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Abstract

A numerical study is presented for steady and unsteady slow flow of a viscous fluid of
second order in a region bounded by a right-angled isosceles triangle. The particular
flow considered is the secondary flow generated in the plane of the cross-section by
the primary axial flow, under action of the pressure gradient, through a slightly curved
pipe of triangular cross-section. Two cases are considered; the first one is the steady
case in which it is found that the motion equations, which are describing the fluid
motion, are controlled by two parameters namely; Dean number and the non-
Newtonian parameter. In the second case it is found that the motion equations are
controlled, in addition to the parameters mentioned above, by third parameter namely;
the frequency parameter. Solutions, of the first case, are expanded in terms of Dean
number. While in the second case the solutions are firstly expanded in terms of Dean
number and secondly in terms of the frequency parameter. Perturbations equations are
solved by Galerkin method after eliminating the dependency on time .In both cases,
the effect of the parameters mentioned above on the secondary flow and the axial
velocity is studied.

1-Introduction

The flow of Newtonian and non- Collins and Dennis [3], in their
Newtonian fluids has been the subject paper consider flow of Newtonian fluid
of extensive theoretical studies till in curved pipe with triangular cross-
date. Dean, [4], was the first researcher section (right angle). They shown that
who worked in flow analysis of the first appearance of the vortices was
Newtonian fluids in curved pipes. He in the secondary flow near the corner
introduces a toroidal coordinate system of 45° and give detailed smdy of all
to show that the relation between corner regions, which was made by
pressure gradient and the rate of flow refining the grid size of the numerical
through a curved pipe with circular scheme.
cross-section  of  incompressible The present paper investigates the
Newtonian fluid is dependent on the steady and unsteady flow of non-
curvature. In that paper he could not Newtonian fluid in curved pipe with
show this dependence but he did in his triangular cross-section. An orthogona!
second paper, [5]. He modified his coordinates system has been framed to
analysis by including the higher order describe the fluid motion and it is
terms and was able to show that the found that the motion equations, in the
rate of flaw is slightly reduced by case of steady flow, are controlled by
curvature, . - two parameters namely; Dean number
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and the non-Newtonian parameter.
Solution for the secondary flow and the
axial velocity are derived as
perturbations over straight pipe
appearing through the Dean number,
Galerkin method of analyses has been
employed to derive each perturbation
solution; these solutions have been
deveioped in Cartesian coordinates for
harmonic and biharmonic equations.
This case is ended with studying the
effect of the non-dimensional
parameters mentioned above on each
of the secondary motion and the axial
velocity. The second case deals with
the unsteady state flow of non-
Newtonian fluid in a curved pipe. In
this case we use different approach to
write the

continuity and motion equations for
the sake of simplicity. Here it is found
that the equations, which are
describing the fluid motion, are
controlled by three parameters namely;
Dean number, the non-Newtonian
parameter and  the frequency
parameter. Solutions of the flow are
firstly expanded in terms of Dean
number and secondly in terms of the
frequency parameter. Perturbations
equations are solved by Galerkin
method  after  eliminating  the
dependency on time. In the last two
sections of this paper, the effect of the
parameters mentioned above on the
secondary flow and the axial velocity
is studied. A bout 200 case has been
tested to analysis this flow, and we
choose (45) case to clarify this
analysis. Up to author knowledge this
problem is not considered vet.
2-Mathematical formulation

A typical triangular cross-section of a
curved pipe is shown in figure 1, where
C is the center of the circle in which
the pipe lies. The angle at vertex O is
90" and the cross-section s

- symmetrical about the axis CN, with

CO=L and ON=a. 1t is assumed that
the ratio a/l.<< | (i.e. The dimensions
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of the cross-section are small in
comparison with the radius L) and the
velocity components are independent
of ¢ but P is not, where P is the
pressure, which is varing linearly with
¢, where ¢ is the angle which the

plane of given cross-section makes
with a fixed cross-section, as shown in
figure 1.The problem can be described
in terms of the coordinate system (x;
y1. ¢), where the origin is taken at the
vertex O, The assumption on the
pressure depends on the case under
moderation whether it is steady or
unsteady and it will mention letter on,

Ly 1
L
C
N
Figure 1.Coordinate system and
geometry of the cross-section
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3-Steady state

Consideration is given to steady
motion of liquid characterized by
equations of state of the form

Te=2ne,+4 feyey (1)

Where n is the viscosity coefficient
and & is the normal stress coefficient
and they are assumed to be constants
for the fluid to be experimentally valid.
Also T,, and e,, are the stress and the
rate -of -strain tensors respectively, [6].
Some assumptions are made: the liquid
in the pipe is an incompressible, non-
Newtonian fluid, the motion in the pipe
is maintained by a constant mean
pressure  gradient  &p,/3(Lé) = -G,
where p, is the pressure, and since the
case under consideration is steady then
all time derivatives are zero.

3-1 Motion equations and boundary
conditions
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Let  (u,v,w) Dbe the velocity

components in the directions of

increases of the coordinates (x; vy, ¢).
If  x=acpy,=aqy and v is the

coefficient of kinematic viscosity, we

may write
BTN T
ol o b e B

where y(x, y) is the dimensionless
stream function of the secondary flow
in the cross-section. The equations of
motion for y(x,y) and wix,y)are

Byd dwd. _wd wd
V’m(&@ @&}Wﬂ&@ @&Jﬁw
ﬁ{ﬁ T, . v Pw

o'y @ P g 00

28

dw oy o 8w a
vt e S e o Y L
w+wﬂ.}’+[ﬁ=5}' @’ﬂlw

ow Pw  dwdw
- [_—.. ___—_,ﬂ .--4
e 0

where
V=0 /3t + 0% 1 9y?
The constant D is the Dean number,

1
defined by D=Ga’(2a/1)2 / pv?,
where p is the density.

The boundary conditions that are

associated with the motion equation
are

w=0 oyw/dk=8wl&d=0 onthdrounda
from which it also follows that we may
take

w=0 on the boundary
3-2 Method of solution

A successive approximation method,
equivalent to the expansion of y and

w in ascending power of D will be
veDly sty 4
W oo W, B wipewm )
used for solving the above system,
which can be developed, by using
We will limit ourselves to find the

solution up to the first order in D, and
that enough for our purposes.

If we substitute the above
expressions for ¥ and ¥ in (3) and (4)
and equate coefficients of equal power
in D, we obtain a séries of relations

from which wo, ¥: w.. can be

successively found out. The out

equations are

Vi, =-1 46
i éi’ av,azw, ﬂlr,&“'w, s

vy %@w&mﬁ@@, O
D, oD, D DD o

i ao v Pay ™

o\ &Sy o P, Py Swy

e e B

The solutions for the stream function
¥, and the components of the axial

velocity w, and w, are obtained by
integrating their respective govemning
equations satisfying the corresponding
boundary conditions. For clarity, we
give the expressions of w,, , and w,
without  going through lengthy
.integrations: '
wo = (3B - -x s %) (9
py = =(3/8)x = 1)3(x- y2)?
(ax'y + ays’y + ayxdy s agnr vagy + ag) ) +
By + by +hyxy+ bey))  ...010)
wy = ~(3/8)x = 1)a’ - Moy xy? + et «
eyt + et + c&x’yz + gt +
oy + qrlrcgrtee priee 1) 4
Blenpxy? + cym? + ey + sx* s
epxt+cigy® 4+ 193) + Bienr eea ) s epsl) 1N

whereﬂl,ﬂz,u-bi,b:.;.f:it:!,...l:n are
constants. In substituting equations (9-
11) in (5) we obtain an explicit form of
the stream function and the axial
velocity.
3-3 Streamlines on the cross-
section of the pipe

The streamline projections on the
cross-section of a curved pipe are

represented by
w =Constant

472 s
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in derivation equations (14) and (15)
from that one used in derivation of the
motion equation (3 and 4) for the
steady state case. The steady case can

be reached from the unsteady, by
setting all time derivatives to zero in
equations (14) and (15),/=1and
reverse the sing of the stream function
in equation (13) and define W,
v .2a _3

b}’;{-rl .
4-1 Method of solution

To solve the above system we will
use successive approximation method
(as a first step), which is equivalent to
the perturbation solutions of  and w
in ascending power of D. The solution
of the above system can be developed
by using

W(xiyirj= let:xp_}", T) + DJ Wzl:x_'].q T)one
w(x, y,7)=w,(x,,7) + Dw(x,y,7) ++++...(16)

We will limit ourselves to find the
solution up to the first order in D,
similar procedures can be used for
higher order solutions, and the first
order solution provide.good accuracy
for the purpose.

If we substitute the above
expressions for ¥ and ¥ in (14) and
(15) and equate coefficients of equal
power in D; we obtain a series of
relations from which *o:¥1»¥1>can be
successively found .The equations are
2 Qv

—2 _ Jx¥Cos (r) - (17)

viw =K
. or

-_
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Vi, =& SiL, L. 20 L'j'n'r.
T éx 8y &y Ox
,ﬁ{a"" _a__aw,, i]vz | +28 diw,
dx 8y dy ox dxdy
alvﬁ 514#.
g —) +
dy ox~
92¢, az“"o 'az“'n
28 ( - } =={19)
dxdy = x? Byl

The boundary conditions associated
with the above equations are: -

on theboundary

w,=0,n=0l--  ontheboundary - -(20)

with constant velocity initially. By
employing Galerkin variation method,
it is found that the solution of
equations (17-19), respectively, wre
given by

Wy =A‘2(x3 -.zyl -x* +_}*2}Ca;(r}+
-0 -2 e )
(m + mpxy? + m? +mgy?)Sin(z) ...(21)

W, =k (x1) (") Cos(t) (nex'y + nx’y +
mx?y + nxy’ + nxly +n,y*) +
Bm X’y + n,) + nxy + n, ) +

K (x-1)*(x*-p* ¥ Cos() Sin(r)((ngx*y + g

Xy+ ”17}"7 + n'm):"y-i- Ny x‘_}?'l- nmys +
X'y +nyx'y’ +nuxtyt 4yt

+ 1y X’ Y+ ny X’y + mpxy’ + mx +

Ny ¥ + Ny X + ny Xy 4 nyxty?

+mpx® Y'Y+ Bny ) + mygy + mxty +
My X'y + Y + ngxty’

+HX Y+ nyxy’ + gy’ +
X’y + 1,0 ...(22)
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where y is given by (5). which is a

combination of the radial and wvertical
velocities.

Figures (2-10) illustrate the effect of

the non-Newtonian parameter upon the
secondary flow. In fig (2), where =0

(Newtonian fluid), it is noted that there
is a stagnation region and arises of two
additional vortices (secondary vortex)
near the outer wall of the pipe. This
new result is not observed when the
cross-section is square or rectangle
[1,2]. For fixed value of Dean number
and as # increases to 0.015 (non-
Newtonian fluid), the two secondary
vortices disappear, see figures (3) and
(4). New stagnation region arises near
the inner wall when the non-
Newtonian parameter is greater than
0.015,fig (5). When g varies from
0.06 to 5, this stagnation region start to
disappear and two new additional
vortices appear near the inner wall of
the pipe, see figures (6-10). Again this
new result is not observed in the case
of square and rectangilar cross-section
[1,2]. The fixed value of Dean number
that we takes here is 0.007, it is clear
that from the first equation of (5) we
will get the same result regardless of
this fixed value of Dean number.

3-4 The effect of D and § upon
the axial velocity

The effects of Dean number and the
non-Newtonian parameters upon the
axial velocity are analyzed through
figures (11-18) .The flow of
Newtonian fluid through curved pipe is
shown in figure (11). For fixed value
of pg(non-Newtonian fluid), it is notes
that, as Dean number D increases, the
flow becomes thicker, parallel to the
outer wall and a boundary layer typa
flow is present for the entire wall, see
figures (12-16), this is because of the
absent of the secondary vortex,
However, as J increases, the axial

=
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velocity contours indicate that fluid of
lower velocity is carried the pipe center by
the secondary vortex and a substantial

. distortion of the boundary layer at the

outer wall occurs, see figures (16-18).
4-Unsteady state
Let (u,v,w) be the velocity
components in the directions of
increases of the coordinates (x;, yy, ¢).
-%%%}:J WoaCosiat) --02)
In this case, a sinusoidal pressure
gradient in time with zero mean on the
flow field is assumed such that
where JW,a is the amplitude of the
applied pressure gradient and a is the
angular frequency and t is the time. If
Xy=ax,y=anis= rfe and v is the
coefficient of kinematic viscosity, we
may write
_voy

ady

ylz vtz

where w(x,y,r) is the dimensionless

stream function of the secondary flow
in the cross-section. The equations of
motion for w(x,y,r) and w(x, y,r)are

Viw=-J?Cofr) + & gl’ +
T

Py v
» &’

1 @ g2
— Dw
ar i

Fy Pw Fw
B a2 19

0w

—

dy

dw 2%w

2w 2w 2w dw
dx axdy

G py

Three parameters, a non-dimensional

frequency parameter « = a(a/v)"?,

the  non-Newtonian
B=¢lpa’  and  Dean  number
D=2W2 a1 L control  these

equations. For mathematical
convenient, we use different approach

parameter
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in derivation equations (14) and (15)
from that one used in derivation of the
motion equation (3 and 4) for the
steady state case. The steady case can
be reached from the unsteady, by
setting all time derivatives to zero in
equations (14) and (15), j=1and
reverse the sing of the stream function
in equation (13) and define W,

by %222,
a L

4-1 Method of solution

To solve the above system we will
use successive approximation method
(as a first step), which is equivalent to
the perturbation solutions of w and w
in ascending power of D. The solution
of the above system can be developed
by using

wlx, 3, 1) =DW1{I,_}’,T}+ Dz wz{;c,y, T) e
w(x, §, 1) = w,(x, 1, 7) + Dwy(x, 3, ) ++-+...(16)

We will limit ourselves to find the
solution up to the first order in D,
similar procedures can be used for
higher order solutions, and the first
order solution provide.good accuracy
for the purpose.

If we substitute the above
expressions for ¥ and ¥ in (14) and
(15) and equate coefficients of equal
power in D; we obtain a series of

relations from which “o:¥1s¥1>can be
successively found .The equations are

v,

~Jx¥Cos (r) -~ (17)
ar

?zwa = x?

?‘w,=r2§E?lw[+wn

dw, 8w, " dw, 3w

2) .. (I8
Al dx @xady dy ayz:l L

s 474

‘Er"?wl = x el +[ﬂwl i- 6y) i}w“ +
ar éx @y dy ox
dw, 4 dw, i] le v 25 dyw,
dx dy dy & dxdy
5t g%
( 'i;} 11 ) +
oy Ox-
azwt a:‘ll' Ezwa
( = ) - (19)

The boundary conditions associated
with the above equations are: -
By _ 0w
=— ==
| & Y

w,=0,n=p],

on theboundary
on theboundary ---(20)

with constant velocity initially. By
employing Galerkin variation method,
it is found that the solution of
equations (17-19), respectively, wre
given by

Wy =r2[.r] -.ryz -2t ¢ yj}Cas{r}+
k4 —xy? -2 +¥%)
[nlxj + ng.ry’ + h],.tz +n,y2)5.*n{r} (21}

w, = (x-1)"(x*y*)* Cos(1) ((nex'y + n X’y +
mx'y’ +nay’ +nyx'y +m,y’) +
B’y +nyy’ + nxy +n, ) +
x®(x-1)* (x*-p* )" Cos(r)Sin(t}(nx*y + n,q
Xy+n,y +ngx'yng sty +ngyt +
X'y + npx'y’ + npx'y’ + n 2ty
o’y + X'y + R xy +md’ +
Ny’ + gy x3° + 1, X7y 4 nxty
+myyx°y" )+ Bny, ) + gy +n xy +
My X'y +my X’y + mgx’y’
+ngx’y +ngxy’ + ngxy’ +
nex'y+n,") ...(22)
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wy = KO (GeDx oy JCostr) ((masa®y* +
nmx"yﬁ +ﬂ*116}'* +H4= .1:'?'1-’2 + i];q.IS}-" +
nsox’y® + gt +ney) + "53:-’-" e
n54x'] y‘ +n‘55qu2_ 4+ ns{,.rmyl + n51::ﬁ
¥ +nggx” y* 4 nggxy® 4 mgx®y® +
ne iy +ngax” +ngyx® 4 ngyx’ v + ngs
33}'4 + HMIZJFIS + ﬂﬁ, I_]J& + nﬂxsyl +
10

nﬁgxﬁyz +i'1-,|-|;,.1r"‘r +n-”x“ + ik +n73x'1}

4 Blmgx+msx®y® + mgxy® + mypaby? 4
mygx®y* + mygxy® + ngox” + gy + mgy

Y+ +mgex®y* 4 ngsx’ P v mgs 250 4
ng;xﬂ + nggx” + ngoy”® +ngox” + g

5% +nggx®y? 4 mopr’y? 4 gy +

4
ngsx 'y + nggx’ y* + ngpx®y* +ngex v +

6 2 8 4 B
Mgg Xy +"mu13:}‘ Mg Xy tmpey g +

7 6 6 s
MoaX +MosX. +Mps). +Agrx )

+ B (mggx” + mgoy? +mypx-+npyy)) ...(23)

* Where n;,n,,.n,, are constants.
In equations (21-23), if we set
r=0,j=landc=1 we obtain the
corresponding solution in the case of
steady state (equations (9-11)), and in
addition to that if =0 we obtain the
corresponding solution for Newtonian
fluid flow in curved pipe with
triangular cross-section. The solution
for stream function y and the axial
wcan be obtained by
substituting equations (21), (22) and
(23) into (16).

4-2 Streamlines on the cross-
section of the pipe

The streamline projections on the
cross-section of a curved pipe are
represented by '

-w = Constant
where y is given by (16), which is a
combination of the radial and vertical
velocities, Figures (19-33) illustrate the
effect of the non-dimensional
parameters, x,r,and §,which controlled
the motion equations upon the stream

function. It is found through all of
these figures that there are two
symmetrical regimes of the secondary
flow in the upper and lower half of the
cross-section. Also, the shape of
streamlines, closed curves, is changes
and accordingly the centet of the
vortices have been displaced. In
addition to that it is noted that the
intensity of the stream function has its
maximum value in the middle of the
upper or the lower half of the cross-
section and decreases gradually
whengver we moves toward the walls.
The intensity of the main vortices will
mentioned with title of the figure and
for the secondary vortex on the graph.
The effect of the frequency
parameter « is shown through figures
(19-22). The dimensionless time r was
set at 0.39, the non-Newtonian
parameter g at 0,01 and x varies from

1.2 to 5.0t is found that there is
generation of stagnation region near
the outer wall and asx increases a
new secondary vortex (move in
opposed direction of the main vertices)
replaced that region, i.c. transition
from two vortex structure to four
vortex structure occur at « between 1.2
and 1.5, see figures (19) and (20). With
the increasing of «, the secondary
vortex become beiger and pushes the
main vortices toward the outer wall of
the pipe, see figures (21) and (22). The
intensity of the stream function
increases as x increase.

The effect - of dimensionless time
r has been found same as the effect of
the frequency  parameter  with
exceptions that, as r increases the new
secondary vortex disappeared
gradually and the intensity of the
stream function increases, see figures
(23-26).

Finally, the effect of the non-
Newtonian parameter g was analyzed
by setting the frequency parameter at
1.32, the dimensionless time at 0.39
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and g varies from 0.02 to 0.11. It is
found that as g increase, there is a

transition from the structure to four
structure at g < 0,02, the new

secondary vortex become beggar as g

increases and pushes the main vortices
toward the outer wall of the cross-
section. At #>0.03, the main vortices

gradually become smaller and
disappears, i.e. the new secondary
vortex occupy all the space of the
upper and lower half of the cross-
section, see figures (27-33).

In all of the above cases the Dean
number was set at 0.01 and its effect
same as mentioned in section (3-3).

4-3 The effect of D, t,B, and x

on axial velocity

The effect of the dimensionless
parameter that controlled the motion
equation upon the axial wvelocity is
illustrated through figures (34-45).

Steady state figures

In order to see the effect of Dean
number upon the axial velocity, the
dimensionless timer was set at 0.5,the
non-Newtonian parameter g at 0.01,the

frequency. parameterx at 1.32 and
Dean number varies from 0 to 20. It is
found, as Dean number increase, there
is small displacement in center of the
vortex toward the outer wall and the
intensity of the axial velocity for the
same points decreased, see figures (34-
36). :

When the flow reach the fully
development state, it noted that as the
time T increase there is increase in the
intensity of the axial velocity, see
figures (37-39).

The effect of g and x are similar in
sense that there is displacement in the
center of the axial velocity toward the
inner wall, but the displacement when
B increase is greater than whenx

increased, see figures (40-45).

Fig(2) Secondary flow for D=0.007,=0.

_~r v <))

Fig{3).Secondary flow for D=0.007, Fig{4).Secondary flow for De=0.007,

(Newtonian fluid)¥=-1.6E-09 10 ~2.02E-10. P=0.01, ¥ =-1.5BE-09 to =1.BTE-10  [i=0.015, ¥ =-1.53E-09 10 -2.06E-10

<)’

Fig(5) Secondary flow for D=0007 =002, Fipi6)Seccndary flow for D=0.007, Fig(T).Secondary flow for D=0.007,

¥ =1, 57E09 to -2.37E-10

P=0.06, ¥ =-1 SBE0% 10 2. 12E-10 (=01, ¥ =] S4E-09 40 -2 4 14E-10



Fig{3).5ccondary Now for D=0.007,/=02, Fig(9).Secondary Now for D=0.007,  Fig(10).Secondary flow for D=0.007,
¥ =] 91E-09 10-2.28E-10 P=1, ¥ =3 06E09 10-5.60E-10 =5, ¥ =-5 BIE0E 1w -8.03E-09
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Fig (117 The axial velocity for D=0.007,4=0 Fig(12), The axial velocity for D=1, Fig (13} The axial velocity for D=4

P=0w=1 4TE-04 10 4.43E-05,(Newtonian fluid)  [=0.01,w=.18 to 1 42E-02 p=0.01, w13 to 1 $1E-02

L1 ]
L
[ 11
o
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a4 . .
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Fig(14). The axial velocity for D=4.5,  Fig 15). The axial velocity for D=8  Fig (16). The axial velocity for D=8

B=0.01, =12 to 1.35E02 p=0.0}, w=_1 10 1.06E-D2 p=0.01, w=§ to-14

Fig{17).The axial velocity for D=5, Figl18). The axial velocity for D=8,

[=0.08,w=293 100,02 P=0.0837, w=0.9 t0 2.71E-03

Unsteady state figures

) LD 1D
TS o

48 4F

Figl19).5¢econdary Now for D=0.01, Fig{20).Secondary Now for D=0.01,  Fig{21).Secondary fow for D=0.01,
k=12r=0_300=00] ¥=632E07 to = ],5,r=0.39 f=0.01,¥=1.82E-06 10 =2, v=0.39 1=0.01, =8 24 E-06 to
9 S3ED8 2.TIE-07 1.04E-06
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Fig{22).Secondary flow for D=0.01,
k=5,1=0,39 f=0.00, ¥=1.55E-03
1o 2. 53E-04

Fig{25).Secondary flow for D=0.01,
w=1.32,1=2 8 [=0.01,%=6 07E-07

o 2. 17E-07

Fig(28).Secondary flow for D=0.01,
x=1.32,00.39,§=0.03,¥=7 3E-07
109.97E-08

Fig(31).Secondary flow for D=0.01,
¥=1.32,1=0.39 f=0.08,¥=1, I9E-06
1o 1.8E-07

Fig(34) Secondary flow for D=0,
132,020 § 1=0,01 = 20847
10 2.641245E-02

T A — .

o2 :

Fig(23).Secondary Mow for D=0.01,

®=] 32,1=1.85p=0.01 ¥=3.52E07
o |O3E-08

Fig(26) Secondary flow for D=0.01,
x=1.32,7=3 i=0.01,¥=8, J6E-07

te 2. 16507
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Fig(29).Secondary flow for D=0.01,

%=1.32,10.30,3=0.04, =6 62507
to 7 A4E-08

EEE,. EER

Fig(32) Secondary flow for D=0.01,
k=132, =039 fi=0.1,9=] 6] E-0&
to 2.13E-07

Fig(35). Secondary fow for D=10,
%=1.32,0=0.5 =001 w=.20844

lo .04 1 242E-02
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Fig(24).Secondary Mow for D=0.01,
k=132, =25 0=0.01 ¥=4 43E07
to L13E-07

Fle.Seliq- fhow for D=0.01,
=132, r=0.39 i=0.02 ¥=8 71 E-07
e .2IEQ7

Fig{30) Secondary flow for D=0,01,
k=132, =019, p~0.05,¥=6.19E-07
_ 10 8.17E-08

Fig(33) Secondary Nlow far D=0.01,
=1.32,0=0.39 [i=0.11,%=] 8E-05
o 298E-07
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Fig{36)Secondary flow for D=20,
k=132, r=0.5 5=0.01 w=_20840
10 2.641239E-02
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Figl37) Secondary Nlow for De10, Figl38).Secondary Now for D=10, Figl39).Secondary Nlow for D=10,
x=]32,1=1.57 p=0.01, w=1 66E-02 %=1.32,1=2.1,p=0.01, w=. 101 ¥=1.32, =314 i=0.01 w= 231
o 2ATE-0) to 1.25E6-02 to 2.88E-02
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Fig (40} Secondary flow for D=10, Fig{41).5econdary flow for D=10, Fig{42).8econdary flow for D=10,
w=1.32,1=1.05 f=0 2 w=_144 ®=] 32, =105 =03, w=177 =132, =105 f=0.dw =1 464
to 4.519E-02 to . 106 o 1.134

Fig(43).Secondary flow for D=10, Fig(44).Secondary flow for D=1 Fig{45) Secondary flow for D=10,
1=1.2,7=1.05,#=0.01 w=_104 to 0=2,r=1,05,8=0.01,w=337 1o k=7, t=1.05 f=0.01 =13.18] 1o
1.274E-02 3.980E-02 2715
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