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Abstract:

The best proximity point is a generalization of a fixed point that is beneficial when the contraction
map is not a self-map. On other hand, best approximation theorems offer an approximate solution to the
fixed point equation Tp = p. It is used to solve the problem in order to come up with a good approximation.
This paper's main purpose is to introduce new types of proximal contraction for nonself mappings in fuzzy
normed space and then proved the best proximity point theorem for these mappings. At first, the definition of
fuzzy normed space is given. Then the notions of the best proximity point and @- proximal admissible in the
context of fuzzy normed space are presented. The notion of o —y - proximal contractive mapping is
introduced. After that, the best proximity point theorem for such type of mapping in a fuzzy normed space is
state and prove. In addition, the idea of o —¢ -proximal contractive mapping is presented in a fuzzy normed
space and under specific conditions, the best proximity point theorem for such type of mappings is proved.
Furthermore, some examples are offered to show the results' usefulness.

Keywords: Best proximity point, Fuzzy normed space, &- Proximal admissible mapping, G—{-Proximal

contractive mapping, &—¢-Proximal contractive.

Introduction:

Zadeh ! proposed and investigated the idea of
a fuzzy set in his fundamental paper. The research
of fuzzy sets led to the fuzzification of a variety of
mathematical notions, and it may be used in a
variety of fields. Kramosil and Michalek ? were the
first to establish the notion of fuzzy metric spaces.
George and Veeramani 3 modified the notion of
fuzzy metric spaces. A wide number of works have
been published in fuzzy metric spaces; see .
Katsaras A, ® was the first to establish the fuzzy
norm on a linear space. A considerable of papers for
the fuzzy normed spaces were published, for
example, see ®12, The best approximation theorems
provide an approximate solution to the fixed-point
equation Tp = p when the non-self mapping T has
no fixed point. Particularly, a known best
approximation theorem, attributed to Fan K®3, states
that if W represents a Hausdorff locally convex
topological vector space and U is a subset of W
where U is a nonempty compact convex set and
mapping T: U — W is continuous, then there exists

an element a satisfying the condition m(a, Ta) =
infm(&,Ta): & € U, where m is a metric on
w.

The Best proximity point evolves as a
generalization of the concept of best approximation.
Precisely, although the best approximation theorem
(BPP-theorem) guarantees the existence of an
approximate solution, a best proximity point
theorem is contemplated for solving the problem to
find an approximate solution that is optimum. Let
U and V' be nonempty closed subsets of W, when a
nonself-mapping T: U — V does not possess a
fixed point, it is quite natural to find an element a*
such that m(a*, Ta*) is minimal. BPP-theorems
ensure that an element a*exists where
m(a*,Ta)= mU, V) = infm(a,b):a€
U, 4 € V.This element is called the best proximity
point of T. Furthermore, when the mapping in
question is self-mapping, BPP-theorem yields a
fixed point result. References!*'” and the references
therein provide some results in this approach.
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In thls work, the notion of &- prOX|maI
admissible, @—)- proximal contractive and &—¢-
proximal contractive is introduced for nonself
mappings T: U — V and BPP-theorem for these
types of mappings is proved.

Preliminaries:

This section defines the terminology and
outcomes which is going to be utilized throughout
the paper.

Definition 1: ® Let L be a vector space over a
field R. A triplet (L, F»,®) is termed as fuzzy
normed space (briefly, F,- space) where ® is a t-
norm and F,, is a fuzzy set on L X R that meets the
conditions below for all p,q € L:

(Fx 1) Fy (p,0) =0,

(Fn ) Fyx(p,71) =1,V >0ifandonly if P = 0,
(Fn3) Fy(yp,1) = Fu (/YD V(0 #)y €
R,t=0

Frny) Fn (@) @ Fy(qs) < Fy(pt+aqr+
s),Vt,s =0

(Fn 5) Fu (p,.) is left continuous for each p € L,
and Thl?o Fy (1) =1.

Definition 2: *° Let (L, Fj ,&) be a Fj space.

Then

(1)a sequence {p,} is termed as a convergent
sequence if ‘girglo Fun (pn —p,T) =1 for each

T >0andp€ L.
(2)a sequence {p,} is termed as a Cauchy if

lim Fy (pp+; — Pno7) = 1; for each 7>
n—oo
0and 7 =1,2,..

Definition 3: ° Let (L, F),Q) be a Fj space.
Then (L, F» ,®) is termed as complete if every
Cauchy sequence in L is convergent in L.

In a fuzzy metric space (L, Fjr ,&®), Vetro and
Salimi 2° presented the notion of fuzzy
distance. Consider U and V be nonempty subsets
of (L, Far,®) and T «(1) , V -(r) denoted by the
following sets:

Ue() ={p€ U: Fy(pqgr) =
Fu (U,V,1)forsomeq eV}

Vo) ={q€ V: Fu(pqg1) =
Fipr (T,V,7) forsomep € U}
where Fj,p (U ,V,‘L') =sup{Fy (p g 1):pE
U,q € V},

In this paper, the above notion is introduced in a
Fy space as follows:

Consider U and V be nonempty subsets of
(L,Fp,®) and T.(r) , V.(r) denoted by the
following sets:

Ue(x) ={p€ U: Fy(p—q1) =

Nd(U V,1) forsomeq eV}

Ve(®) ={q€ V : Fy(p—q7) =
Ny(U,V,7) forsomep € U};

where  Ny(U,V,1) = sup{F» (p —

q,7): pe U, qe V}.

Main Results

In this section, @-proximal admissible, @—-
proximal contractive and @—g-proximal contractive
mappings are defined, then our main results are
proved.

In a fuzzy metric space, Saha et al.?!
proposed the notion of BPXP. In the following, the
notion of the BPP in the context of F,- space is
introduced.

Definition 4: Let (L, ) ,®) be a fuzzy Banach
space and U , V are nonempty closed subsets of L
An element p* € U is called the best proximity
point (BPP) of a mapping T:U - V if
Fy (p* — Tp*,7) = Ny(U,V,7) forall t > 0.

Next, the definition of &- proximal admissible and
a—- proximal contractive mapping is presented.

Let @ represent the collection of all
functions 1p: [0,1] — [0,1] , having the following
properties:
1) ¢ decreasing and for all u € [0,1],
Y > p

2) ¥ continuous
3) P(u) =1ifandonlyifu = 1.

Definition 5.: Let J and ¥V be two nonempty
subsets of a Fj-space (L, Fy ®)and T:U - V
is a mapping. Then T is termed as an &- proximal

admissible  mapping where @:U ><~L7 X
[0,00) — [0, ) if for each p,q,u,v» € U, and
>0

adlpqr)<1
Fp (w—Tp,7) = Ny(U,V,71) =
Fp (v —Tq,7) = Ny(U,V, 1)
alu,v,1) <1 1

Definition 6.: Let (L, Fy-, @) be a Fj- space and
T:U — V is a mapping where U , V are two
nonempty subsets of L. Then T is termed as an
@-1- proximal contractive mapping where & : U x
U X [0,00) — [0, ) if there exists a function 1 €
¥ such that
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ad(p,qr)<1
Fy (u—Tx,7) =Ny(U,V, )} =
Fy (v —Tq,7) = Ny(T,V,7)
ZcY(p, qDFy (u—v,7) 2P(Fy (p— q,7))

foreachp,q,u,v € U,and 7 > 0.

Theorem 1: Assume that (L, Fy-, ®) be a fuzzy
Banach space and let  and ¥V nonempty closed
subsets of L where U «(t) is nonempty for each T >

0. Consider T: U — V is an @&-- proximal
contractive mapping meeting the following
conditions:

@T is @- proximal admissible mapping and
T(U -(r)) € V.(r)foreach7>0.

(b) In T - () there are elements p, and p, such that
Fy (p1— Tp.,,7) = Ng(U,V,7); @(p.,p1,7) <
1 foreacht>0.

(¢) If {q,,} is asequence in V-(r) and p € U such
that Fp (p— q,,7) = Ng(U,V,7) as n -
oo, thenp € U -(t) for each t > 0.

dIf {p,} is a sequence in L such that
& (Pp, Pty T) < 1, Vn =1 and p, = p as
n — oo, then & (pp,p,7) <1 Vn > landrt
> 0.

(e) Moreover, if
NyU,V,r)and F»r (@ - Tq, 1) =
Ny(U,V,7) implies that @(p,q,7) < 1 for
each 7 > 0, then T possess a unique BPP.

:FN (p_ Tp'T)=

proof: According to condition (b), there are

elements, say p. , p; in U -(7) such that

Fn (p1— Tp,,7) = Ng(U,V,7); @(p.,p1,7) <
1 foreacht>0.

Since T(U-(1)) € Vo(r), there exists p, €
U -(t) such that

Fy (pz — Tpy,7) = Ng(U,V,7)

Because T is an @&- proximal admissible mapping,
then @&(pq,p,7) < 1.

Again, since T(U (1)) € V (1), there is p; €
U -(t) such that

Fy (p3 — Tpz,7) = Ny(U,V,7)
Thus

Fy (P2 — Tpy, 1) = No(U,V,2);
fN(p3_ Tpz,7) = Ng(U,V,7)
@(p,p27) <1

and because T is @—proximal admissible mapping,
then @(p,,p3,7) < 1.

If we keep going this way, obtain:

gj]\f (pn+1 - Tpn"[) = Nd(ﬁ:V;T);
APnPmD) < 1 3

Now using Eq.3 and applying the inequality 2
with«w =q = p, , = ppy aNd p = pp_y
obtain:

T]\f (pn - pn+1rT)~
= a(pn_l; Pn» T)TN (Tpn—l
- Tpn' T)

= l/;( TN (pn—l — Pns T))

Hence

Fy On — Pn+1,T) l/;(TN (Pn-1— Pns T))
4

and hence {F» (pn— Pns1,T)} in (0,1] is an
increasing sequence, consequently, there is y(7) €
(0,1] such that 1{’-_7;7-0 Fy n = Pn+1,T) = y(7)
vt > 0.

Now, it will be established that y(7) =1
for each T > 0. Assume that there is 7o > 0 such
that 0 < y(t.) < 1. Passing to limit as n — oo in
inequality 4, obtain

y(T) = P(£(z))

If  P(y(z.)) =1 then there's a contradiction.
Hence y(t) = 1 and conclude that

lim Fy (pp — PnsyT) =1 VT >0

n—-oo
5

Following that, to show that {p,} is a Cauchy
sequence. Consider {p,} is not Cauchy. Then there
is 3€(0,1) such that for all ¥ > 1, there are

m(k),n(x) € N withm(x) > n(k) = kand

TN (pm(ic) - pn(K):T") <1 -3 ,To > 0
Assume that m(x) is the smallest integer greater
than n(x), meeting the condition above,

F (pm(rc)—l - pn(rc)rT°) >1-3

and for all x,
1- 3= TN (pm(lc) - pn(;c)rT°)
> Frr (Prme) = Prmey-1,T¢)
® Fr (Pmty—1 — Pngi)y T°)

1724



Open Access
Published Online First: February, 2023

Baghdad Science Journal
2023, 20(5): 1722-1730

P-1SSN: 2078-8665
E-ISSN: 2411-7986

> Fy (pm(;c) - pm(;c)—1:T°) ®1—3

In the previous inequality, if use limit as k¥ — oo and
using Eq.5, obtained:

lim F), (pm(;c) - pn(lc)'T") =1-3

n—oo

6

Now from

Fr (PmGoy+1 — Prgoy+1,T°)
> For (Pm@o+1 — Py T)
Q Fy (pm(rc) — Prn(x), T")
® Fy (pn(rc) -

pn(KZ)+1'T°)
and

:FN (pm(;c) - pn(KZ)'T°)
> F (Pmce) = Pmcoy+1, T°)
® :FN (pm(;c)+1 - pn(lc)+1'T°)
® Fx (Prgey+1 — Prey T°)

it follows that

im Fp (Pmoo+1 = Prog+1T) =13

n—oo

7

From Eq.3,

A(Pr(cy Pm@y To) < 1
Fr (pm(K)+1 - Tpm(K)'T") =Ng(U,V, 1)

Frr (Prioy+1 — TPugey T) = N (T, V, 1)
8

Hence, by inequality 2 and Eq. 8:

d(pn(;c): pm(;c)'T°)TN (pm(;c)+1 - pn(;c)+1:T°) =
w(TN (pm(lc) - pn(K)'T°))

In the previous inequality, if use limit as x — oo,
obtain:

1-3=29(1-3)

and this is a contradiction. Also, if (1—3) =1,
then, by property (3) of ¥, 3=0 but this
contradiction, therefore {p,} is a Cauchy. Because
(L, Fp ,®) is complete then {p,} converges to
some p* € L,

lim Fy (p, — p*,7) =1 foreach t>0.
n—oo

Furthermore,

Nd(U V :T) = ‘(FN (pn+1 - Tpnr T) (by Eq-3)

= Fp (Pne1— P T) @ Fyy (p* —
(applying condition (Fy ,) )

= Fy (Pne1— P T) @ Fyy (p" —
Pn+1,T) ® Fy (Pns1 — Tpn, T) (applying
Fn4))

Tpn, T)

= :}iN gpn+1 - pT) Q@ Fy (p' —
Pn+1,T) @ Ny(U,V , 1)
which implies

Nd(U»VV'T) > Fy (Pn+1— P T)
& Fy (p* — Tpy, 7)
2 Fy (Pn+1 = P57 @ Fr (p" —
Pn+1,T) @ Ng(U,V , 1)

In the previous inequality, if use limit as n — oo,
obtained:

Na(U,V,7) 2 1@ Fy (p* — Tpp,7)
>1Q®1Q®Ny(U,V,7)

that is,

lim F» (p* — Tpp,7) = Ng(U,V,7)
n—oo

and by condition (c), p* € U-(r). Now since
T(T-(r)) € V(r), there is z € T.(r) with
Fy (z— Tp*,1)= Ny(U,V,7). Consequently, it
follows from condition (d) and inequality 2 with
U = Ppy1, ¥ = 2, p = ppand q = p* that

EPn P TDFxn Prs1 —2,7) ZP(Fy (Pn —
p*, 7).
= Fn (Pny1 —2,7)

= Y(Fy (pp —p" 1))

In the previous inequality, if use limit as n — oo,
obtain:

Fy (p*—z1)=1 foreacht>0

Therefore p* =z and
Nd(U, V,T).

Fy (p*—Tp* 1) =

Now to prove that p* is a unique BPP of T.
Consider w other BPP of T, w # p* that is
Fn (p*=Tp*1)= NgU,V,0)and Fp (w—
Tw, ) = Ng(T,V, 7). Now, if condition (e) of the
theorem holds, then from inequality 2,
a(p*, 0, D)Fy (0" —0,7) 2 P(Fy (p" - 0,7))
= Fy @ = 0,7) 2 P(Fy @" - w,1))
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which is a contradiction with property 1 of 3 and
hence F» (p* — w,7) =1 for each t > 0, that is,
P = w.

Example 1: Let L = R with the fuzzy
norm, F» : L X R — [0,1] define by

T
t+pll’

TN (p!T) =
lipll = Ipl.

Vp € Landt > 0, where

Let):[0,1] — [0, 1] with the property (1) = 1.
Suppose that U and V' are nonempty subsets of L
specified by:

11 2 ~ 11
0] —{0,1,5,2,;} and V —{0,1,5,5,

NeR N

3.

Note that N, (T ,V,7)=1, so U -(7) = {0,1} and
V.(r) ={0,1}

We defined T: T — V as follow:
Tp=1 forallp €U

while @: T x U x [0,00) — [0, ) specified as

@(p,q1)=1, Vp,qe U.
Clearly, T(U (1)) €V «(1).

Assume that F» (w — Tp,t) = Ny(U,V,1)and
Fy (v — Tq,7) =Ny(T,V,7) for some
w,v,p,q €U.

Assume that
ad(p,qr)<1
Fy (u—Tp,7) = Nd(U,V,T)
Fy (v —Tq,7) = Nd(U,V,r)

Then
pq€eU
Fp (u—Tp,7) = Ny(T,V,7)
Fy (v —Tq,7) = Ny(T,V,7)

Hence «w =1 =1 that is @&(u,v,7) < 1, which
means T is an & —proximal admissible mapping.
T is an @&—)- proximal contractive mapping with -

Y(u) =+ , Yu €[0,1]. In effect, for each p, q €
u,

a(p,q0)Fy (u—1v,7) =2 P(Fy (p— q,7))

Thus each of Theorem 1's hypotheses is fulfilled.
As a result, T possesses a unique BPP. p* =1
represents a unique BPP in this example

In the following, the definition of &—¢- proximal
contractive for mappings T: U — V' is presented
and the BPP-theorem is introduced for this type of
mapping.

Definition 7: Let (L, Fy ,®) be a Fj- space and let
U , V be two nonempty subsets of L. Assume that
T:0 - V be agiven mapping. Then T is termed
as d@-¢- proximal contractive mapping where & :
U x U x [0,00) > [0,0) if for each
p,qu,v € U,andt >0,

alp,q7)< 1
Fr (u—Tp,7) = No(T,V, 1) p = Fypy (0 —
Fy (v —Tq,7) = Ny(T,V,7)
v, 7) = Fy(p— q1)+¢(Blpquv,1) 9

where B(p q,«,v,t) = min{F) (p —

q, T)I maX{TZV (p -—Uu, T)) T]\f (q -

v, 7)}}tand ¢:[0,1] — [0,1]is continuous and for
eachu € (0,1), ¢(u) > 0.

Theorem 2: Assume that (L, Fy ,&Q) be a fuzzy
Banach space and U , V be nonempty closed
subsets of L where U -() is nonempty for each 7 >
0. Consider T: U — V be an &-¢-proximal
contractive mapping meeting the following
conditions:

(@T is @ - proximal admissible mapping and
T(U -(r)) € V(1) ,VT>0;

(b) In T -(7) there are elements p, and p; with

Frn (p1— Tp,,7) = Ng(U,V,7); @(po,p1,7) <

1 forall T > 0;

(©) If {q,}is a sequence in Vo(r) and p € U is
such that Fp (p— q,u7) = Ng(U,V,7) as
n — oo, thenp € U.(7) forall > 0.

(If {p,} is a sequence in L such that
@ (PnPns1,7) <1 foralln > 1 and p, —

p a n — oo, then @ (p,p 1) <1 for all
n = landt>0.
(e) Moreover, if Fy (p— Tp,7) =

Ny(U,V,7)and  Fp (@- Tq 1) =
Ny(T,V,7)implies that @ (p,q,7) < 1for
each T > 0, then T possesses a unique BPP.

proof: By using a similar approach as in proving
Theorem1, a sequence {p,} in U -(t) may construct
such that
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Fun (pn+1 - Tpan) = Nd(ﬁ:v:‘[);
(P, Pm,7) < 1 10
foreachnm=>1withn<m,t>0.

Now using Eq.10 and applying the inequality 9 with
=q = pp,p = Pn_yand v = p,,, Obtain:
Fy @n — Pns1,T) = Fy (1 —

Dny T) +§£( B(Dn—-1,Pns Prs Pr+1s T))
11
On other hand,

B(Pn-1,Pns P Prs1, T)
= min{Fy (pp—1
— Pp,T), max{Fy (Pn_1
—Pn ), Fy (Pn — Pt DI}

If Frr Pn-1 —PnT) < Fyy (Pn — Pns1,T) FOr
some n € N, then obtain that

min{Fj (Py—1 — Pn, T), Mmax{Fy (Pp_1 —
P T Fy (Pn = Pns1, D} = Fy (Pne1 — P T)

Also if Fr (Pnt1 — P T) < Fa (P — Prs1, T)
forsomen € N, then

min {TN (pn—l — Pns T)' maX{TN (pn—l -
Pn, T)' Fr (pn - pn+1vT)} =Fn (pn—l — Pns T)

That is, foreachn € N and t > 0,

min{?]\f (pn—l — Pn» T): maX{TN (pn—l -
P D, Fy (Pn — Pnt1, D} = Fy (Pre1 — Py T

Hence,

TN (pn — pn+1vT) = TN (pn—l -
Pn, T) +¢( ?N (pn—l — Pn» T)) 12

which implies
Fn Pn = Pr+1,T) 2 Fy (Pr-1— Do T)
and hence {Fy (p, — Pn+1,T)} in (0,1]is an

increasing sequence. Consequently, there is
y(t) € (0,1] suchthat lim F» (pp — Pns1,T) =
n—oo

y(t) for each T > 0. Now, it will be shown that
y(t) = 1 for each 7 > 0. Assume that there is 7. >
OsuchthatO<y (7o) < 1.

In inequality 12 if take the limit as n — oo, then

y() 2 y(r) + ¢ (z))

then ¢(y(z-)) = 0, but this is a contradiction,
hence y (tr) = 1foreacht > 0.

Now to prove that {p,} is Cauchy. Consider {p,}
is not Cauchy and then continue as in Theorem 1's
proof, there is 3 € (0,1) and 7. > 0 such that, Vk >
1, there is m(x); n(k) € N with m(x) >
n(x) = k such that

lim F (Pmge) = Py ) = 1—3

n—oo

and

lim Fj (pm(K)+1 - pn(k)+1'T°) =1-3

n—-oo

Hence, by Eq. 8 and inequality 9,

Fr (Pm@y+1 — Pnaoy+1, T°)
= Fy (pm(ic) - pn(k)lT°)

+¢ ( B(Prm(x) Pn(k) Pric)+1> Pn(i)+1- T))
where

B(Pim(iy Pr(icy Py +1: Py +1, To) =

min{Fy (Pmaey = Prgiey T) Max{Fpr (Pingre) —
Py +1, T ) For (Pnciy —

Prio+1, 7)1}

by using continuity of ¢ and taking a limit as x —
oo in the inequality previously, the following obtain

1-321-3+ ¢ (1-3)
and as a result ¢(1—3)=0, but this is a
contradiction, hence {p,} is a Cauchy sequence.
Since (L,F) ,®) is complete, therefore {p,}
converges to some p* € L,
lim Fy (p, — p*,7) =1 for each 7 > 0.
n—-oo
In addition,

Nd(U'VrT) =Fn (pn+1 - Tpn,‘[)

= Fy (Pn+1— P51T) ® Fy (p* — Tpp, )

= Fy (Pns1— P51 @ Fy (p* —
pn+1,T) ® T]\f (pn+1 - Tpn:T)

= Fy (Pn+1— P77 @ Fe (p" —
Pn+1,T) @ Ng(U,V ,7)

which implies

Ny(U,V,7) = Fy (Pps1— P 7)
& Fy (p* — Tpy, )
= Fy (Pn+1— P 1T)
® TN @*: pn+1'T)
® Ny(U,V,71)
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In the previous inequality, if use limitasn — oo,

then:

Na(U,V,7) 21Q® Fy (p* — Tpn, 7)
>1Q1QN,U,V,1)

that is,

71im Fan (p* — Tpp,7) = Ny(T,V,7)

and by condition (c), p* € U-(r). Because
T(T (1)) € V(1), there is z € U.(r) with
Fy (z— Tp*, 1) = Ny(U,V,7). Consequently, it
follows from condition (d) and inequality 9 with
U = Ppy1, ¥ = 2, p = ppand q = p* that

Fy Pnt1 —27) =2 Fy (pp —p*,7) +
¢(B(Pn P, Pn+1,2 7).

On other hand,

B(Pn, P*) Pn+1,Z T)=min{Fy (p, —
p*, 7), max{Fy (Pn — Pn+1,T), Far (p* — 2z, 7)}}

Letting n — oo then :
lim B(pp, p*,Pn41,2,7) =1
Hence B(pn, P*, Pns1,2,7) = lasn - o

-[hUS Fau (pn+1 - Z;T) = Fyr (pn - p*: T) +
d(B(Pn,P") Pn+1, 2 T)).

In the previous inequality, if take the limitasn —
o0, then
Fy@ —z1)=21+¢ (1) =1

Thus Fy (p* —z,7) = 1 foreacht > 0.
Therefore p* =z and Fy, (p* — Tp*, 1) =
Nd(U, ‘7, T).

Eventually, to prove that p* is the unique BPP of
T. Consider w # p*other BPP of T, that is,
Fy (p*— Tp*, 1) =Ny(U,V,7) and Fy (0 —
Tw,t) = Ny(U,V,7).1f condition (e) of the
theorem holds, then from inequality 9,

Fy @ —0,0) 2Fy (" —w,1) +
¢ (B(p*, w,p*, w,1)).

where

B(p*, w,p*, w,7) =min {Fy (p* —

w,7),max {Fp (p* — p* 1), Fy (0w — 0,7)}}
=Fy (p* —w,1).

Therefore, Fp (p* —w,7) =2 Fp (p* —w,7) +

d(Fx (p* —w,7)) and s0 ¢( Fy (p* —w,7)) =

0, but this contradiction, therefore Fj (p* —
w,7) = 1foreach t > 0 and so p* = w.

Example 2: Consider L = Rwith the fuzzy
norm, F» : L X R — [0,1] specified by:

Fy(p,1) =
lIpll = Ipl. _
Let U ={2,3,4}andV = {6,7,8,9,10}. Define T :
U -7V by

——, foreachp e L, t >0 where
+|pll

6 if p=4

Tp = {p + 4, otherwise

and the mapping @ : U x U x (0,00) - [0, +)
given by:

@(p,q,7) =1 foreachp,q€ T

Clearly, Ng(U,V ,1) = sup{Fy (p—q,7):p €
0 71 =

UgqeV}= T+2

Thus,

Te(x) ={p€ U :Fy(p-q1) =$ for some
qe V)= (4

V() ={q € V:Fp(p—q1) = é for some

pET) = (6). )
It's clear that T (U -(t)) < Vo(7).

Suppose that
adlp,q1)<1
Fy (u—"Tp,7) = Ny(U,V ,7)
Fy (v —Tq,7) = Ny(U,V ,7)

Then

pqel
Fy (w—Tp,7) = Ny(U,V ,7)
Fy (v —Tq,7) = Ny(U,V ,7)

Hence «w = v =4 that is &(u,v,7) < 1, which
means T is an & — proximal admissible mapping.

Additional,

Fy(u—v,1) =

T4+10] 1

2Fy(P—-q71)

+ (l)( B(p q,u, v, T))
so T is an @—¢ proximal contractive mapping with
¢ : [0,1] - [0,1] defined by ¢(u) =1—pu for
each u € [0, 1]. Hence each condition of Theorem 2
holds and T possesses a unique BPP. p* =4
represents BPP of T in this example.

1728



Open Access
Published Online First: February, 2023

Baghdad Science Journal
2023, 20(5): 1722-1730

P-1SSN: 2078-8665
E-ISSN: 2411-7986

Conclusions:

In this paper, the concept of o—y proximal
contractive and o —¢  proximal contractive
mappings in a Fj- space is presented and the best
proximity point theorem for these types of
mappings in a F space is proved. To show the
usefulness of the produced results, certain examples
are offered. In future work, more research is needed
on the generalizations of these types of contraction
mappings and study the applications for these
mappings in the fuzzy normed space.
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