The Coincidence Lefschetz Number For Self – Maps of Lie groups

*Adil G. Naoum

**Ban Jaffar Al- Ta'iy

Date of acceptance 4/3/2006

Abstract

Let $f, h: G \to G$ be any two self maps of a compact connected oriented Lie group G. In this paper, for each positive integer k, we associate an integer with f^k, h^k . We relate this number with Lefschetz coincidence number. We deduce that for any two differentiable maps $f, h: G \to G$, there exists a positive integer k such that $k \le \lambda + 1$, and there is a point $x \in G$ such that $f^k(x) = h^k(x)$, where λ is the rank of G.

Introduction

Let G be an n-dimensional compact connected Lie group with multiplication μ (i.e., $\mu: G \times G \to G$ such that $\mu(x,y) = x.y$) and unit e. Let [G,G] be the set of homotopy classes of maps $G \to G$. Given two maps $f,f': G \to G$, following [3], we write $f \cdot f'$ to denote the map $G \to G$ defined by $(ff')(g) = \mu(f(g),f'(g)) = f(g),f'(g),g \in G$.

Given a point $g \in G$ and a differentiable map $F: G \to G$, write G_g to denote the tangent space of G at g [4,p.10], and denote by $d_g F$ the linear map $d_g F: T_g G \to T_{F(g)} G$ induced by F, it is called the differential of F at g

[4,p.22]. Let L_g , R_g : $G \rightarrow G$ be respectively the left translation $L_g(g') = \mu(g,g')$, and the right translation $R_g(g') = \mu(g',g)$. Then there is a natural homomorphism Ad, the adjoin representation, from G to $GL(G_e)$, (the group of nonsingular linear transformations of G) defined as follows:-

$$Ad(g) = d_g R_{g^{-1}} \circ d_e L_g.$$
 Note that $d_g R_{g^{-1}} \circ d_e L_g = d(R_{g^{-1}}(L_g(e))) \circ d_e L_g = d_e(R_{g^{-1}} \circ L_g) = d_e(L_g \circ R_{g^{-1}})$
$$= d(L_g(R_{g^{-1}}(e))) \circ d_e R_{g^{-1}} = d_{g^{-1}} L_g \circ d_e R_{g^{-1}}.$$
 Since G is connected, the image of Ad belongs to the connected component of GLG_e) containing the identity, i.e. for each $g \in G$, $\det Ad(g) > 0$. By Exercise A1

^{*} Dr.-Prof.-Department of Mathematics- College of Science- University of Baghdad.

^{**} Dr.-Department of Mathematics- College of Science for Woman- University of Baghdad.

[4,p. 147] we have **Lemma 1:**-

1) If T is the map $G \rightarrow G$ is defined by $T(g) = g^{-1}$, then $d_g T = -d_e L_{e^{-1}} \circ d_g R_{e^{-1}} = -d_e R_{e^{-1}} \circ d_g L_{e^{-1}}$,

2) If μ is the mapping $(g_1, g_2) \rightarrow g_1 g_2$ of $G \times G$ into G, then if $X \in G_{g_1}, Y \in G_{g_2}$. $d_{(g_1,g_2)} \mu(X,Y) = d_{g_1} L_{g_2}(Y) + d_{g_2} R_{g_3}(X) (X,Y) \in G_{g_3} \times G_{g_4}$.

In [3], the author shows that if $f:G \rightarrow G$ is a differentiable map, then there exists a positive integer $k \le \lambda + 1$ and a point $x \in G$ such that $f^k(x) = x$, where λ is the rank of G, i.e. the dimension of G of any maximal torus in G.

THE MAIN RESULTS

Let $f, h: G \rightarrow G$ be differentiable maps of compact connected oriented Lie group G. A point $g \in G$ is called a coincidence point if f(g) = h(g), following [7],[8]. Assume f and h have isolated coincidence points then by compactness of G, f and h have only finitely many coincidence points. Also if g is an isolated coincidence point of f and h then $d_g f - d_g h$ has no nonzero fixed point, i.e. $\det(d_g f - d_g h) \neq 0$. In [6] the author defines the Lefschetz coincidence number as

$$Le(f,h) = \sum_{f(g)=h(g)} sign(\det(d_g f - d_g h)).$$

If f is the identity map then Le(h) is the Lefschetz number, for more details see [2].

Let $Le:[G,G] \to Z$ be the function

that sends each element in [G,G] to its

Lefschetz coincidence number. Then the Lefschetz coincidence point theorem states that "if f, $h:G \rightarrow G$ are maps with $Ld(f,h) \neq 0$, then f, h have a coincidence point " . Now we define another function $B(f,h):[G,G] \rightarrow Z$ by setting $B(f,h) = \text{degree}(f.h^{-1})$. Since $B(f,h) \neq 0$ implies $f.h^{-1}$ is surjective, i.e., $e \in Im(h^{-1})$. this function also possesses the property that " if $B(f,h) \neq 0$, f and h have a coincidence point, i.e., if $B(f,h) \neq 0$ then $e \in Im(fh^{-1})$ which means there is a point $g \in G$ such that $f(gh^{-1}) = e$, i.e., f(g) = h(g)". Theorem (2):-

The two functions Le,(-I)" B:

 $[G,G] \rightarrow \mathbb{Z}$ coincide, where n is the dimension of G. proof:-

The left translation $L_{\mathbf{x}}$ of G onto itself is an analytic diffeomorphism then $d_{\mathbf{x}}$ is an isomorphism. So for each $g \in G$, we identify G_g with $G_{\mathbf{x}}$ by the differential of left translation for $\mathbf{x} \mathbf{n} \mathbf{y} L_{\mathbf{x}} \mathbf{x} \mathbf{e}$.

For any two maps in [G,G], we take the representations $f,h:G \rightarrow G$ that satisfy the following:

- (1) f and h are differentiable;
- (2) f and h have only finitely many coincidence points $g_1, ..., g_k$, i.e., have isolated coincidence points

isolated coincidence points $\{g_1,...,g_k\}$.

(3) $\det(d_g h - d_g f) \neq 0$.

Then $Le(f,h) = \sum_{1}^{k} sign det(d_{\mathbf{z}}h - d_{\mathbf{z}}f)$.

 $(f.h^{-1})^{-1}(e) = \{g_1, ..., g_k\}$, and for each i the differential of $(f.h^{-1}) \circ L_{g_i}$ at e is $G_e \xrightarrow{dl_{g_i}} G_{g_i} \xrightarrow{d\Delta} G_{g_i} \times G_{g_i} \xrightarrow{df \times dh^{-1}} G_{f(g_i)} \times G_{h^{-1}(g_i)} \xrightarrow{d\mu} G_e$,

where : $G \rightarrow G \times G$ is the diagonal map and we use Lemma(2) for $d_{(f(g_i),h^{-1}(g_i))}\mu$. It follows from Lemma 2 that the above homomorphism is just the same as $Adg^{-1}(d(L_{G_i},\circ(fL))-d(L_{G_i},\circ(hL)),G\rightarrow G$.

 $Adg^{-1}(d_e(L_{f^{-1}(g)} \circ (fL_g)) - d_e(L_{h^{-1}(g)} \circ (hL_g)): G_e \to G_e.$

Denote this map by A_i . Then by the assumption (3) $det(A_i) \neq 0$

 $(-1)^n sign \det A_i = sign \det(d_{g_i} h - d_{g_i} f).$

So we see that e is a regular value of fh^{-1} , (a point y in Y is regular value for a smooth map of manifolds $f:X \to Y$, is called a regular value for f if $d_x f: T_x X \to T_y Y$ is surjective at every point $x \in X$ such that f(x) = y, [2]) and $B(f,h) = \sum_{i=1}^{k} sign \det A_i = (-1)^n Le(f,h)$.

To give an application of the above theorem, recall that H'(G,Q) is an exterior algebra $\wedge (x_1,...,x_{\lambda})$ generated by primitive elements x_i of odd degree [9,p.155] with $\lambda = \operatorname{rank} G$. Also from [9,p149] we have

Lemma (3) :-

If $f, f': G \to G$ are two maps, and if $x \in H^*(G,Q)$ is primitive, then $(f.f')^*(x) = f^*(x) + f'^*(x)$. By Lemma (3) $(fh^{-1})^*(x_i) = f^*(x_i)$ $-h^*(x_i)$. Let \cap be the cup product in $H^*(G;Q)$ then Lemma (3) also implies $B(f,h)^*(x_1 \cup ... \cup x_k) = (fh^{-1})^*(x_1 \cup ... \cup x_k)$ $= (fh^{-1})^*x_1 \cup ... \cup (fh^{-1})^*x_k$ $= (f^*(x_1) - h^*(x_1)) \cup ...$ $\cup (f^*(x_k) - (h^*(x_k))$

Recall that a maximal torus is a maximal abelian compact subgroup of Gand any two maximal tori are conjugate in particular, all maximal tori have the same dimension λ , the integer λ is called the rank of G. It is known that $n \equiv \lambda \mod 2$. We can rewrite theorem 2 as follows: - Theorem (4):-

 $Le(f,h)x_1 \cup ... \cup x_{\lambda} = (h^*(x_1) - f^*(x_1))$ $\cup ... \cup (h^*(x_{\lambda}) - f^*(x_{\lambda})).$

Given a map $f: G \to G$ and integer k > 0, let f be the f be the f fold product of f defined inductively f = f, f = f.

Theorem (5):
For any integer k, $L(f^k, h)(x_1 \cup ... \cup x_{\lambda}) = x^{\lambda} Le(f, h)(x_1 \cup ... \cup x_{\lambda})$.

Proof:-

$$Le({}^{k}f, {}^{k}h)(x_{1} \cup ... \cup x_{\lambda}) = (({}^{k}h)^{*}(x_{1}) - ({}^{k}f)^{*}(x_{1}))$$

$$\cup . \cup ({}^{k}h)^{*}(x_{\lambda}) - {}^{k}f)^{*}(x_{\lambda}),$$

$$= (kh^{*}(x_{1}) - kf^{*}(x_{1}))$$

$$\cup . \cup (k\bar{h}(x_{\lambda}) - kf^{*}(x_{\lambda}))$$

$$= k(h^{*}(x_{1}) - f^{*}(x_{1}))$$

$$\cup . \cup k(h^{*}(x_{1}) - f^{*}(x_{1}))$$

Corollary (6):-

For any differentiable maps f,h: $G \rightarrow G$, there is an integer k with $0 < k \le$ $\lambda + 1$ that such $Le({}^kf, {}^kh) \neq 0$. Proof: -

Given maps $f_1, h_1: G \to G$, , regard the expression $, (f_1 - h_1)(x_1) \cup ... \cup (f_1 - h_1)(x_{\lambda}),$ as a formal polynomial in the $(f_1 - h)^*(x_i)$. For each integer t with $0 \le t \le \lambda$, there

exists an element sum of $A(f_i, h_i)$ in Qsuch that $A_i(f_i, h_i)x_i \cup ... \cup x_k = \text{sum of }$ the monomials appearing in the above polynomial, and containing just t elements. $(f_1 - h_1)^*(x_i)$. Then Lemma (3) and theorem (4) imply that

$$Le({}^kf,{}^kh) = \sum_{k=0}^{k} k^k A_k(f,h)$$
 for any $k>0$.

So, if $H = (a_n)$ is the $(\lambda + 1) \times (\lambda + 1)$ Vandermonde matrix [5], defined by $a_{st} = t^{s-1}, 1 \le s, t \le \lambda + 1$ then $(Le(f,h), Le(^{2}f,^{2}h), ..., Le(^{\lambda+1}f,^{\lambda+1}h)) =$ $(A_0(f,h), A_1(f,h),..., A_1(f,h))H.$

Since $det(H)\neq 0$ and $A_0(f,h)=1\neq 0$ then there is an integer k, $0 < k \le \lambda + 1$ such that $Le({}^kf,{}^kh) \neq 0$. \Box

Corollary (7) :-

For any differentiable maps f,h: $G \rightarrow G$, there is an integer k with

 $0 < k \le \lambda + 1$ such that $f^{\perp}(x) = h^{\perp}(x)$. Proof :-

By corollary (6)there is an integer k with $0 \le k \le \lambda + 1$ such that $Le(^k f, ^k h) \ne 0$. Therefore, by Lefschetz coincidence point theorem f^{k} and h^{k} have

Suppose f.h: $G \rightarrow G$ are homomorphisms. Then for any primitive element $x \in H^*(G; Q)$, $(f-h)^*(x)$ is also primitive. Since the primitive elements form a submodule of $H^*(G; Q)$ with basis $\{x_1,...,x_n\}$,there exists a $\lambda \times \lambda$ matrix M_{f-h} over Q

such that

$$\begin{split} (f^{*}(x_{1})-h^{*}(x_{1}),...,f^{*}(x_{\lambda})-h^{*}(x_{\lambda})) &= (x_{1},...,x_{\lambda})M_{f-h}.\\ ((fh^{-1})^{*}(x_{1}),...(fh^{-1})^{*}(x_{\lambda})) &= (x_{1},...,x_{\lambda})M_{f-h}.\\ ((fh^{-1})^{*}(x_{1},...,x_{\lambda})) &= (x_{1},...,x_{\lambda})M_{f-h}.\\ &E(f,h)^{*}(x_{1},...,x_{\lambda})) &= (x_{1},...,x_{\lambda})M_{f-h}. \end{split}$$

By theorem 4 we have

 $Le(f,h) = \det(M_{f-h})$. The above discussion

proves the following corollary:

Corollary (8) :-

$$Le(f,h) = \det(M_{f-h}).$$

Corollary (9) :-

$$Le^{k}Id\rangle = (1-k)^{\lambda}, Le^{k-1}(f^{-1})\rangle = (1+k)^{\lambda},$$

where Id is identity map on G.

Proof :-

See [1].

REFERENCES

- 1. Brown, R. F., 1971, The Lefschetz fixed point theorem, Scott Foresman.
- 2. Guillemin, V.and Polack, A., 1974, Differential Topology, Prentice – Hall, Englewood Cliffs, N.J.
- 3. Hai Bao, Duan .,1988, The Lefschetz number of self-maps of Lie groups, Pro. Amer. Math. Soc.104 (4):1284-1286.
- Helgason, S., 1978, Differential geometry, Lie groups and symmetric spaces, Academic Press, New York.
- 5. Kofman, I., 2000, Approximating Jones Coefficients and other Link Invariants by Vassiliev Invariants, Internet, 14 Jul.

- 6. Mukherjea, K. K., 1974, Survey of coincidence theory, Global analysis and its application, Vol. III (Lectures, Internat. Sem. Course, Internat. Centre Theoret. Phys. Triste. 1972) p. 55 64. Internat. Atomic Energy Agency, Vienna,.
- 7. Saveliev, P., 2001, The Lefschetz coincidence of maps between manifolds of different dimentions, Topology Appl. 116 (1): 137-152.
- 8. Saveliev, P., 2005, Applications of Lefschetz numbers in control theory, Internet 23 Jun
- Whitehead ,G.W.,1978, Elements of homotopy theory ,Springer-Verlag , Berlin and New York .

عدد لبشر للتطابق لدوال من زمرة لي الى نفسها

** بان جعفر حسن حياوي الطاني

* عادل غسان نعوم

* قسم الرياضيات ، كلية العلوم ، جامعة بغداد . ** قسم الرياضيات ، كلية العلوم للبنات ، جامعة بغداد .

المستخلص

لتكن G زمرة لي المرصوصه المترابطه ، لتكن $G \to G \to f$ دالتين مستمرتين معرفتين على G وليكن G عدد صحيح موجب ، التكرار G ل G وليكن G عدد صحيح موجب ، التكرار G ل G

في هذا البحث لكل عدد صحيح موجب t، يرافق عدد صحيح مع h', f' ويربط هذا العدد مع عدد لبشز للتطابق . وبالنتيجه لأي دالتين $G \to G$ قابلتين للاشتقاق يوجد عدد صحيح موجب K بحيث أن $K \le \lambda + 1$ ويوجد نقطة $K \le \lambda + 1$ بحيث أن $K \le \lambda + 1$