝑀  is Fredholm operator which is 

nonlinear of index zero from Banach space   𝐸  to 

Banach space   𝑀 , where 𝐸 = 𝐶2([0,1], ℝ)  is the 

space of all continuous functions that have derivative 

of order at most two, 𝑀 = 𝐶([0,1], ℝ)  is the space 

of every continuous function,  𝛾 = (𝛼, 𝛽) . The 

operator 𝑔 own variational property, so there is a 

functional 𝑉 defined by, 

𝑔 (𝑤, 𝛾)  = 𝑔𝑟𝑎𝑑𝐻 𝑉 (𝑤, 𝛾) 

Where 

V (w, λ, 𝜓) =
1

2
∫ (−𝛼(𝑤′)21

0
+ 𝛽𝑤2 + 𝑤3 +

w(𝑤′)2 − wψ)𝑑𝑥  

Where 𝑔𝑟𝑎𝑑𝐻 𝑉  denotes the gradient of 𝑉 . Every 

solution of Eq. 12 is a solution of operator 

equation18,                                                                 

                        

              𝑔(𝑤, 𝜆) = 𝜓, 𝜓 ∈ 𝐹                             14 

   

From the definition of Fréchet derivative have, 

𝑔(𝑤 + εℏ) = 𝛼(𝑤 + εℏ)′′ + 𝛽(𝑤 + εℏ)

+
3

2
(𝑤 + εℏ)2

− (
1

2
 ((𝑤 + εℏ)′)2  

+ (𝑤 + εℏ)(𝑤 + εℏ)′′) 

𝜕𝑔

𝜕𝜀
= 𝛼ℏ′′ + 𝛽ℏ + 3(𝑤 + εℏ)ℏ

− ( (𝑤 + εℏ)′ℏ′  + (𝑤 + εℏ)ℏ′′

+ (𝑤 + εℏ)′′ℏ) 
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𝜕𝑔

𝜕𝜀
|

𝜀=0
= 𝛼ℏ′′ + 𝛽ℏ + 3wℏ

− ( w′ℏ′  + wℏ′′ + w′′ℏ) 

 The Fréchet the derivative at the point (0, 𝛾) of the 

nonlinear operator 𝑔(𝑤, 𝛾) has the form,   

𝑑𝑔(0, 𝜆)ℏ = 𝛼ℏ′′ + 𝛽ℏ 
 And hence the linearized equation identical to Eq. 

10 is defined by, 

𝐴ℏ = 0, ℏ ∈ 𝐸 

𝐴 = 𝑑𝑔(0, 𝛾) = 𝛼
d2

𝑑𝑥2 + 𝛽, 𝑥 ∈ [0,1],           15 

ℏ(0) = ℏ(1) = 0 
Eq. 15 is called a linearized equation. 

 

          The solution of the linearized Eq.15 

verification of the boundary conditions is get by, 

  𝑒𝑝  =  𝑎𝑝 𝑠𝑖𝑛(𝑝𝜋𝑥), 𝑝 =  1,2,3, …               16             

Substituting Eq. 16 in Eq. 15 has a characteristic 

equation identical to the above solution in the form, 

𝛽 − 𝛼𝑝2𝜋2  =  0 

         The equation above gives in the characteristic 

lines ( 𝛼𝛽 − 𝑝𝑙𝑎𝑛𝑒 ), wherefore, a point of 

characteristic lines it's the points of (𝛼, 𝛽) such that 

Eq.10 own nontrivial solutions. Can be found at the 

bifurcation point18 in the space of parameters (𝛼, 𝛽) 

from the point of intersection of the 𝛼𝛽 − 𝑝𝑙𝑎𝑛𝑒. As 

a result, (0,0) is a bifurcation point for Eq.10. And 

localized parameters for 𝛼, 𝛽 gives by, 

𝛼̂ = 0 + Γ1, 𝛽̂ = 0 + Γ2. 
where Γ1, Γ2 are parameters which small lead to the 

below modes over the bifurcation.  

𝑒1 = √2 sin(𝜋𝑥) , 𝑒2 = √2 sin(2𝜋𝑥) 
 

Where the norms of 𝑒1𝑎𝑛𝑑 𝑒2 in Hilbert space (ℋ =

𝐿2([0,1], 𝑅)) are equal to one, and 𝑎1 = 𝑎2 = √2. 

This means that 𝑒1𝑎𝑛𝑑 𝑒2 are the orthonormal basis 

of null space W = ker(𝐻). 

Can separate the space 𝐸 into subspace 𝑊 and it's an 

orthogonal complement,  

𝐸 = 𝑊⨁𝐸̂, 𝐸̂ = 𝑊⊥ ∩ 𝐸 = {𝑣 ∈ 𝐸: 𝑣 ⊥ 𝑊} 

Likewise, the space 𝑀 separated to subspace 𝑁 it's 

an orthogonal complement as follows 

𝐹 = 𝑁⨁𝐹̂, 𝐹̂ = N ∩ 𝐹 = {𝑣 ∈ 𝐹: 𝑣 ⊥ 𝑁} 

For that, there exist projections 𝑗: 𝐸 → 𝑊 & 𝐼 −
𝑗: 𝐸 → 𝐸̂ such that 𝑗𝑤 = 𝑢 and (𝐼 − 𝑗)𝑤 = 𝑣, so 

∀ 𝑤 ∈ 𝐸 represented as 𝑤 = 𝑢 + 𝑣, 𝑢 =
∑ 𝜉𝑖𝑒𝑖

2
𝑖=1 , 𝑊 ⊥ 𝑣 ∈ 𝐸̂, 𝜉𝑖 = ⟨𝑤, 𝑒𝑖⟩ by the same way 

there are projection 𝐺: 𝐹 → 𝑁  & 𝐼 − 𝐺: 𝐹 → 𝐹̂ in 

which  

𝑔(𝑢, 𝛾) = 𝐺𝑔(𝑢, 𝛾) + (𝐼 − 𝐺)𝑔(𝑢, 𝛾) = ψ, 𝜓
= (𝑤, 𝑡), 𝑡 = (𝑡1, 𝑡2) 

Accordingly, Eq.1 can be represented as follows,  

𝐺𝑔(𝑢 + 𝑣, 𝛾) = ψ1 

(𝐼 − 𝐺)𝑔(𝑢 + 𝑣, 𝛾) = ψ2 

Such that     𝜓1 = 𝑒1𝑡1 + 𝑒2𝑡2    𝑎𝑛𝑑    𝜓2 =
𝑎1𝑡1

2 + 𝑎2𝑡1𝑡2 + 𝑎3𝑡2
2 

where a𝑖, 𝑖 = 1,2,3 are constants  and t𝑖, 𝑖 = 1,2 are 

parameters. 

From  implicit function theory, obtain a 

map 𝜃: 𝑊 → 𝐸̂ that is smooth satisfy, 

𝑊(𝜉, Γ, 𝜓) = 𝑉(𝜃(𝜉, 𝛾), Γ, 𝜓), 𝛤 = (Γ1, Γ2) 

By finding the functions 𝑣(𝑥, 𝜉, 𝛾) = 𝑂(𝜉2),
𝜇(𝜉) = 𝑂(𝜉), 𝜇̃(𝜉) = 𝑂(𝜉), 𝜉 = (𝜉1, 𝜉2) can get the 

nonlinear Ritz approximation of 𝑉(𝜃(𝜉, 𝛾), Γ, 𝜓) , 

when  

𝑞1 = 𝑞1̃ + 𝜇(𝜉1, 𝜉2), 𝑞2 = 𝑞2̃ + 𝜇̃(𝜉1, 𝜉2) 

𝑣(𝑥, 𝜉, 𝛾) = 𝑣0(𝑥, 𝜆)𝜉1
2 + 𝑣1(𝑥, 𝜆)𝜉1𝜉2 + 𝑣2(𝑥, 𝜆)𝜉2

2 + ⋯

𝜇(𝜉1, 𝜉2) = 𝜇0𝜉1 + 𝜇1𝜉2

𝜇̃(𝜉1, 𝜉2) = 𝜇̃0𝜉1 + +𝜇̃1𝜉2

}                        17 

written Eq. 14 as follows  

𝑔(𝑢, 𝛾) = 𝐴𝑢 + 𝑇𝑢 = 𝜓, 

 When  𝐴𝑤 = 𝛼
𝑑2𝑤

𝑑𝑥2 + 𝛽𝑤  represents a linear part 

while  𝑇𝑤 =
3

2
𝑤2  − (

1

2
 (𝑤′)2  + 𝑤𝑤′′)  is the 

nonlinear part of  Eq. 13. Since  

𝑄𝑓(𝑤, 𝜆) = ∑ 〈𝑓(𝑤, 𝜆), 𝑒𝑖〉𝑒𝑖
2
𝑖=1 = 𝜓1, 

obtaining 

∑ 〈𝐴(𝑤) + 𝑇(𝑤), 𝑒𝑖〉𝑒𝑖 = ∑ (∫ (𝐴(𝑤)𝑒𝑖 +
𝜋

0
2
𝑖=1

2
𝑖=1

𝑇(𝑤)𝑒𝑖)𝑑𝑥)𝑒𝑖 = 𝜓1.  

Thus,  

(𝑞1𝜉1 +
3

2
∫ (𝜉1𝑒1 + 𝜉2𝑒2 + 𝑣)2𝑒1𝑑𝑥

1

0
−

1

2
∫ ((𝜉1𝑒1 + 𝜉2𝑒2 + 𝑣)′)2𝑒1𝑑𝑥

1

0
− ∫ (𝜉1𝑒1 +

1

0

𝜉2𝑒2 + 𝑣)(𝜉1𝑒1 + 𝜉2𝑒2 + 𝑣)′′𝑒1𝑑𝑥)𝑒1 + (𝑞2𝜉2 +
3

2
∫ (𝜉1𝑒1 + 𝜉2𝑒2 + 𝑣)2𝑒2𝑑𝑥

1

0
−

1

2
∫ ((𝜉1𝑒1 + 𝜉2𝑒2 +

1

0

𝑣)′)2𝑒2𝑑𝑥   −    ∫ (𝜉1𝑒1 + 𝜉2𝑒2 + 𝑣)(𝜉1𝑒1 +
1

0

   𝜉2𝑒2 +   𝑣)′′𝑒2𝑑𝑥)𝑒2 = 𝑡1𝑒1 + 𝑡2𝑒2                   18                                                        

And  

𝛼𝑣′′ + 𝛽𝑣 +
3

2
(𝜉1𝑒1 + 𝜉2𝑒2 + 𝑣)2 −

1

2
((𝜉1𝑒1 +

𝜉2𝑒2 + 𝑣)′)2 − (𝜉1𝑒1 + 𝜉2𝑒2 + 𝑣)(𝜉1𝑒1 + 𝜉2𝑒2 +
𝑣)′′ +  𝑞1𝜉1𝑒1 + 𝑞2𝜉2𝑒2 = 𝑎1𝑡1

2 + 𝑎2𝑡1𝑡2 +
𝑎3𝑡2

2                                                                       19  

   by substituting 𝑞1 = 𝑞1̃ + 𝜇(𝜉1, 𝜉2) and  𝑞2 =
𝑞2̃ + 𝜇̃(𝜉1, 𝜉2) in Eq.18 and Eq.19, obtaining 

[(𝑞1̃ + 𝜇(𝜉1, 𝜉2))𝜉1 +
3

2
𝜉1

2 ∫ 𝑒1
3𝑑𝑥

1

0
+

3𝜉1𝜉2 ∫ 𝑒1
2𝑒2𝑑𝑥

1

0
+

3

2
𝜉2

2 ∫ 𝑒1𝑒2
2𝑑𝑥

1

0
−

1

2
𝜉1

2 ∫ 𝑒1𝑒′
1
2

𝑑𝑥
1

0
− 𝜉1𝜉2 ∫ 𝑒1𝑒1

′ 𝑒′
2𝑑𝑥

1

0
−

1

2
𝜉2

2 ∫ 𝑒1𝑒′
2
2

𝑑𝑥
1

0
− 𝜉1

2 ∫ 𝑒1
2𝑒1

′′𝑑𝑥
1

0
−

𝜉1𝜉2 ∫ 𝑒1
2𝑒′′

2𝑑𝑥
1

0
− 𝜉1𝜉2 ∫ 𝑒1𝑒2𝑒1

′′𝑑𝑥
1

0
−

𝜉2
2 ∫ 𝑒1𝑒2𝑒′2

′ 𝑑𝑥
1

0
] 𝑒1 + [(𝑞2̃ + 𝜇̃(𝜉1, 𝜉2))𝜉2 +

3

2
𝜉1

2 ∫ 𝑒1
2𝑒2𝑑𝑥

1

0
+ 3𝜉1𝜉2 ∫ 𝑒2

2𝑒1𝑑𝑥
1

0
+

3

2
𝜉2

2 ∫ 𝑒2
3𝑑𝑥

1

0
−

1

2
𝜉1

2 ∫ 𝑒2𝑒′
1
2

𝑑𝑥
1

0
−

𝜉1𝜉2 ∫ 𝑒2𝑒1
′ 𝑒′

2𝑑𝑥
1

0
−

1

2
𝜉2

2 ∫ 𝑒2𝑒′
2
2

𝑑𝑥
1

0
−
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𝜉1
2 ∫ 𝑒1𝑒2𝑒1

′′𝑑𝑥
1

0
− 𝜉1𝜉2 ∫ 𝑒2

2𝑒′′
1𝑑𝑥

1

0
−

      𝜉1𝜉2 ∫ 𝑒1𝑒2𝑒2
′′𝑑𝑥

1

0
− 𝜉2

2 ∫ 𝑒2
2𝑒′2

′ 𝑑𝑥
1

0
] 𝑒2 =

                             𝑡1𝑒1 + 𝑡2𝑒2                                    20                                                           

 

𝛼𝑣′′ + 𝛽𝑣 +
3

2
(𝜉1

2𝑒1
2 + 2𝑒1𝑒2𝜉1𝜉2 + 𝜉2

2𝑒2
2 +

2𝑣𝑒1𝜉1 + 2𝑣𝑒2𝜉2 + 𝑣2) −
1

2
(𝜉1

2𝑒′
1
2

+

2𝑒′
1𝑒′

2𝜉1𝜉2 + 𝜉2
2𝑒′

2
2

+ 2𝑣′𝑒′
1𝜉1 + 2𝑣′𝑒′

2𝜉2 +

𝑣′2
) − (𝜉1

2𝑒1𝑒1
′′ + 𝜉1𝜉2𝑒1𝑒2

′′ + 𝑣′′𝑒1𝜉1 +
𝑒′′

1𝑒2𝜉1𝜉2 + 𝜉2
2𝑒2𝑒2

′′ + 𝑣′′𝑒2𝜉2 + 𝑣𝑒′′
1𝜉1 +

𝑣𝑒′′
2𝜉2 + 𝑣𝑣′′) + (𝑞1̃ + 𝜇(𝜉1, 𝜉2))𝜉1𝑒1 + (𝑞2̃ +

𝜇̃(𝜉1, 𝜉2))𝜉2𝑒2 = 𝑎1𝑡1
2 + 𝑎2𝑡1𝑡2 + 𝑎3𝑡2

2   

  21 

          

          The functions 𝑣(𝑥, 𝜉, 𝜆), 𝜇(𝜉) 𝑎𝑛𝑑  𝜇̃(𝜉) in 

Eq. 17 determine by finding the coefficients 

𝜇0, 𝜇1, , 𝜇̃0, 𝜇̃1, , 𝑣0, 𝑣1, 𝑎𝑛𝑑 𝑣2 in Eq. 20, 21. 

By equating the coefficients of 𝜉1
2 in Eq. 20 and 21, 

then getting two equations, 

[𝜇0 +
3

2
∫ 𝑒1

3𝑑𝑥
1

0
−

1

2
∫ 𝑒1𝑒′

1
2

𝑑𝑥
1

0
−

∫ 𝑒1
2𝑒1

′′𝑑𝑥
1

0
] 𝑒1 + [

3

2
∫ 𝑒1

2𝑒2𝑑𝑥
1

0
−

1

2
∫ 𝑒2𝑒′

1
2

𝑑𝑥
1

0
−

                           ∫ 𝑒1𝑒2𝑒1
′′𝑑𝑥

1

0
] 𝑒2 = 0                    22  

 

𝛼𝑣0
′′ + 𝛽𝑣0 +

3

2
𝑒1

2 −
1

2
𝑒′

1
2

− 𝑒1𝑒1
′′ + 𝜇0𝑒1 = 0.  23                                           

Eq.22 gives 𝜇0 = −
1

6

(−9𝜋5−4𝜋2√2+24√2)

𝜋
  substitute 

for this value in ODE Eq.23 

𝛼𝑣0
′′ + 𝛽𝑣0 +

3

2
𝑒1

2 −
1

2
𝑒′

1
2

− 𝑒1𝑒1
′′ −

1

6

(−9𝜋5−4𝜋2√2+24√2)

𝜋
𝑒1 = 0  

And then have 

𝑣0 =
3(𝜋2+1)

−4𝛼𝜋2+𝛽
𝑐𝑜𝑠(𝜋𝑥)2 +

(9𝜋5√2+8𝜋2−48)

6𝜋(−𝜋2𝛼+𝛽)
𝑠𝑖𝑛(𝜋𝑥) +

(2𝜋2−3)𝛽+(2𝜋4+6𝜋2)𝛼

𝛽(−4𝜋2𝛼+𝛽)
  

Now, to find coefficients of 𝜉1𝜉2, 

[𝜇1 + 3 ∫ 𝑒1
2𝑒2𝑑𝑥

1

0
− ∫ 𝑒1𝑒1

′𝑒′
2𝑑𝑥

1

0
−

∫ 𝑒1
2𝑒′′

2𝑑𝑥
1

0
− ∫ 𝑒1𝑒2𝑒1

′′𝑑𝑥
1

0
] 𝑒1 +   

[𝜇̃0 + 3 ∫ 𝑒2
2𝑒1𝑑𝑥

1

0
− ∫ 𝑒2𝑒1

′ 𝑒′
2𝑑𝑥

1

0
−

        ∫ 𝑒2
2𝑒′′

1𝑑𝑥
1

0
− ∫ 𝑒1𝑒2𝑒2

′′𝑑𝑥
1

0
] 𝑒2 = 0              24                    

24 

𝛼𝑣1
′′ + 𝛽𝑣1 + 3𝑒1𝑒2 − 𝑒′

1𝑒′
2 − 𝑒1𝑒2

′′ − 𝑒′′
1𝑒2 +

𝜇1𝑒1 + 𝜇̃0𝑒2 = 0                                                    25 

From Eq.24 get 𝜇1 = 0, and 𝜇̃0 = −
16

5

(3𝜋2+2)√2

𝜋
, so 

that, Eq.(25) becomes 

𝛼𝑣1
′′ + 𝛽𝑣1 + 3𝑒1𝑒2 − 𝑒′

1𝑒′
2 − 𝑒1𝑒2

′′ − 𝑒′′
1𝑒2

−
16

5

(3𝜋2 + 2)√2

𝜋
𝑒2 = 0 

   The solution of ODE gives the function 𝑣1 as 

follows 

𝑣1 = −
28(𝜋2+

3

7
)

9𝜋2𝛼+𝛽
𝑐𝑜𝑠(𝜋 𝑥)3  +

64(3𝜋2+2)

5𝜋(−4𝜋2𝛼+𝛽)
𝑠𝑖𝑛(𝜋 𝑥)𝑐𝑜𝑠(𝜋 𝑥) +

(48𝜋4+36𝜋2)𝛼+(−24𝜋2+12)𝛽

(−𝜋2𝛼+𝛽)(−9𝜋2𝛼+𝛽)
𝑐𝑜𝑠(𝜋 𝑥)  

Equating the coefficients of 𝜉2
2, have 

[
3

2
∫ 𝑒1𝑒2

2𝑑𝑥
1

0
−

1

2
∫ 𝑒1𝑒′

2
2

𝑑𝑥
1

0
− ∫ 𝑒1𝑒2𝑒′2

′ 𝑑𝑥
1

0
] 𝑒1 +

[𝜇̃1 +
3

2
∫ 𝑒2

3𝑑𝑥
1

0
−

1

2
∫ 𝑒2𝑒′

2
2

𝑑𝑥
1

0
−

∫ 𝑒2
2𝑒′2

′ 𝑑𝑥
1

0
] 𝑒2 = 0                                                                 

𝛼𝑣2
′′ + 𝛽𝑣2 +

3

2
𝑒2

2 −
1

2
𝑒′

2
2

− 𝑒2𝑒2
′′ + 𝜇̃1𝑒2 = 0, 26                                             

hence 𝜇̃1 = 0 that implies Eq. 26, becomes  

𝛼𝑣2
′′ + 𝛽𝑣2 +

3

2
𝑒2

2 −
1

2
𝑒′

2
2

− 𝑒2𝑒2
′′ = 0, 

and the solution for this equation  

𝑣2 = −
3(4𝜋2+1)

32𝜋2𝛼+2𝛽
𝑐𝑜𝑠(4𝜋𝑥) −

2

𝛽
(𝜋2 +

3

4
)  

  So, the nonlinear approximation for Eq. 12 was 

found by substituting the values of 

μ0, μ1, , μ̃0, μ̃1, , 𝑣0, 𝑣1, 𝑎𝑛𝑑 𝑣2 in Eq. 17, 

𝑤(𝑥, 𝜉) = √2𝜉1 sin(𝜋𝑥) + √2𝜉2 sin(2𝜋𝑥) +

[
3(𝜋2+1)

−4𝛼𝜋2+𝛽
cos(𝜋𝑥)2 +

(9𝜋5√2+8𝜋2−48)

6𝜋(−𝜋2𝛼+𝛽)
sin(𝜋𝑥) +

(2𝜋2−3)𝛽+(2𝜋4+6𝜋2)𝛼

𝛽(−4𝜋2𝛼+𝛽)
] 𝜉1

2 + [−
28(𝜋2+

3

7
)

9𝜋2𝛼+𝛽
cos(𝜋𝑥)3  +

64(3𝜋2+2)

5𝜋(−4𝜋2𝛼+𝛽)
sin(𝜋𝑥) cos(𝜋𝑥) +

(48𝜋4+36𝜋2)𝛼+(−24𝜋2+12)𝛽

(−𝜋2𝛼+𝛽)(−9𝜋2𝛼+𝛽)
cos(𝜋𝑥)] 𝜉1𝜉2 +

   [−
3(4𝜋2+1)

32𝜋2𝛼+2𝛽
𝑐𝑜𝑠(4𝜋𝑥) −

2

𝛽
(𝜋2 +

3

4
)] 𝜉2

2            27  

 

𝑞1 = 𝑞1̃ −
1

6

(−9𝜋5−4𝜋2√2+24√2)

𝜋
ξ1,  

𝑞2 = 𝑞2̃ −
16

5

(3𝜋2+2)√2

𝜋
ξ1  

Eq.27   is a solution of the functional 𝑉(𝑢, 𝜆). which 

is represent the nonlinear Ritz approximation of  V. 

 

    From the above results we deduced the following 

theorem 

Theorem 1. The nonlinear Ritz approximation of 

the functional 

                                   V (w, γ, 𝜓) =
1

2
∫ (−α(w′)2

1

0
+

βw2 + w3+𝑤(w′) − w𝜓)𝑑𝑥.                                              
is given by the function 

𝑊(𝜉, 𝛿) = 𝑈(𝜉, 𝛿) + 𝑜(|𝜉|6) + 𝑂(|𝜉|6)𝑂(|𝛿|), 

 

𝑈(𝜉, 𝛿) = 𝛾1𝜉1
6 + 𝛾2𝜉2

6 + 𝛾3𝜉1
4𝜉2

2+𝛾4𝜉1
2𝜉2

4

+ 𝛾5𝜉1
5 + 𝛾6𝜉1𝜉2

4

+ 𝛾7𝜉1
3𝜉2

2+𝛾8𝜉1
4 + 𝛾9𝜉2

4

+ 𝛾10𝜉1
2𝜉2

2 + 𝛾11𝜉1
3 + 𝜆1𝜉1

2

+ 𝜆2𝜉2
2 −

1

2
𝑡1𝜉1 −

1

2
𝑡2𝜉2 
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Where 

γi = γi(α, β), i = 1,2, … ,11 ,  
λi = λi(α, β, t), i = 1,2 

ξ = (𝜉1, 𝜉2), δ = (γi, λi) such that 𝜆, γ are 

parameters. 

 

Proof:  

To determine the key function of  V (w, γ, 𝜓) wall 

substituting Eq.27 in the functional 

V (w, γ, 𝜓) =
1

2
∫ (−α(w′)2

1

0

+ βw2 + w3+𝑤(w′)

− w𝜓)𝑑𝑥. 
And after solving it get the function 𝑊(𝜉, 𝛿). 

 

   The geometry of the bifurcation of critical points 

and the principal asymptotic of the branches of 

bifurcating points for the function 𝑊(𝜉, 𝛿) are 

entirely determined by its principal part 𝑈(𝜉, 𝛿). The 

function 𝑊(𝜉, 𝛿) has all the topological and 

analytical properties of functional V (w, γ, 𝜓). The 

spreading of the critical points of the function 

𝑊(𝜉, 𝛿) depends on the change of parameter 𝛿  and 

will be discussed in this paper as follows: 

The study of the discriminant set of function 

𝑊(𝜉, 𝛿) it not easy to find so, we will use maple 16 

to find the discriminant set of the above function 

𝑊(𝜉, 𝛿), in particular, we will fix the values of 

𝜆1, γi, 𝑖 = 1,2, . . ,11. and then to find all sections of 

discriminant set in the 𝜆2𝑡1𝑡2− surfaces, so we have 

three cases.  

 

 
Figure 1. Describe Caustic when 𝜸𝟏 = 𝜸𝟕 = 𝟏, 𝜸𝟐 = 𝜸𝟖 = −𝟐, 𝜸𝟑 = 𝜸𝟗 = 𝟑, 𝜸𝟒 = 𝜸𝟏𝟎 = 𝟎. 𝟐, 𝜸𝟓 =

𝜸𝟏𝟏 = 𝟎. 𝟑, 𝜸𝟔 = 𝝀𝟏 = 𝟎. 𝟒 

 

 
Figure 2. Describe Caustic when 𝜸𝟏 = 𝟔, 𝜸𝟐 = −𝟓, 𝜸𝟑 = 𝜸𝟗 = 𝟑𝟑, 𝜸𝟒 = 𝟎. 𝟓𝟔, 𝜸𝟓 = 𝟎. 𝟖𝟖, 𝜸𝟔 =

𝟎. 𝟕𝟕, 𝜸𝟕 = 𝟏𝟏, 𝜸𝟖 = −𝟐𝟐, 𝜸𝟏𝟎 = 𝟎. 𝟗𝟐, 𝜸𝟏𝟏 = 𝟎. 𝟗𝟑, 𝝀𝟏 = 𝟎. 𝟔𝟒 

𝑅1 

𝑅1 

𝑅2 

𝑅3 

𝑅2 
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Figure 3. Describe Caustic when 𝜸𝟏 = −𝟔, 𝜸𝟐 = −𝟓, 𝜸𝟑 = −𝟎. 𝟑𝟑, 𝜸𝟒 = −𝟓𝟔, 𝜸𝟓 = −𝟏, 𝜸𝟔 = 𝟕𝟕, 𝜸𝟕 =

𝟏𝟏, 𝜸𝟖 = −𝟐𝟐, = 𝜸𝟗 = 𝟑𝟑, 𝜸𝟏𝟎 = 𝟗𝟐, 𝜸𝟏𝟏 = 𝟐𝟐, 𝝀𝟏 = 𝟔𝟒 

 
The bifurcation propagation of the critical points 

to the function 𝑊(𝜉, 𝛿) is given as follows: 

In Fig.1, the caustic (bifurcation set) of function 

𝑊(𝜉, 𝛿) Split the space of parameters into 

regions𝑅1, 𝑅2, and 𝑅3; in all regions, there is one real 

critical point (Saddle). 

In Fig.2 the caustic (bifurcation set) of function 

𝑊(𝜉, 𝛿) Split the space of parameters into regions 𝑅1 

and 𝑅2; each region consists of a fixed number of 

three real critical points (Minimum, 2 Saddles). 

In Fig.3, the caustic (bifurcation set) of function 

21 Split the space of parameters into regions 𝑅1, 𝑅2 

,and 𝑅3; each region consists of a fixed number of 

critical points so that  the pervasion of the critical 

points is as follows: if the parameters ( 𝜆1, 𝑡1, 𝑡2) 

belong to 𝑅1, 𝑅2, then have three real critical points 

(2 Maximum, Saddle), while  haveing five real 

critical points (Minimum, 2 Saddles, 2 Maximum). 

When ( 𝜆1, 𝑡1, 𝑡2)  belong to 𝑅3. 

 

Nonlinear Ritz Approximation for the 

Benjamin-Bona-Mahony Equation (BBM) 
           In this section, we will give another example 

of our work in this paper. As in the above section, 

MLSM will be applied to the study of the 

existence of periodic solutions of the traveling 

wave in the form 𝑢 + 𝑣 of the Benjamin-Bona-

Mahony equation.  

       Consider the following nonlinear partial 

differential equation  

𝑢𝑡 +
3

2

𝑐0

ℎ0
𝑢𝑢𝑥 + ∫  

∞

−∞
𝐾(𝑥 − 𝜂)𝑢𝜂(𝜂, 𝑡)𝑑𝜂 = 0     28                                                      

when 𝑡, 𝑔, 𝑢(𝑥, 𝑡), ℎ0 are time, gravitational 

acceleration, and water wave velocity respectively 

while ℎ0 is the depth of the fluid such that  𝑐 0 =

 √𝑔ℎ0, with a kernel 𝐾(𝑥), defined by 

𝐾(𝑥) =
1

2𝜋
∫  

∞

−∞

𝑐(𝑘)𝑒𝑖𝑘𝑥𝑑𝑥 

By Taylor expansion, the partial deferential Eq. 28 

reduces to the Korteweg-de Vries equation,  

    𝑢𝑡 + 𝑐0𝑢𝑥 +
3

2

𝑐0

ℎ0
𝑢𝑢𝑥 +

1

6
𝑐0ℎ0

2𝑢𝑥𝑥𝑥 = 0           29                                          

By assuming 𝑢(𝑥, 𝑡)  = 𝑢(𝜂), 𝜂 =  𝑥 −  𝑐𝑡 , Eq.29 

is transformed into the following ordinary 

differential equation for a variable 𝑤( 𝑦),  

                
𝑑2𝑤

𝑑𝑥2 + 𝛼w + 𝑤2 = 0                              30 

where  𝛼 is a parameter. 

        In the present section, we will study Eq. 30 with 

the following boundary conditions which satisfy Eq. 

30, 

𝑤(0)  = 𝑤(2𝜋)  = 0, 
where 𝑤 = 𝑤( 𝑥), 𝑥 ∈ [0, 2𝜋]. 
 

        To obtain a nonlinear approximation for the 

Korteweg-de Vries equation, write Eq. 30 as a 

nonlinear Fredholm operator as follows: 

             𝑔(𝑤, 𝛾) = 𝑤′′ + 𝛼𝑤 + 𝑤2                     31 

when 𝑔: E ⟶ 𝑀 is the Fredholm operator which is 

nonlinear of index zero from Banach space   𝐸  to 

Banach space  𝑀, where 𝐸 = 𝐶2([0,2π], ℝ)  is the 

space of all continuous functions that have derivative 

of order at most two, 𝑀 = 𝐶([0,2𝜋], ℝ)  is the space 

of every continuous function. The operator 𝑔 own 

variational property, so there is a functional 𝑉 

defined by, 

𝑔 (𝑤, 𝛼)  = 𝑔𝑟𝑎𝑑𝐻 𝑉 (𝑤, 𝛼) 

Where 

 V (w, α, 𝜓) =
1

2𝜋
∫ ((w′)2

2

1

0
+ αw2

2
+ w3

3
) − w𝜓)𝑑𝑥  

When 𝑔𝑟𝑎𝑑𝐻 𝑉  denotes the gradient of 𝑉 . Every 

solution of Eq. 30 is a solution of the operator 

equation,                                                                                         

𝑅1 

𝑅2 

𝑅3 
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                       𝑔(𝑤, 𝜆) = 𝜓, 𝜓 ∈ 𝐹                     32 

     the Fréchet derivative at the point (0, 𝛼) of the 

nonlinear operator 𝑔(𝑤, 𝛼) has the form,   

𝑑𝑔(0, 𝛼)ℏ = ℏ′′ + 𝛼ℏ 

And hence the linearized equation identical to Eq. 

28 is defined by, 

𝐴ℏ = 0, ℏ ∈ 𝐸 

  𝐴 = 𝑑𝑔(0, 𝛼) =
d2

𝑑𝑥2 + 𝛼, 𝑥 ∈ [0,2𝜋],           33            

ℏ(0) = ℏ(2𝜋) = 0 
Eq. 33 is called a linearized equation. 

      The solution of the linearized Eq. 33 verification 

of the boundary conditions is get by 

            𝑒 =  𝑎1 𝑠𝑖𝑛(𝑥) + 𝑎2 𝑐𝑜𝑠(𝑥),                   34 

As a result, (0,0) is a bifurcation point for Eq.28. 

And localized parameters for 𝛼 gives by, 

𝛼̂ = 0 + 𝛤 

where 𝛤 are parameters that small lead to the below 

modes over the bifurcation.  

𝑒1 = √2 sin(𝑥) , 𝑒2 = √2 𝑐𝑜𝑠(𝑥) 

Where the norms of 𝑒1𝑎𝑛𝑑 𝑒2 are equal to one, and 

𝑎1 = 𝑎2 = √2 . This means that 𝑒1𝑎𝑛𝑑 𝑒2  are the 

orthonormal basis of null space ker(𝐴). 

Can separate the space 𝐸 into subspace 𝑊 and it's an 

orthogonal complement,  

𝐸 = 𝑊⨁𝐸̂, 𝐸̂ = 𝑊⊥ ∩ 𝐸 = {𝑣 ∈ 𝐸: 𝑣 ⊥ 𝑊} 

Likewise, the space 𝑀 separated to subspace 𝑁 it's 

an orthogonal complement as follows 

𝐹 = 𝑁⨁𝐹̂, 𝐹̂ = N ∩ 𝐹 = {𝑣 ∈ 𝐹: 𝑣 ⊥ 𝑁} 

For that, there exist projections 𝑗: 𝐸 → 𝑊 & 𝐼 −
𝑗: 𝐸 → 𝐸̂ such that 𝑗𝑤 = 𝑢 and (𝐼 − 𝑗)𝑤 = 𝑣, so 

∀ 𝑤 ∈ 𝐸 represented as 𝑤 = 𝑢 + 𝑣, 𝑢 =
∑ 𝜉𝑖𝑒𝑖

2
𝑖=1 , 𝑊 ⊥ 𝑣 ∈ 𝐸̂, 𝜉𝑖 = ⟨𝑤, 𝑒𝑖⟩ by the same way 

there are projection 𝐺: 𝐹 → 𝑁  & 𝐼 − 𝐺: 𝐹 → 𝐹̂ in 

which  

𝑔(𝑢, 𝛾) = 𝐺𝑔(𝑢, 𝛾) + (𝐼 − 𝐺)𝑔(𝑢, 𝛾) = ψ, 𝜓
= (𝑤, 𝑡), 𝑡 = (𝑡1, 𝑡2) 

   Accordingly, Eq. 31 can be represented as 

follows,  

𝐺𝑔(𝑢 + 𝑣, 𝛾) = ψ1 
(𝐼 − 𝐺)𝑔(𝑢 + 𝑣, 𝛾) = ψ2 

Such that     𝜓1 = 𝑒1𝑡1 + 𝑒2𝑡2    𝑎𝑛𝑑   
  𝜓2 = 𝑎1𝑡1

2 + 𝑎2𝑡1𝑡2 + 𝑎3𝑡2
2 

From  implicit function theory, obtain a map 𝜃: 𝑊 →
𝐸̂  that is smooth satisfying, 

𝑊(𝜉, Γ, 𝜓) = 𝑉(𝜃(𝜉, 𝛼), Γ, 𝜓) 

By finding the functions 𝑣(𝑥, 𝜉, 𝛾) = 𝑂(𝜉2),
𝜇(𝜉) = 𝑂(𝜉), 𝜇̃(𝜉) = 𝑂(𝜉), 𝜉 = (𝜉1, 𝜉2), can get the 

nonlinear Ritz approximation of 𝑉(𝜃(𝜉, 𝛼), Γ, 𝜓) , 

when  

𝑞1 = 𝑞1̃ + 𝜇(𝜉1, 𝜉2), 𝑞2 = 𝑞2̃ + 𝜇̃(𝜉1, 𝜉2) 
𝑣(𝑥, 𝜉, 𝛾) = 𝑣0(𝑥, 𝜆)𝜉1

2 + 𝑣1(𝑥, 𝜆)𝜉1𝜉2 + 𝑣2(𝑥, 𝜆)𝜉2
2 + ⋯

𝜇(𝜉1, 𝜉2) = 𝜇0𝜉1 + 𝜇1𝜉2

𝜇̃(𝜉1, 𝜉2) = 𝜇̃0𝜉1 + +𝜇̃1𝜉2

} 35 

written Eq. 31 as follows  

𝑔(𝑢, 𝛼) = 𝐴𝑢 + 𝑇𝑢 = 𝜓, 

 When  𝐴𝑤 =
𝑑2𝑤

𝑑𝑥2 + 𝛼𝑤  represents a linear part 

while  𝑇𝑤 = 𝑤2  is a nonlinear part of  Eq.30. Since  

𝑄𝑓(𝑤, 𝜆) = ∑ 〈𝑓(𝑤, 𝜆), 𝑒𝑖〉𝑒𝑖
2
𝑖=1 = 𝜓1, 

obtaining 

∑ 〈𝐴(𝑤) + 𝑇(𝑤), 𝑒𝑖〉𝑒𝑖 = ∑ (∫ (𝐴(𝑤)𝑒𝑖 +
2𝜋

0
2
𝑖=1

2
𝑖=1

𝑇(𝑤)𝑒𝑖)𝑑𝑥) 𝑒𝑖 = 𝜓1.  

Thus,  

(𝑞1𝜉1 +
1

2𝜋
∫ (𝜉1𝑒1 + 𝜉2𝑒2 + 𝑣)2𝑒1𝑑𝑥

2𝜋

0
) 𝑒1 +

(𝑞2𝜉2 +
1

2𝜋
∫ (𝜉1𝑒1 + 𝜉2𝑒2 + 𝑣)2𝑒2𝑑𝑥

2𝜋

0
) 𝑒2 =

                           𝑡1𝑒1 + 𝑡2𝑒2                                     36 

And  

 𝑣′′ + 𝛼𝑣 + (𝜉1𝑒1 + 𝜉2𝑒2 + 𝑣)2 +   𝑞1𝜉1𝑒1 +
𝑞2𝜉2𝑒2 = 𝑎1𝑡1

2 + 𝑎2𝑡1𝑡2 + 𝑎3𝑡2
2                         37                 

   by substituting 𝑞1 = 𝑞1̃ + 𝜇(𝜉1, 𝜉2) and  𝑞2 =
𝑞2̃ + 𝜇̃(𝜉1, 𝜉2) in Eq.36 and Eq.37, obtaining 

[(𝑞1̃ + 𝜇(𝜉1, 𝜉2))𝜉1 +
1

2𝜋
𝜉1

2 ∫ 𝑒1
3𝑑𝑥

2𝜋

0
+

1

𝜋
𝜉1𝜉2 ∫ 𝑒1

2𝑒2𝑑𝑥
2𝜋

0
+

1

2𝜋
𝜉2

2 ∫ 𝑒1𝑒2
2𝑑𝑥

1

0
] 𝑒1 +

[(𝑞2̃ + 𝜇̃(𝜉1, 𝜉2))𝜉2 + 
1

2𝜋
𝜉1

2 ∫ 𝑒1
2𝑒2𝑑𝑥

2𝜋

0
+

1

𝜋
𝜉1𝜉2 ∫ 𝑒2

2𝑒1𝑑𝑥
2𝜋

0
+

1

2𝜋
𝜉2

2 ∫ 𝑒2
3𝑑𝑥

2𝜋

0
] 𝑒2 = 𝑡1𝑒1 +

                                     𝑡2𝑒2                                        38 

 

𝑣′′ + 𝛼𝑣 +
1

2𝜋
(𝜉1

2𝑒1
2 + 2𝑒1𝑒2𝜉1𝜉2 + 𝜉2

2𝑒2
2 +

2𝑣𝑒1𝜉1 + 2𝑣𝑒2𝜉2 + 𝑣2)) + (𝑞1̃ + 𝜇(𝜉1, 𝜉2))𝜉1𝑒1 +

 (𝑞2̃ + 𝜇̃(𝜉1, 𝜉2))𝜉2𝑒2 =                          𝑎1𝑡1
2 +

𝑎2𝑡1𝑡2 + 𝑎3𝑡2
2                   39                               

     The functions 𝑣(𝑥, 𝜉, 𝜆), 𝜇(𝜉) 𝑎𝑛𝑑  𝜇̃(𝜉) in Eq.35 

determine by finding the coefficients 

𝜇0, 𝜇1, , 𝜇̃0, 𝜇̃1, , 𝑣0, 𝑣1, 𝑎𝑛𝑑 𝑣2 in Eq.38, 39, so have  

𝜇0 = 𝜇1 = 𝜇̃0 = 𝜇̃1 = 𝜇̃1 = 0 

𝑣0 =
1

𝛼 − 4
𝑐𝑜𝑐(2𝑥) −

1

𝛼
 

𝑣1 =
−1

𝛼−4
𝑠𝑖𝑛(2 𝑥)   

𝑣2 = −
1

𝛼−4
𝑐𝑜𝑐(2𝑥) −

1

𝛼
  

  So, the nonlinear approximation for Eq.31 found by 

substituting the values of 

μ0, μ1, , μ̃0, μ̃1, , 𝑣0, 𝑣1, 𝑎𝑛𝑑 𝑣2 in 𝑈(𝑥, 𝜉), 

 

𝑤(𝑥, 𝜉) = √2𝜉1 sin(𝑥) + √2𝜉2 cos(𝑥) +

[
1

𝛼−4
𝑐𝑜𝑐(2𝑥) −

1

𝛼
] 𝜉1

2 + [
−1

𝛼−4
𝑠𝑖𝑛(2 𝑥)] 𝜉1𝜉2 +

                        [−
1

𝛼−4
𝑐𝑜𝑐(2𝑥) −

1

𝛼
] 𝜉2

2                    40                                                                                                                                                               

𝑞1 = 𝑞1̃,  
𝑞2 = 𝑞2̃  

Eq.40 is a solution of the functional 𝑉(𝑢, 𝛼).which 

is represent the nonlinear Ritz approximation of V. 

  Now, will give the key function of functional 

V (w, α, 𝜓). 

Theorem 2. The functional                               
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     V (w, α, 𝜓) =
1

2𝜋
∫ ((w′)2

2

2π

0
+ αw2

2
+ w3

3
) −

w𝜓)𝑑𝑥. 
has the key function of the form 

𝑊(𝜉, 𝛿) = 𝛾1𝜉1
6 + 𝛾2𝜉2

6

+ 𝛾3𝜉1
4𝜉2

2+𝛾4𝜉1
2𝜉2

4+𝛾5𝜉1
4

+ 𝛾6𝜉2
4 + 𝛾7𝜉1

2𝜉2
2 + 𝜆1𝜉1

2

+ 𝜆2𝜉2
2 − 𝑡1𝜉1 − 𝑡2𝜉2 

Such that 

γi = γi(α), i = 1,2, … ,7 ,  
λi = λi(α, t), i = 1,2. 

Proof. 
The proof is in the same manner as the proof of 

Theorem 2. 

 

Conclusion:  
         The modified Lyapunov-Schmidt reduction for 

nonhomogeneous problems is used for finding the 

nonlinear Ritz approximation of nonlinear Fredholm 

functional when the dimension of the null space is 

equal to two. The method allowed us to get more 

information about the key function 𝑊(𝜉, 𝛿) . The 

method can be used to find nonlinear Ritz 

approximation for Fredholm functional defined by 

the nonhomogeneous nonlinear differential 

equations like Camassa-Holm and Benjamin-Bona-

Mahony equations. Nonlinear Ritz approximation 

solutions which have been obtained by MLSR 

experimented with in terms of thoroughness and 

convergence. Finding the caustic and discussing the 

bifurcation of critical points was difficult in previous 

studies, so the nonhomogeneous problems were 

studied to avoid this problem. In future work, we will 

study a new nonlinear equation using the modified 

Lyapunov-Schmidt method. 
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 شمدت المعدلة-تقريب ريز غير الخطي للمعادلة كاماسا هولم باستخدام طريقة ليبنوف
 

    مظهر عبدالواحد عبدالحسين                           هديل غازي عبدعلي                              
 

 .العراق ،البصرة ،البصرة جامعة ،صرفةالتربية للعلوم ال كليةقسم الرياضيات، 

 

 الخلاصة:
 اماسا هولمكلايجاد تقريب ريتز غير الخطي لمؤثر فريدهولم المعرف بمعادلة  شمدت المعدلة-نوفوباطريقة ليي هذا العمل، تم استخدام ف

ء مسائل غير المتجانسة عندما يكون بعد الفضاشمدت المعدلة في حالة ال -قدمنا طريقة ليابونوف .بنيامين بونا ماهونيومعادلة  غير المجانسة

 الصفري مساو الى اثنان. أثبتنا ان تقريب ريتز غير الخطي لمعادلة كاماسا هولم يعطى بشكل دالة ذات بعد مرافق قيمته اربعة وعشرون.

 

 .شمدت المعدلة-يقة ليبنوفطر ،كاوستك ،معادلة كاماسا هولم ،بنيامين بونا ماهونيمعادلة ، حلول التفرع مفتاحية:الكلمات ال

 


