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Abstract:

In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation
of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-
Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the
dimension of the null space is equal to two. The nonlinear Ritz approximation for the nonhomogeneous
Camassa-Holm equation has been found as a function of codimension twenty-four.
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Introduction:

There are a lot of mathematical, physical,
chemical, and engineering phenomena that are
shown as nonlinear problems so can be described
these problems as a nonlinear Fredholm operator.
gx,y)=9p,xeScX,p€eY,y R 1
When g is a smooth Fredholm map with zero
indexes and S is an open subset of Banach spaces.
One of them is Y. Write the other one as X. To
solve these problems may be used the method of
reduction to the dimensional equation by solving this
equation,
0¢,v)=BSEEPBEN, 2
When E and N are smooth manifolds of finite
dimensional and 6: R™ — R is a smooth function.
The Lyapunov-Schmidt method can reduce Eqg. 1 to
Eg. 2, in which Eq. 2 has the same properties as Eq.
1, in particular topological properties (multiplicity)
and analytical properties (bifurcation diagram),
which are found in 1. So that to study Eq. 1 it is
sufficient to study Eq. 2.

Nonlinear problems are one subject of the
greatest important subjects of mathematical
phenomena possess received a great interest in
scientific research in the last decades because of their
wide set of geometry and scientific applications.
Many of these studies focus on getting the
bifurcation solutions of some equations, especially
nonlinear partial differential equations (PDEs) that

occur in Engineering, Physics, or mathematics. Also,
in the Lyapunov-Schmidt method, the solutions in
unlimited dimensional spaces coincide with the
solutions in limited dimensional spaces. Therefore,
the method is an important method in modernistic
Mathematics to find analytical solutions. Many
researchers have dealt with this method; it was
previously called the alternative method by the
researcher Krasnoselskii 1956 2 who used it to study
Bifurcation for extremely without boundaries while
the implicit function theory was unable to be used.
Sapronov and his group. For example, in 2 used the
homogeneous solution to have the linear Ritz
approximation represented by the function W (g, 1)
of the functional in Eq.1. Lyapunov-Schmidt method
was also used to study boundary value problems,
which can be seen in 7. Abdul Hussain, Mayada®
and Mizeal®, study a bifurcation equation for a
nonlinear system given by two algebraic equations.
Abdul Hussain © introduces a general method
for finding nonlinear Ritz approximation of
nonlinear Fredholm functionals. He introduces an
example for finding a nonlinear Ritz approximation
of the functional corresponding to the Duffing
equation. Also, Abdul Hussain, 2015 ° used a
modified Lyapunov-Schmidt method to get a
nonlinear Ritz approximation of the functional
corresponding to the following equation
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av | L 2 43 =
- dx4+adx2-.|--[3v+v+v +v° =0,
with boundary conditions

v(0) =vQ2n) =v"(0)=v"(2r) =0

it is shown that the nonlinear Ritz approximation is
a function given by,

W(E 8) = 187 + ¢58'% + 3810 + 81 + 5312
+ ;80 + @, 88 + a3E0 + 48t
+au8% + 0([7*9)
+ 0(|7129)0(8)
where § = (§1,¢;),8 = {¢1,2,3,4,56 ®1,2,3,4) SUCh
that ¢, a are parameters.

In ' Murtada used Lyapunov-Schmidt
reduction (LSR) to study bifurcation solutions and
the bifurcation diagram of the following nonlinear
system

V2, Xy — X1 X5 — X X3 — X3X, = 0

V2, Xy — X,2 — 2X, X3 — 2X,X, = 0

V23 Xs + 3X, X, — 3X,X, = 0
VA X, + 22X, X5 +V2X,2 =0

In 2017 Rosen 2 has been studied to modify
the Lyapunov-Schmidt method to find a nonlinear
Ritz approximation for nonlinear Fredholm
functional defined by the nonlinear fourth ODE. In
his study, he considered the following cases,

1% =DA (Y,

2.9=DP@Q) +DX(D),

3.7 =D +D¥ @) +DW (D,

4.5 =DPD Q) +DE(Q) +DW(Q) + DO (D).
where D™ () are homogeneous polynomials of
degree k = 1,2,3,4,5and ¢ € R.

In the last years, Kadhim!® studied the
bifurcation solution of extremes of the functions of
codimensions eight and five at the origin by using
Lyapunov-Schmidt reduction (LSR). In previous
works, the presence and absence of u shaped
solutions were studied using the Lyapunov-
Schmidt method and Ritz linear approximation.
As for our work, we study the presence and the
absence of u + v solutions using the modified
Lyapunov-Schmidt method and the nonlinear
Ritz approximation.

The goal of this paper is to find the nonlinear
Ritz approximation of the functional corresponding
to the nonhomogeneous Camassa-Holm equation.

Materials and Methods:

Methods:

Proposition 14. Suppose that the triple {p, @, N } is
an elliptic finite dimensional reduction for the
functional V on a set Q from the smooth Banach
manifold M. Then the marginal map ¢ locates a one-

to-one corresponding between the critical points for
the functional ¥V and the critical points for the key
function W.

Lyapunov-Schmidt reduction (LSR)

The LSR was first suggested by Schmidt
1908 4. He discovered this method to get the
solutions to operator equations. It is a method
employed to solve the problems that possess
variational property and the problems that do
unpossessed variational property 1. Variational
problems can be solved in other ways like Boubaker
Polynomials®®, but LSR has been successfully
exercised to solve different nonlinear partial
differential equations, as well as it has succeeded
in finding bifurcation solutions to the equations,
for example, Zainab and Mudhir ¢, they found the
bifurcation solutions for the equation of sixth order
with boundary conditions using the Lyapunov-
Schmidt method in the variational case. This method
gives as follows:

Let E and K are real Banach spaces and
G:E — K be a nonlinear Fredholm operator with
zero index, when G is defined by

G(z,y) =0, z€E, y € R™
Written the spaces E and K as a direct sum,
E=W@Ww
K=wa Wt

where dim(W) = dim(W ) = n are subspaces of
E and K respectively, the orthogonal spaces of
W and W in E and K are Wt and W+t
respectively. Wherefore exist projections P: E - W
& (I —P):E > W+t definedby Pz=w & (I —
P)z = v. where eq, e,, ...,e, a basis of space W,
then V z € E is written in a unique way:

Z=w+v, wew, veEW

K
w = E Xi€é; .

i=1
In the same way, exists projections Q:K —
W and (I —Q):K - W+ defined by
QH(Z,]/) = GI(ZIY) & (I - Q)H(Z' )/) =
GZ (Zl V) . —
where g4, 92, ..., g i1Sthe basis for space W
then
H(z,2) = Hy(z,y) + Hy(z,Y),
Hl(zry) € W: HZ(ZI V) € WJ_ )
k

MGy = ) viGNg, HGy LW,
i=1
It concludes that,

H(z,y) =QH(z,y) + (I —Q)H(z,y) = 0.
Hence, the result from it
QH(z,y) =0
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(I-QH(zy)=0
or

QHw+v,y) =0
(I-QHW+v,y)=0.
From implicit function theorem, exists a map
0: W — W+ that is smooth defined by, 8(w,y) = v
and
I-QHW+6Ww,y),y)=0.

To get the solutions of the equation
H(z,y) = 0 at the neighborhood about a point z =
b it is sufficient to get solutions to the equation,

QH(w +06(w,y),y) =0.
The above equation is called bifurcation equation®*.

Modify Lyapunov-Schmidt method for the
nonhomogeneous nonlinear differential
equations (MLSM)

Modify Lyapunov-Schmidt method is a
procedure for obtaining the nonlinear Ritz
approximation to a Fredholm functional. MLSM is
similar to the Lyapunov-Schmidt reduction but the
MLSM is based on finding the particular solution of
the operator Eqg. 1 in the nonhomogeneous cases as
follows:

Suppose the nonlinear operator which is
Fredholm with zero index f:E — F such that

fuy) =¥, ye R"u eACE 3
Where E, F are real Banach space, ¥ = e¢ (e-small
parameter) is a continuous function and A € E is
open. let's say the operator f possesses a variational
property, this means, there is a functional V: A c
E - R, such that f =gradyVwhen A is a
bounded domain. Written operator f as:

fu,y) =Hu+Nu=¥,WEF

Where H = g—i(uo,y) is Frechet derivative of the

operator f about the point u, and its linear
continuous Fredholm operator and N represents the
nonlinear operator for f. Applied the LSR, we get
the following decomposition
E=wWewt F=wew!
where W = ker H is the null space of the operator f,
(here dimW =dimW =2) and W+, W' the
orthogonal complements of the subspaces W, W
respectively. If e, e,is an orthonormal set in W such
that He; = o;(y)e;, a;(y) is a continuous function,
where i = 1,2 then Vu e E can be expressed in
the unique format,
u=w+v, w=é&e;+ e, €W, Wlvw
€ Wl! fi = (u, ei)l
When (.,.) represents the inner product in Hilbert
space H . So there are projections p: E - W & I —
p:E - W defined by w=pu& (I-pu=v.
Similarly, there exist two projections Q: F —» W and
I —Q:F —» W+ defined by

o fy) =Qfwy) + U -Qf(wy)
r

4
fl+v,y)=0f(w+v,y)+U-Q)f(w+v,y)
And we get

Af(w+vy)=¥, W eW
I-Qf(w+vy) =Y, Y, e Wt
WhereW =¥, + ¥, , ¥, = t;e; +ty,e, and here

assume that,

W, = a;t;? + ayt t, + ast,?

where a;,i = 1,2,3 are constants and t;,i = 1,2 are
parameters.

By implicit function theorem getting

M(E;ﬁ) = V(e(f,ﬁ),ﬁ), 5 = (51152""'€n)l
Where deg M > 2, the functional V' has the linear
Ritz approximation represent by a function M
defined by

M, B) = V(Ziti&ien B) = Mo(§) + Ml(fiﬁg

Where M, (&) represents a homogenous polynomial
with degreen = 3 st My(0) = 0& M, (¢, B)isa
polynomial function of degree < n. If 1,95, ... qm
are the coefficients to the quadratic terms for the
function M, (¢, 8), then can be written the function
My (&, ) inthe formula,

MiEB) = My )+ ) aué?
k=1

Wheredeg M, = d,2 < d < n.
The functional ¥ has a nonlinear Ritz
approximation, it's a function M defined by

ME p) = V(Zn:fiei + 9(211: fi%ﬁ):ﬁ)

=1 =1
When 0(w,B) = v(x,§B), veNt Taylor's
expansion to the functions p, (%) and v(x, &, B) will
be wused to determine the nonlinear Ritz
approximation for the functional V, by assuming as
following:

G = Qi+ 1) = e+ ) DL®),
k=1,..,m =
v B = ) B (O
i=2

Where D,E’)(f) and BU)(&) are polynomials with
degree j which be homogenous, have coefficients
Ui and v (x, B) respectively, &=
(é1,&5, ..., &) since
Qf (wy) =(f(wy), er)er + (f(w, ), ex)e; =¥
It follows that

(Hu + Nu, e )e; + (Hu + Nu,ey)e, = ¥,
Hence

q1§1€1 + q28262 + (Nu, er)e; + (Nu, e;3)e,

=¥, q=a)

1733



Open Access
Published Online First: February, 2023

Baghdad Science Journal
2023, 20(5): 1731-1741

P-1SSN: 2078-8665
E-ISSN: 2411-7986

g1$1€1 + q28262 + [fQN(W +v)e;feg +
[[oNw +v)ezle; = Wy, 6
From Eq. 4 it follows that

I-Qfwy) =fwy) —Qf(wy).

From H(w + v) + N(w + v) = ¥, it follows that
Hv + N(w,v) + q1$1e1 + q2526, =¥y, 7
Substituting the values of g;, 1; (%) and v(x, &, 6) in
Eq.6 and Eq.7 yields

[ + Z7-5(D! (©) + Dy (E))]érer + [, +
12D} (€) + DJ(EN]Eze2 + [fy N(arrer +
G262, + Xjop B (5)91] e+ [fg N(q:$1e1 +
424262 er'zz B/ (5)92]92 =¥ 8

HX =2 BJ (§)) + N(q:é14 * 425262 +
Y= B/ (&) + (g1 + Xj=»(D{ &+
Dzj(f))]flel + G2 + XD (©) +
Dé(f))]fzez =Y, 9

To calculate the functions v(x,§, B) & pk ()
equate the coefficients of & = (&1,&5,...,&,) INEQ.8
to find the value of u,; and after some calculation
from EQq.9, it is getting a linear ODE in the variable
v;;(x,v). Solving the equation which appears one
can get the value to vj; (x, y).

In the following section, we give two examples
to find a nonlinear Ritz approximation for the
functional corresponding to the nonhomogeneous
Camassa-Holm Equation and Benjamin-Bona-
Mahony equation as an application of the Modify
Lyapunov-Schmidt method given above.

Results:
Nonlinear Ritz Approximation for the
Camassa-Holm Equation (CH)

This section applied MLSM given in the
previous section for finding nonlinear Ritz
approximation for the functional corresponding to
the nonhomogeneous Camassa-Holm equation.

Camassa and Holm in 1993, used the
Hamiltonian method to find a new model for a
completely integrable shallow water wave equation,

Zt Y+ 2KZy — Zypy + 322y = 2ZyZyy + ZZyyy,

10
where t is the time, z is the speed of the fluid in x
trend and K is a constant number. Eq. 10 is known as
Camassa-Holm (CH) equation. Moreover, in newly
years, Camassa-Holm was generalized to the
following equation,

1
Z + 2KZy — Zyyr + 3 [f(z)]x = 2ZyZyx + ZZxxx)
11

when f (z) is a function of z and [f(2)], is the
derivative of f for x.

Eqg. 10 can obtain from Eq.11 by putting & = 3
and B = 0 in the function f (z) = az? + pz3. Let
z(x,t) =w(y),y =x —at, when a the wave
velocity. Eq. 11 transformed to the following
ordinary differential equation for a variable w( y),
aw” + pw + %WZ - (% WH2 +ww'") =y 12

!

d
where ' = o and a, B are parameters.

Abdul Hussain provided a model in 19 for
finding non-linear approximation and bifurcation
solutions of differential equations of the fourth-
order. The present section includes an example for
finding the bifurcation of Eq. 12 with the coming
boundary conditions which satisfy Eqg. 10,

w(0) =w(l) =0,
wherew =w(y),y €[0,1].

To obtain a nonlinear approximation for the
Camassa-Holm equation. Firstly, write Eq. 12 as a
nonlinear Fredholm operator as follows:

gw,y) =aw” + pw + %Wz — G w)? +
WW") 13
when g:E — M is Fredholm operator which is
nonlinear of index zero from Banach space E to
Banach space M, where E = C2([0,1],R) is the
space of all continuous functions that have derivative
of order at most two, M = C([0,1], R) is the space
of every continuous function, y = (a,B) . The
operator g own variational property, so there is a
functional V defined by,
g w,y) =gradyV (w,y)
Where
V(w,AY) = %fol(—a(w’)2 +pw? + w3 +
w(w")? — wy)dx
Where grady V denotes the gradient of V. Every
solution of Eg. 12 is a solution of operator
equation?®,

gw )=y, Y EF 14
From the definition of Fréchet derivative have,
gw +eh) = a(w +eh)" + B(w + €h)
3
+5 (w + gh)?

1
- (E (W + h)")?
+w+eh)(w+ sh)”)

dg
—=ah" + Bh+3(w+enh)h

de
—(w+en)'n" +w+en)n”
+ (w+¢eh)"h)
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99 R + Bh + 3wh
e €=0—a + fh + 3w
—(w'h" +wh'" +w"h)
The Fréchet the derivative at the point (0, y) of the
nonlinear operator g(w, y) has the form,
dg(0,)h = ah” + Bh

And hence the linearized equation identical to Eq.
10 is defined by,

Ah=0h€eE
2
A=dg(0,)=a-—5+Bx€[01], 15
h0)=n1)=0

Eq. 15 is called a linearized equation.

The solution of the linearized Eq.15
verification of the boundary conditions is get by,
ep = a,sin(pnx),p = 1,2,3,... 16
Substituting Eq. 16 in Eq. 15 has a characteristic
equation identical to the above solution in the form,
f —ap?n? = 0
The equation above gives in the characteristic
lines ( af —plane ), wherefore, a point of
characteristic lines it's the points of (a, 8) such that
Eq.10 own nontrivial solutions. Can be found at the
bifurcation point®® in the space of parameters (a, 8)
from the point of intersection of the a8 — plane. As
a result, (0,0) is a bifurcation point for Eq.10. And
localized parameters for a, 8 gives by,
@=0+T,8=0+T1,.
where Iy, T, are parameters which small lead to the
below modes over the bifurcation.

e; = V2sin(nx), e, = V2 sin(2mx)

Where the norms of e; and e, in Hilbert space (H =
L,([0,1],R)) are equal to one, and a; = a, = V2.
This means that e, and e, are the orthonormal basis
of null space W = ker(H).
Can separate the space E into subspace W and it's an
orthogonal complement,

E=W®EE=W'nNnE={veEv LW}
Likewise, the space M separated to subspace N it's
an orthogonal complement as follows

F=N®F, F=NnF={veF:vL1N}
For that, there exist projections j:E - W & [ —
j:E — E such that jw=u and (I —j)w = v, so
VwEE represented as w=u+vu=
Y2 &e, W LveE, & = (w,e;) by the same way
there are projection G:F - N & I —G:F - F in
which

= (W' t)' t= (tll tZ)
Accordingly, Eq.1 can be represented as follows,
Gg(u + 17,]/) = lljl
I-G)glu+vy) =1y,

Suchthat ¥, = ety + ety
a t1? + aytit, + asty?
wherea;,i = 1,2,3 are constants and t;, i = 1,2 are
parameters.
From implicit function theory, obtain a
map 6: W — E that is smooth satisfy,

W('E' Fr ll}) = V(G(Er )/)' F, ¢):r = (Fl; FZ)
By finding the functions wv(x,&,y) = 0(&?),
1(§) = 0(5), @) = 0(8), & = (§1,¢2) can get the
nonlinear Ritz approximation of V(8(¢,y),T,¢),
when

q1 = q1 + u($1,62), 92 = Gz + (61, &2)

and Y, =

v(x, &, y) = vo(x, DEF + v (6, DE & + v, (x, DEF + -+

11, &) = woéy + 11

A(§1,&2) = Boéy + +1 6,
written Eq. 14 as follows

gu,y) =Au+Tu =1,

2
When Aw = a < + fw represents a linear part

while Tw =%W2 —G (w')? +WW”) is the
nonlinear part of Eq. 13. Since

Qf(W' }{) = i2=1(f(W' A)'ei)ei = 1,01,

obtaining
iAW) + T(w), epde; = T2 (Jy (Aw)e; +
T(w)ei)dx)el- = 1.

Thus,

(q181 + §f01(51e1 + &6, +v)?epdx —
%fol((flel + &6, +v))?erdx — fol(f1e1 +
38(2192 +v)(§re1 + Sz + 77)”91161135)@1 + (282 +
Efo (§1e1 + &2, + V) 2epdx — Efo ((1e1 +$zen +

v)')’erdx — fol(flel + &6+ v)(6re +
Ezez + v)”ezdx)ez = tlel + tzez 18
And

3 1
av’ + v +5(§1e1 + &6, +v)? —5((5191 +

§re0 + 1)) = (G161 + &6, V) (Ereg + &pep +

V)" + qiéie; + 2620, = a1ty + aytit, +

ast,? 19
by substituting q; = q7 + u(&1,&,) and q, =

g7 + [i(&,&,) in Eq.18 and Eq.19, obtaining

(@ + uE, 60)6 +382 f, eddx +
38182 fol efeydx + %fzz fol ejefdx —
~&2 [, e’ dx — &1&; [ erefe’ydx —
2&2 [ ere'sdx — &2 [ ey%ey"dx —
$1¢2 fol efe’pdx —§1§, fol ereze; dx —
&3 fol eleze"zdx] ert+ [(EIE + (81, 62))é, +
282 [ ebeydx + 36,E; [, eZeydx +
262 [} eddx -3 87 [ esedx -

1 1 1 2
182 fo eyere’rdx — 5522 fo eze'zdx —
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1 1
&t fo erezey’ dx — §,§; fo eje' dx —

1 1
eje,e X — e,“e Xl e, =
152 Jg *1%2 é’d 22 0 22 ,,Zd 2

tie; +tye, 20

av'" + fv + (E2e? + 2e1e,618, + E3ed +
1 2
2ve & + 2veyé, + v?) — E(flze'l +
2e'1e'3818, + 5229'3 +2v'e’ & +2v'e’ 8, +
v'%) — (Elere) + EiEpeiel + v e & +
e"'1e,61&, + Efejey + Ve &, +ve &) +
ve" & +vv') + (q1 + (61, &2))éren + (@ +

ﬁ(fpstz))fzez = a;t? + aztit, + ast,?
21

The functions v(x, &, 1), u(é) and f(¢) in
Eq. 17 determine by finding the coefficients
Uo» U1,y o, fi1,, Vo, V1, and v, in Eq. 20, 21.
By equating the coefficients of 2 in Eqg. 20 and 21,
then getting two equations,

3.1 3 1,01 2
[,u0+5f0 e1dx—§f0 ee'1dx —
1 2 17 3 r1 2 1,1 12
J, er’e""dx| ey + Efo elezdx—zfo ee'idx —

f01 elezel”dx] e, =0 22

3 1,2
avy + Bvg + 5912 —>e'1—eje)” +ppe; = 0. 23

—9m5 42
EQ.22 gives ug = _%( 97 4nﬂﬁ+24ﬁ)

for this value in ODE Eq.23
avy + pvy + gef - %e’f —ee" —
1 (-9n°—4n?V2+24+/2)
- el = O

substitute

6 T
And then have
_ 3(m%+1)

2
0= Tpamep cos(mx)* +
(on5V2+8m2—-48) . (2n?-3)p+(2n*+6m)a
6m(-m2a+f) sm(nx)+ B(—4m2a+p)

Now, to find coefficients of &; &,
[,u1 +3 fol ele,dx — fol ejeje’dx —
fol ete' ,dx — fol eleze{’dx] e, +

[ﬁo +3 fol ele;dx — fol eyeje’ ,dx —

fol 8226"1dx _ fol elezeé,dx] e, = 0 24
24
avil + ,8171 + 36162 — e'le’z — e1eél _ 3"16’2 +
piey + fige; = 0 o5
2
From Eq.24 get uy = 0, and ji = — 2 422 g

that, Eq.(25) becomes
avy + pv, + 3ee;, —e'1e’, —ee) —e''1e,
16 3m? + 2)V2
-
The solution of ODE gives the function v, as
follows

e, =

28(n?+2) 2
V1= T ais cos(mx)° +
64(3m%+2)

msm(n x)cos(m x) +
(48m*+36m2)a+(—24n%+12)B
(—-m2a+pB)(-9m2a+p)
Equating the coefficients of £2, have
3,1 1,1 /2 1 ’
[Efo ejeZdx —>Jy exe’zdx — [ ejeze ’de] e, +
., 3.1 1,01 2
[yl +>J eddx — > Jy eze'2dx —
f01 ezze"zdx] e, =0
avy + pv, + ;ezz — %e’% —eyey + flie; = 0,26
hence fi; = 0 that implies Eq. 26, becomes

cos(m x)

3 1
avy + pv, + 5922 - Ee’% —eye) =0,
and the solution for this equation

3(4m?+1 2
S cosm) =5 (x* +3)
So, the nonlinear approximation for Eq. 12 was
found by  substituting the values of
Ho, K1, flo’ ﬁlf » Vo, V1, and U in Eq 171
w(x, &) = V2§, sin(mx) + V2&, sin(2mx) +

(on>v2+8m2-48)

Uy, = —

3(m?+1) 2 .
[——4tm2+ﬁ cos(mx)“ + P —p— sin(mx) +
(2mn?-3)B+(2n*+6m?)al .o _ 28(”2"';) 3
B(—4n?atp) 1+ [~ Goagay cos(mx)” +

64(3m%+2)
s5n(—4m2a+p)
(48n*+36m%)a+(—-241%+12)B
(—m2a+B)(—9n2a+p)
[_ 3(4m?+1)
32m2a+2p

sin(mx) cos(mx) +

cos(nx)] &é& +
cos(4mx) — %(nz + %)] &2 27

— 1 (-9n5-4m%\/2+24+/2)
41 =41~

T
— 16 (3m%+2)V2
QZ=QZ_?uE1

T
Eq.27 isasolution of the functional V (u, 4). which
is represent the nonlinear Ritz approximation of V.

§1)

From the above results we deduced the following
theorem
Theorem 1. The nonlinear Ritz approximation of
the functional
V(w,y,¥) = %fol(—oqw’)z +
Bw? + wi+w(w") — wi)dx.
is given by the function

W(§,6) = U(&,6) +o(I51°) + 0(Ig19)08D),

U, 8) = 11&° + 726 + 1366 41,628,
+¥s5é1” + vebr&y
+ Y7808 et + vedat
+¥1061°6° +v1aé + L&

, 1 1
+ 158, —§t1f1—§tzfz
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Where

Yi = vi(e, B),i=1,2,..,11,

7\1 = 7\1(0(, B, t),i =1,2

€= (&,&,),8 = (yi, Ay such that A,y are
parameters.

Proof:
To determine the key function of V (w,y,y) wall
substituting Eqg.27 in the functional

1 1
Viwyy) =7 f (—aw"? + Bw? + wi+ww")
0
—wih)dx.
And after solving it get the function W (&, §).

The geometry of the bifurcation of critical points
and the principal asymptotic of the branches of

bifurcating points for the function W(¢&,8) are
entirely determined by its principal part U(¢, 6). The
function W(&,8) has all the topological and
analytical properties of functional V (w,y,y). The
spreading of the critical points of the function
W (¢, 6) depends on the change of parameter § and
will be discussed in this paper as follows:

The study of the discriminant set of function
W (&, ) it not easy to find so, we will use maple 16
to find the discriminant set of the above function
W(&,6), in particular, we will fix the values of
A1,Yi, i = 1,2,..,11. and then to find all sections of
discriminant set in the A,t;t,— surfaces, so we have
three cases.

Figure 1. Describe Causticwheny; =y7 =1,y =¥g=—2,¥3 =Y9 =3,¥Y4 = VY10 = 0.2,¥5 =
Y11 = 0.3,y6 = Al =0.4

=300000
-2
= 100000 200000

Figure 2. Describe Caustic wheny; = 6,y = —5,¥Y3 = Y9 = 33,¥4 = 0.56,y5 = 0.88,y, =
0. 77,Y7 = 11,y8 = —22,)/10 = 0.92,)/11 = 093,11 = 0.64
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< 10%

600000

200000

400000

Figure 3. Describe Caustic when y; = —6,y, = —5,y3 = —0.33,y4 = —56,¥5 = =1,y = 77,y7 =
11, Ys = —22,: Yo = 33,]/10 = 92,]/11 = 22,).1 = 64

The bifurcation propagation of the critical points
to the function W (¢, 8) is given as follows:

In Fig.1, the caustic (bifurcation set) of function
W(&,6) Split the space of parameters into
regionsRq, R,, and Rs; in all regions, there is one real
critical point (Saddle).

In Fig.2 the caustic (bifurcation set) of function
W (&, 8) Split the space of parameters into regions R,
and R,; each region consists of a fixed number of
three real critical points (Minimum, 2 Saddles).

In Fig.3, the caustic (bifurcation set) of function
21 Split the space of parameters into regions R, R,
,and R5; each region consists of a fixed number of
critical points so that the pervasion of the critical
points is as follows: if the parameters ( A4, t1,t5)
belong to R;, R, then have three real critical points
(2 Maximum, Saddle), while haveing five real
critical points (Minimum, 2 Saddles, 2 Maximum).
When ( 44,t4,t,) belong to Rs.

Nonlinear Ritz Approximation for the
Benjamin-Bona-Mahony Equation (BBM)

In this section, we will give another example
of our work in this paper. As in the above section,
MLSM will be applied to the study of the
existence of periodic solutions of the traveling
wave in the form u + v of the Benjamin-Bona-
Mahony equation.

Consider the following
differential equation
U + ;;—Zuux + f_cto K(x—nu,(n,t)dn =0 28
when t,g,u(x,t),h, are time, gravitational
acceleration, and water wave velocity respectively
while hy is the depth of the fluid such that ¢ , =
Jgho, with a kernel K (x), defined by

nonlinear partial

o]

K(x) = %f_ c(k)e**dx

By Taylor expansion, the partial deferential Eq. 28
reduces to the Korteweg-de Vries equation,

C 1
h—‘(’)uux + gCoh%uxxx =0 29

By assuming u(x,t) =u(m),n = x — ct, Eq.29
is transformed into the following ordinary
differential equation for a variable w( y),

LY L ow+w? =0 30

dx?
where « is a parameter.

In the present section, we will study Eq. 30 with

the following boundary conditions which satisfy Eq.
30,

3
Up + Colly +3

w(0) =w(2r) =0,
wherew = w(x),x € [0,2n].

To obtain a nonlinear approximation for the
Korteweg-de Vries equation, write Eq. 30 as a
nonlinear Fredholm operator as follows:

gw,y) =w" +aw + w? 31
when g: E — M is the Fredholm operator which is
nonlinear of index zero from Banach space E to
Banach space M, where E = C?([0,2n],R) is the
space of all continuous functions that have derivative
of order at most two, M = C([0,2x], R) is the space
of every continuous function. The operator g own
variational property, so there is a functional V
defined by,

gw,a) =gradyV (w,a)
Where
V(w,oyp) = ifol(# + O(WTZ + W;) — wip)dx
When grady V denotes the gradient of V. Every
solution of Eqg. 30 is a solution of the operator
equation,
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gw )=y, Y EF 32
the Fréchet derivative at the point (0, @) of the
nonlinear operator g(w, a) has the form,
dg(0,@)h = h"" + an
And hence the linearized equation identical to Eq.
28 is defined by,
Ah=0h€EE
A=dg(0,a) = dd—xzz +a,x € [0,2m], 33
h(0) =hQ2r)=0
Eq. 33 is called a linearized equation.
The solution of the linearized Eq. 33 verification
of the boundary conditions is get by
e = a, sin(x) + a, cos(x), 34
As a result, (0,0) is a bifurcation point for Eq.28.
And localized parameters for a gives by,
a=0+r
where " are parameters that small lead to the below
modes over the bifurcation.
e; = V2sin(x),e, = V2 cos(x)
Where the norms of e; and e, are equal to one, and
a, = a, = /2. This means that e;and e, are the
orthonormal basis of null space ker(A).
Can separate the space E into subspace W and it's an
orthogonal complement,
E=W®EE=W'nNnE={veEv LW}
Likewise, the space M separated to subspace N it's
an orthogonal complement as follows
F=N®F, F=NnF={veF:vL1lN}
For that, there exist projections j:E - W & I —
j:E = E such that jw =u and (I —j)w = v, so
VwEeEE represented as w=u+vu=
Y &e, W LveE, & = (w,e;) by the same way
there are projection G:F - N & I —G:F - F in
which
gwy) =G6gwy) +U-Ggwy) =y, ¢
= (W, t)' t= (tl' tZ)
Accordingly, Eq. 31 can be represented as
follows,
Gg(u+v,y) =
I-G)glu+vy) =y,
Yy = ety +eyt, and
Y, = ait;? + aytyt, + asty?
From implicit function theory, obtainamap 8: W —
E that is smooth satisfying,
WE,Ly) =V(O(E a)T9)
By finding the functions wv(x,¢,y) = 0(&2),
1(§) = 0(8), @) = 0(§), § = (§1,¢2), canget the
nonlinear Ritz approximation of V(6(¢, a),T, ),
when
q1=q1 +1(§1,82), 92 = @z + (61, §2)
v(x, &, ¥) = vo(x, D)EF + vy (x, D& &, + v, (x, DEF + }

Such that

p(€1, &) = oy + 11,
(61, 82) = foéy + +ilié,
written Eq. 31 as follows

g, a) =Au+Tu =1,
2
When Aw = ZTV: + aw represents a linear part

while Tw = w? is a nonlinear part of Eq.30. Since

Qf(W' }l) = i2=1(f(W: }l)'ei)ei = 11[)1’

obtaining
2 (AW) + Tw), ee; = X2 ([ Aw)e; +
T(W)ei)dx) e =Y;.
Thus,
(‘hﬁ + ifozn(sﬁ% + &6, + v)zeldx) e; +
(QZfz + ifozn(fﬂ% + &6, + U)Zezdx) e, =

tie; +tye, 36
And
v +av+ (&e; +&ep + )%+ qi&e +
q2826; = ait;? + ayt t, + agt,? 37

by substituting q; = g7 + u(é1,¢;) and q, =
qz + (&, &) in Eq.36 and Eq.37, obtaining

— 1 2
[(‘h + #(51;52))51 + 5512 fo 7T“-’13dx +
1 2 1 1
—$1$2 fonelzezdx + 5522 J e1e22dx] e+
S 1 2
[(CI2 +(81,62))6 + 5512 J "efe,dx +
1 2 1 2
—$152 Js "efeidx + 5522 Js neio)dx] e; =te +
tzez 38

v +av+ %t (§fef + 2e1e,61&, + EFed +
2vei &) + 2veyé, +v3)) + (EIT + H(fl:fz))flel +

(EIE + 11(8(1'8(2))52@2 = ait;® +
atit, + ast,? 39
The functions v(x, &, 1), u(¢) and [i(¢) inEqg.35
determine by  finding the  coefficients

Uo» U1, » o, f1,, Vo, V1, and v, in EQ.38, 39, so have
Mo =Hy = fig =fi; =3 =0

v0=

2%) — =
a_4coc( x) "

-1 .
v, = Esm(z x)
1 1
v, = —Ecoc(Zx) -

So, the nonlinear approximation for Eq.31 found by
substituting the values of

HOJ M1,, iIOI illl ) UOI V1 and v, in U(X, 5)1

w(x, &) = V2&; sin(x) + V2&, cos(x) +
[ﬁ coc(2x) — ﬂ &2 + [a_—_l4 sin(2 x)] &6, +

1 1 2
[—ECOC(ZX) — ;] & 40
q1 = 2121:;
qz = qz

Eq.40 is a solution of the functional V (u, «).which
IS represent the nonlinear Ritz approximation of V.
Now, will give the key function of functional

V (w, a, ).

Theorem 2. The functional
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1 r2m AV 2 3
V(w,a,1) = 5= [ (O + ot + ) —

wy)dx.
has the key function of the form
W(E8) = y1&° +7,86,°
Ay 2 2, 4 4
+V3f14fz +V4§1 SZZ +V5$t%
+ Vefzz +v7861°8" + &y
+ 4,8," — 6161 — 6,8,

Such that

vi =vi(0),i=1.2,..,7,

)\i = ?\i(a,t),i = 1,2

Proof.

The proof is in the same manner as the proof of
Theorem 2.

Conclusion:

The modified Lyapunov-Schmidt reduction for
nonhomogeneous problems is used for finding the
nonlinear Ritz approximation of nonlinear Fredholm
functional when the dimension of the null space is
equal to two. The method allowed us to get more
information about the key function W(&,8). The
method can be used to find nonlinear Ritz
approximation for Fredholm functional defined by
the  nonhomogeneous nonlinear  differential
equations like Camassa-Holm and Benjamin-Bona-
Mahony equations. Nonlinear Ritz approximation
solutions which have been obtained by MLSR
experimented with in terms of thoroughness and
convergence. Finding the caustic and discussing the
bifurcation of critical points was difficult in previous
studies, so the nonhomogeneous problems were
studied to avoid this problem. In future work, we will
study a new nonlinear equation using the modified
Lyapunov-Schmidt method.
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