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ABSTRACT

In this paper, the algorithm (Stochastic Gradient Descent) SGD, which is one of the most famous optimization
algorithms, was hybridized with genetic algorithms in finding the roots of non-linear equations, which is one of the
most important mathematical problems due to its application in all sciences. Genetic algorithms are used here to find
the optimal primary root of SGD algorithm and its application in reducing the studied objective function. Some famous
algorithms need initial point to reach the solution in terms of stability. The proposed algorithm is tested on several
standard functions and the results are compared with the famous algorithms, and the results show the efficiency of the
proposed algorithm through tables and figures.
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Introduction

In most of the problems related to engineering and
applied sciences, the problems come to a non-linear
equation to be studied in the form:

f (x) = 0 (1)

Such as problems that require finding critical values
and problems that search for eigenvalues by minimiz-
ing the objective function.1 Most of the numerical
analysis methods depend in their development on
Newton’s iterative method, which is to give a starting
point to find the root of the studied function.2,3

Many papers have worked in finding the roots of
Eq. (1) in several ways, including (Newton’s method,
partition method, Bisection method, Regula Falsi,
Nonlinear Regression) and other modern methods.4–7

Algorithms that search for the roots of a nonlinear
algebraic equation are divided into two parts the first
section is: the algorithms that are made with a cer-
tain number of steps and start with an initial value

within the scope of the solution and with a number
of iterations, the solution is reached, but inaccurately
and with a large error.

The second section of algorithms: that depend on
classification, which is the fastest in finding roots,
and this method was proposed in this research based
on genetic algorithms that choose the best element
to be a candidate as the root of the studied function
based on generating an initial population. The selec-
tion process is carried out according to the proposed
steps with the SGD algorithm.2

In this paper, the genetic algorithm and the SGD
algorithm were hybridized to solve Eq. (1) by deter-
mining the appropriate starting point by generating
an initial population of the genetic algorithm in the
first step of its steps, which most other iterative algo-
rithms suffer from in accurately reaching the desired
solution.

Then the appropriate studied function of the SGD
algorithm was configured and worked to reduce it
and improve its learning rate by suggesting an update
relationship in each iteration. Some numerical
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examples were also presented that confirm the
theoretical results that allow to compare this method
with other standard methods.

Genetic algorithms

The genetic algorithm is one of the general search
algorithms based on the natural selection mechanism
and the natural gene system that is used to solve
complex problems. It was used by the scientist John
Holland in 1975 at the University of Michigan8 as
he published many researches in this field. The main
goal included the development of many algorithms,
software and systems using this algorithm, and a
genetic algorithm is known as a smart algorithm that
depends carefully on the ideas of genetic engineering,
which is characterized by the intended production of
new individuals with desirable (good) characteristics
through the intended switch and modification of
inherited groups (adding certain genetic materials or
replacing them) with the aim of forming individuals
with good qualities. On this basis, the genetic
algorithm selects the preferred solutions from a large
number of solutions and makes some overlaps and
alterations between these solutions in order to create
better solutions. As for genetic research, it is the
process of choosing a quality scale so that the genetic
processes generate the required goals that to find.

The genetic algorithm shortened a lot of effort and
time required by the designers of systems and pro-
grams, by finding a general algorithm that is reliable
in various types of issues, instead of building a spe-
cial algorithm for each issue, taking into account the
necessary changes that are commensurate with the
specificity of each issue in terms of the size, type
and nature of the data used, objective function, and
constraints for each problem.

The algorithm

In the genetic algorithm process is as follows:8

• Selection: The process of selecting parents from
the community in order to intersect and produce
a new generation.

• Crossover: This process is represented by a switch
between the corresponding values of the two syl-
lables of the elected parents in order to form the
new syllable.

• Mutation: Mutation Operator: The key idea is to
insert random genes in offspring to maintain the
diversity in the population to avoid premature
convergence.

• Solution (Best Chromosomes)

The flowchart of algorithm can be seen in Fig. 1.

Fig. 1. Genetic algorithm flowchart.

Stochastic gradient descent

The SGD algorithm is considered one of the most
important optimization algorithms, which is also
used in training artificial neural networks, which de-
pends on the first derivative of the studied objective
function and is considered the beginning of the devel-
opment of other optimization algorithms.

But it is related to the learning rate, which takes a
fixed value during the algorithm iteration process, so
it makes the algorithm slow and may not reach the
required solution, and many researchers are work-
ing on developing it, such as the Adagrad, Adam
algorithms.9

2. Make a guess θ0 for θ.
3. Grate a set of labeled training data {(xi, yi)}

Ntraining
i=1

4. Choose suitable batch size N ≤ Ntraining
5. Choose suitable learning rate 1t > 0
6. For m ∈ {1,2, . . . ,M} do
• Choose random { jk}Nk=1 from {1,2, . . . ,Ntraining}
• Compute θm+1 = θm −

1t 1
N∇θ

N∑
i=1

f (α(x jk, θm), y jk)

Which it’s called stochastic gradient descent
(SGD).9 If N = Ntraining get standard GD instead.

At the beginning of the algorithm the parameter
values are defined which are the learning rate 1t and
batch size N and in each batch of training data the
learning rate value is improved.

Learning rate

The learning rate10 is the most important measure
in the algorithms for searching for the desired solu-
tion, which expresses the amount of the step in each
search process or the transition from one solution to
another to be more accurate, so if the step amount
is relatively large, the exact solution is passed along
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Table 1. Values of the learning rate in 15 iterations.

Iter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lr 0.54 0.66 0.73 0.78 0.82 0.85 0.87 0.88 0.89 0.89 0.90 0.91 0.92 0.95 0.98

the graph of the studied function. The amount of the
step is rather small, the solution is reached accurately,
but the algorithm takes more steps and more time, so
many researchers work to estimate the learning rate,
either by inference or by giving it an appropriate and
fixed value in each iteration.

In this research, an appropriate function has been
proposed to generate an appropriate value for the
learning rate in each iteration, its value between zero
and one, while preserving the value of the learning
rate so that it does not converge to zero, because
that in turn stops the algorithm without reaching the
required solution.

The appropriate relationship for the learning rate
has been proposed, thus taking advantage of the in-
crease in the exponential function, as follows:

m = exp
(
−

1
t2

)
, t = 1,2, . . . (2)

where t : represents the iteration counter and m is
learning rate.

The learning rate values over several iterations can
be illustrated in Table 1:

Table 1 shows the increasing values of the learning
rate(lr) in each iteration(iter) by a small amount,
which in turn leads to an acceleration of the algorithm
to reach the solution, and this is better than the fixed
value for it from the beginning of the algorithm.

The learning rate graph can be plotted during the
working phase of the algorithm as shown in Fig. 2.

Fig. 2. Graph of the learning rate for 100 iterations.

Proposed algorithm

To find the roots of a function f(x), assuming the
cost function L(x) and work to reduce this function
as follows:

L (x) =
1
2
(
f (x)− y0

)2 (3)

where y0 is the root of the function and in our case
its value is equal to zero and try from the genetic
algorithms to find all the roots of the studied function
by generating an elementary community and evalu-
ating this community through the matching function
of genetic algorithms and thus get the optimal initial
roots to get rid of randomness in giving primitive
values to it that are far from the solution and then
apply the SGD algorithm to reduce the cost function
to the smallest possible and thus get the exact root.

Proposed algorithm steps

1- Entering the objective function, Popsize, de-
termining the solution field [a, b], learning rate
α, mutation probability Pm (value between
zero and one), number of Genno iterations.

2- Populating the population with random values
with values in the binary system.

3- Converting the elements of society into values
in the decimal system within the scope of the
solution.

4- Determining an initial value for the number of
cycles represented by the variable g = 1.

5- Calculating the elements of the new society in
relation to:

pop = pop− α ∗ L′ (pop) (4)

Where: α represents the learning rate, L′ is the
derivative of the studied objective function.

6- Computing the fitness function:

p (xi) =
f (xi)∑n
i=1 f (xi)

(5)

Where: xi is the population, and n is the num-
ber of the population.

7- Determining an initial value for counter I.
8- The selection process was carried out based on

the matching function, and the selection was
applied in the form of Tournament Selection.
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9- Crossover was performed and the two-point
crossover was applied.

10- Mutation was performed and the bit-inversion
mutation was applied.

11- Increasing the value of the counter I by one.
12- Checking counter I if it is less than (Popsize)

Return to step 8.
13- Increasing the value of the g counter by one.
14- Checking stop criterion as g is compared with

Genno (number of cycles entered) if g is less
than Genno Return to step 6.

15- end of the algorithm.

Results and discussion

Compare results

The programs were written using MATLAB 2016
program and the proposed method was applied to
some test functions11 shown in Table 2 with the
initial point and exact root of each standard func-
tion, which most researchers adopt in testing their
new methods. The results were compared with the
most popular standard algorithms such as with the
Newton’s method (NM),11 the Weerakoon-Fernando
method (WFM),11 Glis’ovic’et al. method (GOM),12

the Kou-Li-Wang method (KLWM),13 Wang’s method
(WM),6 Zalinescu Method,14 The stopping criteria
was used |f(xn+1)| < ε, where ε = 10−15.

Finding the initial root of the function f1(x)
within the range [0,4] in the Table 3 using genetic
algorithm:

The table shows a set of initial values for the initial
population whose values range within the scope of

Table 2. The test functions and their initial point and root α.

f(x) x0 A

f1(x) = x2
− ex
− 3x+ 2 3 0.257302854 . . .

f2(x) = xex2
− sin2x+ 3cosx+ 5 –2 −1.207647827 . . .

f3(x) = ex2
+7x−30

− 1 3.25 3
f4(x) = ln(x2

+ x+ 2)− x+ 1 3 4.152590736 . . .

Table 3. Fitness value f(x), probability p(x) of selection in
the next population.

Initial population f(x) P(x)

0.1544 0.0775 0.0091
0.3813 0.1070 0.0126
0.1611 0.0677 0.0080
0.7581 1.6814 0.1983
0.8711 2.5178 0.2970
0.3508 0.0611 0.0072
0.6855 1.2346 0.1456
0.2941 0.0095 0.0011
0.5306 0.5103 0.0602
0.8324 2.2116 0.2608

Fig. 3. The selection process by the roulette wheel method for
the function f1(x) of 10 primary chromosomes, where each sector
represents the proportion corresponding to the selection process.

the solution with the function values for each value
and the third column represents the probability value
for each value where the value with the greatest
probability is chosen using the selection step of the
genetic algorithm. The selection process according
the roulette wheel method in Fig. 3.

The MATLAB function for the method of selection
process in the roulette wheel for N a certain number
of chromosomes:

function roulette=RandChooseN(p,n)
binedges=[0,cumsum(p(:)’)];
roulette=zeros(1,n);
for i=1:n

x=rand;
counts=histc(x,binedges);
roulette(i)=find(counts==1);

end
end

The results were compared with the standard
algorithms shown the results in Tables 4 to 7:

Table 3, shows the comparison of the proposed al-
gorithm with the standard algorithms in terms of the
number of iterations, which amounted to 4 iterations,

Table 4. The numerical results of the function f1(x).

Algorithm Iterations | f (xn+1)|

NM 8 2.28E-25
WFM 6 2.80E-16
GOM 6 4.85E-25
KLWM 6 5.65E-13
WM 5 1.71E-33
Zalinescu 7 5.88E-50
Proposed 4 4.62E-75
algorithm
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Table 5. The numerical results of the function f2(x).

Algorithm Iterations | f (xn+1)|

NM 11 1.08E-4
WFM 7 1.76E-4
GOM 7 4.66E-7
KLWM 7 2.44E-10
WM 7 6.22E-6
Zalinescu 9 1.19E-10
Proposed algorithm 6 1.55E-14

Table 6. The numerical results of the function f3(x).

Algorithm Iterations | f (xn+1)|

NM 11 1.58E-4
WFM 7 1.86E-4
GOM 7 2.47E-6
KLWM 7 2.74E-7
WM 7 1.53E-5
Zalinescu 7 2.95E-9
Proposed algorithm 5 1.69E-11

Table 7. The numerical results of the function f4(x).

Algorithm Iterations | f (xn+1)|

NM 7 7.03E-68
WFM 4 1.22E-116
GOM 5 4.74E-80
KLWM 5 3.39E-53
WM 5 3.36E-86
Zalinescu 6 2.00E-169
Proposed algorithm 4 1.78E-125

and the amount of error is very small for the standard
algorithms, likewise for Tables 5 to 7.

Discussion

From the results, concluding that:

• Through the results, the (NM) method takes more
iterations with a rather large amount of error com-
pared to other comparison algorithms.

• There is a convergence between (WFM) and
(GOM) methods in terms of the number of it-
erations and the value of | f (xn+1)|, while the
methods(KLWM), (WM) and (Zalinescu method)
the efficiency index is close.

• The proposed relationship to the learning rate that
controls the behavior of the proposed method re-
duces the number of iterations and the amount of
error because it does not take a fixed value during
the iteration process, rather, it increases and takes
a new value that improves the required value.

• The genetic algorithm helps in finding the optimal
and appropriate initial solution to start the pro-
posed method away from randomness in taking
the initial root.

• It is shown that this new method is more efficient
than these existing methods and this method has
lowest number of iteration and converges faster
than the other methods.

Conclusion

Genetic algorithms and the SGD algorithm are
among the most important algorithms used in arti-
ficial intelligence applications in optimization appli-
cations. Therefore, they were proposed to improve
some numerical analysis algorithms in finding the
roots of some functions by modifying the frequency
relationship of these methods, as was done in this
work.
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ةیطخلاریغةیربجلاتلاداعملاروذجداجیلإةدیدجةیمزراوخ

2دعسادمحم،1دیعنیدلارصن،1وزرلافسویدمحا

.ایروس،بلح،بلحةعماج،مولعلاةیلك،تایضایرلامسق1
.ایروس،ةیقذلالا،نیرشتةعماج،مولعلاةیلك،تایضایرلامسق2

ةصلاخلا

Stochastic)ةیمزراوخنیجھتثحبلايفمت Gradient Descent) SGDتایمزراوخلاعمةیلثملأاتایمزراوخرھشأنمربتعتيتلا

تایمزراوخلامادختسامتثیح،مولعلاعیمجيفاھقیبطتلارظنةیضایرلالئاسملامھانمربتعتيتلاةیطخریغتلاداعمروذجداجیإيفةینیجلا

ةریھشلاتایمزراوخلاضعبناثیح،ةسوردملافدھلاةلادلیلقتيفاھقیبطتوSGDةیمزراوخللثملأايئادتبلاارذجلاداجیإيفةینیجلا

عمجئاتنلاةنراقموةیسایقلاودةدعىلعةحرتقملاةیمزراوخلارابتخامت.رارقتسلااثیحنملحلاىلالوصوللةیئادتباةطقنىلاجاتحت

.لاكشلأاولوادجلاللاخنمةحرتقملاةیمزراوخلاةءافكجئاتنلانیبتوةریھشلاتایمزراوخلا

.يئاوشعلايجیردتلارادحنلاا،تایلثملأا،فدھلاةلاد،ةیطخلاریغتلاداعملا،ةینیجلاتایمزراوخلا:ةیحاتفملاتاملكلا
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