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Abstract: 
The dynamical behavior of a two-dimensional continuous time dynamical system 

describing by a prey predator model is investigated. By means of constructing suitable 

Lyapunov functional, sufficient condition is derived for the global asymptotic stability of 

the positive equilibrium of the system. The Hopf bifurcation analysis is carried out. The 

numerical simulations are used to study the effect of periodic forcing in two different 

parameters. The results of simulations show that the model under the effects of periodic 

forcing in two different parameters, with or without phase difference, could exhibit 

chaotic dynamics for realistic and biologically feasible parametric values. 

 

1. Introduction: 
The nonlinear mechanical and 

electronic systems described by Duffing 

and Van de Pol equations have a very 

simple dynamic behavior in the constant 

parameter case, but become very 

complex (i.e. have a multiplicity of 

attractors, catastrophes and chaos) when 

they are periodically perturbed [5]. 

Another important example in a different 

field is the classical SEIR epidemic 

model which has a globally stable 

equilibrium in the constant parameter 

case and a great number of modes of 

behavior in the periodically varying case 

[8, 12].  

In the last three decades or so, a 

number of studies have been performed 

on the interactions between periodic 

forcing (seasonality) on the parameters 

and internal biological species of 

ecosystems, for recent review see [7]. 

Without seasonal variations the two-

species non-linear autonomous 

dynamical system can either have limit  
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cycle or stability. However, due to  

seasonal variation the behavior of the 

system becomes complex and can depict 

chaos [3, 4, 10, 11]. In this paper, we 

show that the prey predator ecological 

system, which is based on a modified 

version of the Leslie-Gower scheme, is 

also very sensitive to seasonality. In the 

constant parameter case the model has a 

simple Hopf bifurcation and therefore 

has only one mode of behavior for each 

set of parameters: a globally stable 

equilibrium or a globally stable limit 

cycle. The seasonality is assumed in two 

parameters: the growth rate of the prey 

and the predator. The effects of periodic 

variations on the parameters of real 

ecological models are often in different 

phases. Its reaches their maximum 

influence at different times. Therefore, 

seasonality in two different parameters 

will be considered simultaneously with 

different phase angles between them. 
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2. The Mathematical Model  

 Consider a prey-predator system for 

which it is assumed that the prey 1X  

grows logistically in the absence of 

predation. The predator 2X  consumes 

the prey according to Holling type-II 

functional response. The interaction 

between species 2X  and its prey 1X  has 

been modeled by modified Leslie-Gower 

scheme in which the loss in a predator 

population is proportional to the 

reciprocal of per-capita availability of its 

most favorite food. The state equations, 

which cover this model, can be written 

as follows:   
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with   001 X  and   002 X . Where 1X  

and 2X  represent the population 

densities at time T ; DCBAKrr ,,,,,, 21  and 

E  are the model parameters assuming 

only positive values and its defined as 

follows: 1r  represent the growth rate of 

prey, K is the carrying capacity in the 

absence of predation, A  is the search 

rate, B1  is the half saturation constant, 

2r  describes the growth rate of predator 

2X , which is assumed to be a sexually 

reproducing species. The square term 

signifies the fact that mating frequency 

is directly proportional to the number of 

males as well as to that of females. The 

last term in the right-hand side measures 

the loss of predator population due to 

rarity of its favorite food 1X , the 

constant E  normalizes the residual 

reduction in the predator population 2X  

due to severe scarcity of its favorite food 

1X  [1]. In order to reduce the number of 

parameters in system (1) from 8 to 4, we 

assume the following non-dimensional 

variable and parameters, Trt 1 , 

KXx  , 12 rXAy  , KBw 1 , 

Arw 22  , AECw 3 , and EKDw 4 . 

Then system (1) takes the non-

dimensional form 
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 In order to be a biologically 

meaningful system, system (2) should be 

qualify as a Kolmogorov system [2]. 

Applying the conditions of the 

Kolmogorov theorem, we obtain that the 

system (2) is a Kolmogorov system 

under the following conditions: 
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Further more, the solution of system (2) 

with nonnegative initial values is 

uniformly bounded as shown in the 

following theorem. 

Theorem 1. The Komogorov system (2) 

has uniformly bounded solution in the 

positive quadrant  0,0:),(2  yxyxR . 

Proof: From the Eq. (2a), we have   

 )1( xx
dt

dx
  

So, according to the differential 

inequality theorem [6], for 0)0( 0  xx  

we get 
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Thus, for sufficiently large 0t , we 

have 1)( txSup .  

 Now, let )()()( tytxtM  , with 

0
1

2
4

3 


 w
xw

w
 . Then straight 

forward computations yields: 
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Since the logistic terms have a maximum 

value at 1/4 and 1)( txSup . Thus we get 
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Again, using the differential inequality 

theorem yields 
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Hence, for sufficiently large value of t 

and for any initial value )0(M  we have 

 
2

3
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This shows the bounded ness of 

)()()( tytxtM  , which implying to the 

bounded ness of 2in )( Rty . Hence the 

Kolmogorov system has uniformly 

bounded solution in 2
R .                        ■ 

 

 Note that due to the above theorem, 

the Kolmogorov system (2) is dissipative 

in 2
R . Further more, the interaction 

functions of Kolmogorov system (2) are 

C
2 on the domain 2

R  and hence they are 

Lipschizion on 2
R . Accordingly the 

solution of the Kolmogorov system (2) 

with nonnegative initial condition exists 

and is unique. 

 
3. The Analysis of model and Hopf 

Bifurcation 
  

 The Kolmogorov system (2) has 

three non-negative equilibrium points 

namely  0,00 E  and  0,11 E  and 

 **
2 , yxE  , where 

42
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
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  *
1

** 11 xwxy  . 

The equilibrium points  0,00 E  and 

 0,11 E  are always exists. However the 

coexistence state point  **
2 , yxE   exists 

under Komogorov condition (3b). 

Now, in order to investigate the local 

dynamical behavior of model system (2) 

around each of the equilibrium points, 

the Variational matrix J  at the point 

),( yx  is computed as: 
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Therefore, evaluating J  at the 

equilibrium points 2,1,0; iEi yield the 

following results respectively. 
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Clearly, the Variational matrix at the 

equilibrium points  0,00 E  and 

 0,11 E  has zero eigenvalue, and hence 

they are non-hyperbolic points. Thus the 

dynamical behavior near them can be 

stable or periodic. However, the 

eigenvalues of the  
222 

 ijaJ  are the 

roots of : 

 02  ba  

With 

)( 2211 aaa                               (4a) 

21122211 aaaab               (4b) 

The Kolmogorov system (2) is locally 

stable, if the eigenvalues are negative or 

have negative real parts. Therefore, a 

necessary and sufficient condition for 

locally stable at 2E  is 0 and 0  ba , 

where ba  and  are defined in Eqs (4a) and 

(4b), respectively. 
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Substituting the values of **  and yx  and 

then simplifying the terms give: 
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Thus, for suitable choices of the 

parameters satisfying Eq. (5) will lead to 

a solution with stable equilibrium point 

2E  and choices violating this condition 

will lead to limit cycles.  

 Now, in order to investigate the Hopf 

bifurcation of Kolmogorov system (2), 

we will follow the Liu approach [9]. 

According to Liu approach, the simple 

Hopf bifurcation at   can occurs for 

a 2-dimensional system provided that: 
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Where ba  and  are given by Eqs. (4a) and 

(4b) respectively. 

 Now, let 1w , is the bifurcation 

parameter. Therefore, if the following 

condition holds 
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Accordingly, the following theorem 

establishes the Hopf bifurcation 

conditions. 

Theorem 2. The Kolmogorov system (2) 

admits a simple Hopf bifurcation of the 

positive equilibrium point 2E  at the 

critical value of the parameter 1w  given 

by Eq. (6). 

Proof: Follows directly from above 

analysis. 

Finally, we give a sufficient condition 

for the global stability of the positive 

equilibrium point 2E . 

Theorem 3. If  
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Then the positive equilibrium point 2E  

is globally stable. 

Proof. Consider the following positive 

definite function 
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Where   and  are arbitrarily chosen 

positive constants to be determined, 

however  xx   and  yy  are the 

perturbation about the equilibrium point 

2E . Along any trajectory of Kolmogorov 

system (2), we have 
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Choose the arbitrarily positive constants 

  and  so that 
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Note that, according to Kolmogorov 

condition (3a), the coefficient for 
2)(  yy is always negative. Further, if 

condition (7) is satisfied, then dtdV  is 

negative definite and hence the function 

V  is Lyapunov function. Thus the 

positive equilibrium point 2E  of system 

(2) is globally stable.                             ■ 

 

For the following set of parameter values 

3.02 w , 4.03 w , 0.14 w , with 99.21 w  

the local stability condition (5) for 

 **
2 , yxE   is satisfied. However, 

according to theorem 2, system (2) 

admits a simple Hopf bifurcation at 

99.21 w . Further, condition (5) is not 

satisfied and hence there is a stable limit 

cycle solution for the above set of data 

with 0.31 w . Finally, theorem 3 shows 

that the system (2) has a globally stable 

positive equilibrium point   **
2 , yxE   at 

49.11 w  keeping other parameter values 

as given above. The numerical 

simulations in Fig. 1a show the 

asymptotically stable solution of 2E  at 

21 w . Fig. 1b shows the transferring 

from stability to periodic at the 

bifurcation point 99.21 w . However, the 

presence of a stable limit cycle at 

25.31 w  is shown in Fig. 1c. Finally, the 

globally asymptotically stable solution is 

clearly shown in Fig. 1d for different 

initial conditions at 25.11 w .  
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Fig. 1. Dynamical behavior of system (2). (a) 

Asymptotically stable point at 21 w ; (b) Hopf 

bifurcation at 99.21 w ; (c) Asymptotically 

stable limit cycle at 25.31 w  starting from 

outside as well as from inside; (d) Global stable 

point for different initial values at 25.11 w . 

 

4. The periodic forced system 

 We consider the intrinsic growth 

rates )2,1( iri  in system (1) as 

periodically varying functions of time 

due to seasonal variations. For these 

parameters sinusoidal perturbations are 

used with the same periodicity T . 

Therefore, the periodic forcing (or 

seasonality) is superimposed as follows: 
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Here )2,1( iri  are the average values of 

the forced intrinsic growth rates 

)2,1( 


iri  respectively. The parameters 

)2,1( ii  represent the degree of 

seasonality; iir   are the magnitude of 

the perturbation in 
ir  respectively and 

  is the angular frequency of the 

fluctuations caused by seasonality. Since 

)2,1( iri  are assumed to be positive, 

therefore 10  i . Finally the parameter 

 , where  20  , can be interpreted 

as a difference in phase angle between 

the seasonality in the intrinsic growth 

rate of prey and predator. Therefore, 

according to (8), the original system (1) 

can be written in non-dimensional non-

autonomous form as: 
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Where )4,3,2,1( iwi  as before, 1r  

and 2222  wAr  . Further, using 

tz  , the non-autonomous system (9) 

transfer to the three-dimensional 

autonomous system. 
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With   00 z . 

 

5. The numerical simulation results 

for the periodic forced system 

The global dynamics of the prey-

predator system (10) with seasonality is 

studied. The solution of the system with 

initial conditions in the first octant is 

obtained numerically for biologically 

feasible range of parametric values. The 

range of parametric values is selected so 

that the unforced system is Kolmogorov. 

The system being nonlinear and three 

dimensional, variety of behavior in the 

solution are expected in contrast to the 

corresponding two-dimensional system 

without seasonality. The bifurcation 

diagram provides a summary of essential 

dynamical behavior of the system. 
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Indeed the points that are plotted will 

represent either fixed or periodic sinks or 

other attracting sets including chaos. It 

shows the birth, evolution, and death of 

the attracting sets. The term 

“bifurcation” refers to significant 

changes in the set of fixed or periodic 

points or other sets of interest.  

Number of bifurcation diagrams is 

obtained in three different cases 

2,0    and   respectively. The case 

0  corresponds to the synchronous 

periodic forcing or seasonal variations, 

however    corresponds to the anti-

synchronous case for periodic forcing. In 

each of these cases, for a fixed value of 

the key parameter, the maximum value 

of prey species x is plotted after 

removing the transient effect. Then 

increment the key parameter and begin 

the procedure again. We first assume the 

critical parameter as 1w . Fig. 2 shows the 

bifurcation diagram for 0  as a 

function of 1w  in the range 41 1  w  

keeping other parameters fixed as  

5.0,2.0,5.0

,0.1,4.0,3.0

1

432


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

www
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As shown from Fig. 2, the evidence for 

cascade of period doubling leading to 

chaos can be seen clearly for 

8.29.1 1  w , the solution becomes 

chaotic for 8.21 w , in between there is 

periodic windows as for example 

03.3025.3 1  w , 165.3155.3 1  w , and  

282.327.3 1  w . Finally, the prey 

predator system faces extinction in prey 

species for 0.4625.3 1  w  due to the 

effect of periodic forcing.  

Bifurcation diagrams, for the above set 

of data, are also drawn for the cases 

2   and    in Fig. 3 and Fig. 4 

respectively. It is observed that, for 

2   the solution admits period 

doubling leading to chaos for the range 

9.22 1  w  then the solution becomes 

chaotic for the range 175.39.2 1  w . For 

the range 3.3175.3 1  w  the solution 

exhibits period three dynamics, then 

again period doubling leading to chaos 

take please for the range 475.33.3 1  w . 

However, for the    cascade of period 

doubling take please, for the range 

7.285.1 1  w , leading to chaos. The 

periodic windows are visible through the 

chaotic region with narrow intervals see 

for example 925.2915.2 1  w  and 

05.304.3 1  w . For the range 

875.378.3 1  w  the solution becomes 

periodic, then again after a cascade of 

period doubling, in the range 

925.3875.3 1  w , the solution becomes 

chaotic in the interval (3.925, 4.0). 

 
Fig. 2. Bifurcation diagram as a function of 1w  

for  0 . 

 
Fig. 3. Bifurcation diagram as a function of 1w  

for  2  . 
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Fig. 4. Bifurcation diagram as a function of 1w  

for    . 

 

According to the above bifurcation 

diagrams, it is observed that the 

appearance of first period doubling and 

hence the regions of chaotic are get 

delayed from the case 0  to the case 

2  . Indeed, the periodic window 

becomes wider as phase angle changes 

from 0 to 2 . Moreover the prey 

species, which is facing extinction in 

case 0  for 0.4625.3 1  w , still 

survive in case  2  .  However, for 

the anti-synchronous case   , the 

chaotic region becomes denser.   

The effect of periodic forcing on the 

dynamical behavior of unforced system 

(2) is further investigated using the 

attracting set of the solution of the 

system (10).  In case 0  the projection 

of the attracting set for the solution of 

system (10) on the yx   plane is plotted, 

after removing the transient effect, in 

Fig. 5(a-d) for the parameter values 

given in Eq. (11) with 21 w , 7.21 w , 

775.21 w , and 31 w  respectively. The 

figures show the evidence of the cascade 

of period doubling leading to chaos. 

 

 

 

 

 

 
Fig. 5. the attracting set of the solution of system 

(10) for the parameter values given in Eq. (11). 

(a) Period 2 at 21 w . (b) Period 4 at 7.21 w . 

(c) Period 8 at 775.21 w . (d) chaotic attractor 

at 31 w . 
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In case 2  , Fig. 6(a-f) presence the 

projection of attracting set of the 

solution of system (10) on the yx   

plane for the parameter values given in 

Eq. (11) with 21 w , 7.21 w , 775.21 w , 

31 w ,  4.31 w , and 6.31 w  

respectively. In additional to the 

transition of the solution of system (10) 

to chaos through cascade of period 

doubling, the figures show clearly the 

delay in appearing of period doubling in 

comparison with the case   0 . 

Further, the survival of the prey species 

is also shown due to the transition of the 

solution between the periodic and 

chaotic dynamics along the range 

41 1  w .    

 

 
 

 

 

 

 
 Fig. 6. the attracting set of the solution of system (10) for the parameter values given in Eq. 

(11). (a) Limit cycle at 21 w . (b) Period 2 at 7.21 w . (c) Period 4 at 775.21 w . (d) 

Chaotic attractor at 31 w . (e) Period 6 at 4.31 w . (f) Chaotic attractor at 6.31 w . 
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The attracting set of the solution of 

system (10), in case   , is shown in 

Fig. 7(a-f). Again the route to chaos 

through cascade of period doubling is 

clearly shown in these figures; also the 

chaotic region becomes denser. Further, 

on contrast to the case  0 , both the 

species of unforced system (2) still 

survive for all the range  0.40.1 1  w . 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

Fig. 7. the attracting set of the solution of system (10) for the parameter values given in 

Eq. (11). (a) Period 2 at 21 w . (b) Chaotic attractor at 7.21 w . (c) Long periodic at 

775.21 w . (d) Chaotic attractor at 31 w . (e) Period 6 at 9.31 w . (f) Chaotic 

attractor at 0.41 w . 
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Finally, for further investigation to the 

effects of periodic forcing on the 

unforced system (2), different key 

parameters are also considered 

separately keeping the other parameters 

fixed at specific values. The results 

obtained are almost inline with that of 

the bifurcation diagrams and attracting 

sets given above. This shows that the 

ecological model under consideration, 

which has a globally stable equilibrium 

in the constant parameter case (unforced 

case), has a great number of modes of 

behavior in the periodically varying case 

including long periodic and chaos.   

 

References 
1. Aziz-Alaoui M.A., 2002,Study of a 

Leslie-Gower-type tritrophic population 

model, Chaos, Solitons & Fractals, 14, 

1275-1293.  

2. Freedman H. I.,1980, Deterministic 

mathematical models in population 

ecology, Marcel Dekker, Inc., New 

York, USA. 

3. Gakkhar S. And R. K. Naji, 2003, 

Chaos in seasonally perturbed ratio-

dependent prey-predator system, Chaos, 

Solitons & Fractals, 15, 107-118.   

4. Gakkhar S. And R. K. Naji, , 2003 

,Seasonally perturbed prey-predator 

system with predator-dependent 

functional response, Chaos, Solitons & 

Fractals, 18, 1075-1083. 

5. Guckenheimer J. and P. Holmes, 

1986, Nonlinear oscillations, dynamical 

systems, and bifurcations of vector 

fields, New York, Springer Verlag. 

6. Hall J. K., 1969, Ordinary 

differential equation, New York, Wiley 

Inter-science. 

7. Hastings, A., C. L. Hom, S. 

Ellner, P. Turchin, and H. C. J. Godfray, 

1993,Chaos in ecology: is mother nature 

a strange attractor?, Ann. Rev. Ecol. 

Syst., 24, 1-33. 

8. Kot. M., W. M. Schaffer, G. L. 

Trutty, D. J. Grasser and L. F. Olsen, 

1988,Changing criteria for imposing 

order, Ecol. Model, 43, 75-110. 

9. Liu W. M., 1994,Criterion of 

hopf bifurcations without using 

eigenvalues, J. Math. Anal. Appl., 182, 

250-256. 

10. Rinaldi S., S. Muratori and Yu. 

A. Kuznetsov,1993, Multiple attractors, 

catastrophes and chaos in seasonally 

perturbed predator-prey communities, 

Bull. Math. Biol., 55, 15-35. 

11. Sabin G.C.W, D. Summer, 1993,  

Chaos in a periodically forced predator-

prey ecosystem model, Math. Biosci., 

113, 91-113. 

12. Schwartz, I. B. and H. L. Smith, 

1983, Infinite subharmonic bifurcation 

in an SEIR epidemic model, J. math. 

Biol., 18, 233-253. 

 

 

 حول السلوك الديناميكي لنظام الفريسة والمفترس مع تأثير القوة الدورية
 

 رائد كامل ناجي*
العراق /بغداد  /جامعة بغداد  /كلية العلوم /قسم الرياضيات  * 

ة:ـالخلاص  
لشرط والمفترس. تم ايجاد ا تناول البحث دراسة السلوك الديناميكي للنظام الثنائي المستمر المتمثل بنظام الفريسة

تفرع من نوع هوبف للنظام. ة ليابانوف. كما تناول البحث دراسة الالشاملـة للنظام باستخـدام دال ةالكافي للاستقراري
وجود اختلاف في زاوية  د وجود او عـدمالدورية على معلمتين مختلفتين عناكاة لدراسة تأثيرالقوة استخدمت المح

 .الدورية، يمتلك ديناميكية الفوضىظام، تحت تاثير القوة التاثير. لقد اظهرت نتائج المحاكاة ان الن
 


