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Abstract

Mutual interaction of two solitons with equal amplitude ratio (K=1.0) of initial
pulse separation (tg=3.5pw) propagate in mono-mode optical fiber (30,90)km is

studied analytically.

The examination of propagation of two solitons with unequal amplitude ratio(
K=1.1) initially separated by (t¢=3.5pw) is studied also.
Results show that solitons of equal amplitude coalesce into one pulse at ¥=r and
eventually separate to the initial state at =21 and so on.
Launching solitons with unequal amplitude i.e (K=1.1) is the simplest way to reduce
soliton interaction in order to maintain high bandwidth (10Gbits/s) in communication
system. Also the same study is done numerically using Split Step Fourier Method.

Introduction:

Optical  solitons [1,2] are
desirable for exira -high bit rate
transmission systems where the eflfect
of fiber dispersion can be balanced by
the nonlinear Kerr effect. However, an
undesirable effect of the nonlinearity
of the refractive index is to cause
mutual interaction [3-5] between
pulses if they are launched closc
together. In1981 karpman and solovev
first considered the two —soliton
interaction in their study of the
nonlinear schrédinger equation (NLS)
by means of single —soliton
perturbation theory.

Scparating  the  neighboring
pulses to avoid such interaction, results
in the degradation of the system
bandwidth [6) depending on the of
initial pulse separation (z) .

Several ways for reducing the effect of
the interaction has been proposed. For
example Chu and Desem have
suggested the use of Gaussian shaped
pulses instead of solitons [7]. This has
the advantage that the mutual

interaction between pluses is reduced
and consequently increases the

available bandwidth significantly. It
has also shown that launching the
pulses with an initial phase difference
{8-10], or utilizes the higher-order
dispersion of the fiber [11,12] can lead
to a reduction in the interaction.
Another method which is considered to
be the most stable and simplest method
for reduction soliton interaction by
launch the solitons with unequal
amplitude and equal phases [13,14].
This will result in a stable oscillatory
system.

Theoretical Backeround;

The soliton propagation in a mono-
mode lossless fiber is described by the
nonlincar schrddinger equation

oq 1dg° 2
zaz+2arz+|qiq-0 ................ (1)
In which fiber loss and third order
dispersion are ignored. Z and t are
normalized  distance and. time,
respectively, q is the envelope of the
light pulse. For the case of two
solitons, the exact solution of eq. (1)
can be obtained by the inverse
scattering method of Zakharov and
shabat [15]. The general solution can
be simplified as follows[14]
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The two sech functions in the

parenthesis of Eqn.2 describe the
propagation of the two solitons if
mutual interaction is absent. In (his
case the separation between the
solitons is maintained at a constant
distance 2vg while the width and
amplitude of each soliton is determined
by 1 or 1; .The two pulses described
by eqn.2 undergo an interaction which
is periodic in z through cos¥ in Q. The
mutual interaction is described by the
function Q in eq. (3). Let us examine
two cases In more detail:

(a)} Solitons with equal

amplitudes:

In this case the width and amplitude of
cach soliton is determined by m; or
2. The cigenvalues arce given by [14]
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Two pulses initially separated by 1 .
where 1y is the  initial  soliton
separation in unit of the effective width
of solitons(pw), then coalesce into one
pulse m degree later .then they separate
and revert to two soliton with
separation 1y at ¥=2n and so on .

(b} Selitons with uncqual
amplitudes:

In thiscase, the amplitude of two
solitons is written as [14]
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7=3.5 and K=1.1, K being the ratio
of the pulse amplitudes.

Numerically the solution of eq.(1)
can be obtained by using Split Step
Fourier Method (SSFM) [16,17,18].
The initial condition of the form is
given by {14}
q(0,7)=sec /z(r—z'o)+

KsechK{r - 7g)lexp( j O,

Results and conclusions:

Using  MATLAB environment to
represent  eq.(4) and eq.(3).where
MATLAB  has a facility to solve
equations  with complex variables.
Fig.(1) shows that the mutual
interaction function Q close to 16 for
the case of solitons  with equal
amplttudes (n=m2) e K=1,while Q
close to 12 for the casc of solitons
with unequal amplitudes (1n,4m2) ie
K=1.1 as shown in fig.(4).this means
that the mutual interaction Q is reduced
by launching solitons with unequal
amplitudes . The trajectories of first —
order bright solitons with initial
separation (T i =3.5 pw)} and

amplitudes ratio (K =1,1.1) are shown
in figure(2,3,5.6) in fiber of (40,90)km
length  respectively. Initially  the
separation between neighboring pulses
in the soliton transmission decreases as
the pulses propagate inside the fiber,

then the pulses will collapse with other

forming oscillating system at Wy = 7 at

the periodic collapse length L . then

they eventually separates from each
other and the separation return to the
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initial state with separation T, at interaction of two pulses of equal
V=21, This behavior will repeat amplitudes  and  with T ¢=(2,3.5)pw.
periodically along e Elsay while fig(9) shqws soliton interaction
Numerically  figs(7.8)shows  soliton of unequal amplitudes pulses
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Fig. {1}: Soliton interaction Q as a function of « for equal amplitude solitons.
Initial senaretion 7,=3.5pw
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Fig.(2): Soliton interaction with two equal amplitude pulses, initial pulse separation
T=3.5pw in mono-mode fiber 30km
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Fig.(3):Soliton interaction with two equal amplitude pulses, initial pulse
separation t,=3.5pw in mono-mode fiber 90km.
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Fig. (4) :Soliton interaction function  as a function of T for equal amplitude solitons.
Initial nulse senaration 1.=3.5nw.
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Fig. (5): Soliton interaction with two unequal amplitude pulses, initial pulse scparation
7=3.5pw in mono-mode fiber 30km.
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Fig. (6): Soliton interaction with two unequal amplitude pulses, initial pulse separation
1,=3.5pw in mono-mode fiber 90km,
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Fig. (7): Soliton interaction with two equal amplitude pulses, initial pulse
separation 1,=2.0pw in mono-mode fiber 30km.
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Fig.(8): Soliton interaction with two equal amplitude pulses, initial pulse
separation v=3.5pw in mono-mode fiber 30km.
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Fig.(9):Soliton interaction with two unequal amplitude pulsesK =1.1, initial pulse
separation Ty=3.5pw in mopg-modo fiber 30km.
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