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Abstract: 
In this paper we describe several different training algorithms for feed forward 

neural networks(FFNN). In all of these algorithms we use the gradient of the performance 

function, energy function, to determine how to adjust the weights such that the 

performance function is minimized, where the back propagation algorithm has been used 

to increase the speed of training. The above algorithms have a variety of different 

computation and thus different type of form of search direction and storage requirements, 

however non of the above algorithms has a global properties which suited to all 

problems.  

INTRODUCTION: 
Back propagation (BP) process 

can train multilayer FFNN’s. With 

differentiable transfer functions, to 

perform a function approximation to 

continuous function f  Rn, pattern 

association and pattern classification. 

The term of back propagation to the 

process by which derivatives of network 

error with respect to network weights 

and biases, can be computed. This 

process can be used with a number of 

different optimization strategies. 

 There are two different ways in which 

BP algorithms can be implemented; 

incremental mode and batch mode .All 

of algorithms, in this paper, operate in 

the batch mode and are invoked using 

certain type of training. 

1.Variable Learning Rate 

         With standard gradient descent, the 

 learning rate is held constant through 

out training. The performance of the 

algorithm is very sensitive to the proper 

setting of the learning rate. If the 

learning rate is set too high, the 

algorithm become unstable. If the 

learning rate is too small, the algorithm 

will take too long to converge. Our 

numerical results shows that it is not 

practical to determine the optimal setting 

for the learning rate before training and, 

in fact, the optimal learning rate changes 

during the training process, as the 

algorithm moves across the performance 

surface.  

 We now describe in some 

detail one-dimensional search procedure 

that is guaranteed to find a learning rate 

satisfying the strong Wolfe conditions 

(1). As before, we assume that ρ is a 

search direction and that f is bounded 

below along the direction . The 

algorithm has two stages. The first stage 

begins with a trial estimate 1, and 

keeps increasing it until it finds either an 

acceptable learning rate or an interval of 

desired learning rates. In the latter case, 

the second stage is invoked by calling a 

function called zoom (Zoom Algorithm), 

which successively decreases the size of 

the interval until an acceptable learning 

rates is identified. Now we introduce 

Strong Wolfe Conditions: 

f(wk + kk)  f(wk) + 10
4
k

T
kf k ... (1a) 

|f(wk + kk) k |  0.1|
T
kf k |  …. (1b) 

Variable Learning Rate 

Algorithm: 
Set 0  0, choose 1 > 0 and max.; 

i  1; 
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repeat 

Evaluate (i) ; 

If (i) > (0) + 10
4
i(0)  or  [(i)  

(i1) and i > 1] 

*  zoom (i1, i) and stop ; 

Evaluate (i) ; 

If  | (i)|  0.1(0) 

Set *  i and stop ; 

If (i)  0 

Set *  zoom(i-1, i) an stop ; 

Choose i+1  (i, max) 

i  i +1, 

end (repeat). 

Note that, the sequence of trial 

learning rates {i} is monotonically 

increasing, but that the order of the 

arguments supplied to the zoom function 

may vary. The procedure uses the 

knowledge that the interval (i i) 

contains learning rate satisfying the 

strong Wolfe conditions if one of the 

following three conditions is satisfied: 

(i)  i violates the sufficient decrease 

condition ; 

(ii)   (i)  (i1) ; 

(iii)  (i)  0. 

The last step of the algorithm 

performs extrapolation to find the next 

trial value i+1. To implement this step, 

we can use approaches like the 

interpolation procedures above, or we 

can simply set i+1 to some constant 

multiple of   

We now specify the function 

zoom, which will requires a little 

explanation. The order of its input 

arguments is such that each call has the 

form zoom (Lo, hi), where: 

a) The interval bounded by Lo and 

hi contains learning rates that 

satisfy the strong Wolfe conditions; 

b) Lo is among all learning rates 

generated so far and satisfying the 

sufficient decrease condition, the one 

giving the smallest function value; 

and 

c) hi is chosen so that (lo)(hi   

10) < 0. 

Each iteration of zoom 

generates an iterate j between Lo and 

hi, and then replaces one of these end 

points by j in such a way that the 

properties (a), (b) and (c) continue to 

hold. 

Zoom Algorithm  :  
Repeat 

Interpolate (using quadratic, cubic ,

or bisection) to find a trial learning rate 

j between lo and hi  ; 

Evaluate (j)  ; 

If (j)>(0)+104(0)or(j) (lo) 

     hi  j ; 

else 

     evaluate (j) ; 

     if  | (j)|  0.1(0) 

            set *  j and stop ; 

    if (j)(hi  lo)  0 

            hi  lo  ; 

            lo  j  ; 

end (repeat). 

            If the new estimate j 

happens to satisfy the strong Wolfe 

conditions, then Zoom has served its 

purpose of identifying such a point, so it 

terminates with *  j. Otherwise, if j 

satisfies  the  sufficient decrease 

condition and has a lower function value 

than αLo, then we set Lo  j to 

maintain condition (b). If this results in a 
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violation of condition (c), we remedy the 

situation by setting hi to the old value 

of Lo. 

2. Resilient Backpropagation 

(trainrp): 
               Multilayer networks typically 

use sigmoid transfer functions in the 

hidden layers. These functions are often 

called "squashing" functions, since they 

compress an infinite input range into a 

finite output range. Sigmoid functions 

are characterized by the fact that their 

slope must approach zero as the input 

gets large. This causes a problem when 

using steepest descent to train a 

multilayer network with sigmoid 

functions, since the gradient can have a 

very small magnitude; and therefore, 

cause small changes in the weights and 

biases, even though the weights and 

biases are far from their optimal values.  

The purpose of the resilient back 

propagation (Rprop) training algorithm 

is to eliminate these harmful effects of 

the magnitudes of the partial derivatives. 

Only the sign of the derivative is used to 

determine the direction of the weight 

update; the magnitude of the derivative 

has no effect on the weight update. The 

size of the weight change is determined 

by a separate update value. The update 

value for each weight and bias is 

increased by a factor delt_inc whenever 

the derivative of the performance 

function with respect to that weight has 

the same sign for two successive 

iterations. The update value is decreased 

by a factor delt_dec whenever the 

derivative with respect that weight 

changes sign from the previous iteration. 

If the derivative is zero, then the update 

value remains the same. Whenever the 

weights are oscillating the weight change 

will be reduced. If the weight continues 

to change in the same direction for 

several iterations, then the magnitude of 

the weight change will be increased. 

3.BFGS Algorithm (TRAINBFG ); 
              The basic step of this method is  

x k+1 = xk - Ak
-1

 gk 

where Ak is the Hessian matrix (second 

derivatives)[1] of the performance index 

at the current values of the weights and 

biases and gk is the gradient of the error 

surface at w(k). This method often 

converges faster than conjugate gradient 

methods. Unfortunately, it is complex 

and expensive to compute the Hessian 

matrix for FFNN. There is a class of 

algorithms that is based on Newton's 

method, but which doesn't require 

calculation of second derivatives. They 

update an approximate Hessian matrix at 

each iteration of the algorithm. The 

update is computed as a function of the 

gradient. The BFGS method that has 

been most successful in published 

studies is the Broyden, Fletcher, 

Goldfarb, and Shanno update. This 

algorithm has been implemented in the 

trainbfg routine. 

For a very large ANN it may be better to 

use resilient BP or one of the CG 

algorithms. For smaller ANN, however, 

BFGS algorithm can be used as an 

efficient training function. 

4. One Step Secant Algorithm 

(TRAINOSS ); 
          Since the BFGS algorithm 

requires more storage and computation 

in each iteration than the conjugate 

gradient algorithms, there is need for a 

secant approximation with smaller 

storage and computation requirements. 

The one step secant (OSS) method is an 

attempt to bridge the gap between the 

conjugate gradient algorithms and the 

quasi-Newton (secant) algorithms. This 

algorithm does not store the complete 

Hessian matrix; it assumes that at each 

iteration, the previous Hessian was the 

identity matrix. This has the additional 

advantage that the new search direction 

can be calculated without computing a 

matrix inverse. This algorithm requires 

less storage and computation per epoch 

than the BFGS algorithm. It requires 
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slightly more storage and computation 

per epoch than the conjugate gradient 

algorithms. It can be considered a 

compromise between full quasi-Newton 

algorithms and conjugate gradient 

algorithms. 

5. LM Algorithm (TRAINLM ): 
         The Levenberg-Marquardt (LM) 

algorithm was designed to approach 

second order training speed without 

having to compute the Hessian matrix. 

When the performance function has the 

form of a sum of squares, then the 

Hessian matrix can be approximated as 

H  J
T
J and the gradient can be 

computed as g J
T
e, where J is the 

Jacobian matrix, which contains first 

derivatives of the network errors with 

respect to the weights and biases, and e 

is a vector of network errors. The LM 

algorithm uses this approximation to the 

Hessian matrix in the following Newton 

update:  w(k +1)  w(k)  [J
T
J + I]

1
J

T
e 

.  

When the scalar   0, this is just 

Newton’s method. When  is large, this 

becomes gradient descent with a small 

step size.  

The training parameters for trainlm are 

epochs, show, goal, time, min_grad, 

max_fail, mu, mu_dec, mu_inc, 

mu_max, mem_reduc. The parameter 

mu is the initial value for µ. This value is 

multiplied by mu_dec whenever the 

performance function is reduced by a 

step. It is multiplied by mu_inc 

whenever a step would increase the 

performance function. If mu becomes 

larger than mu_max, the algorithm is 

stopped. The parameter mem_reduc is 

used to control the amount of memory 

used by the algorithm.  

 

6. CG Algorithms (TRAINCG ): 
The conjugate gradient (CG) algorithms 

perform a search along conjugate 

directions, which produces generally 

faster convergence than gradient descent 

directions [Hagan and Beale, 1996]. The 

CG algorithms start out by searching in 

the gradient descent direction (negative 

of the gradient) on the first iteration ,0 

 g0. Then the next search direction is 

determined so that it is conjugate to 

previous search directions, that is: 

w(k+1)  w(k) + k k  .   Where k  

gk + k k1 . 

The various versions of CG are 

distinguished by the manner in which the 

k is computed. 

In this paper, we will present six 

different variations of CG algorithms 

with a comparison between them. In 

most of the training algorithms a 

learning rate is used to determine the 

length of the weight update (step size). 

In most of the CG algorithms, the step 

size is adjusted at each iteration. A 

search is made along the CG direction to 

determine the step size, which will 

minimize the performance function 

along that line search. The CG 

algorithms that usually used in FFNN as 

a training algorithm is much faster than 

variable learning rate back propagation, 

and are sometimes faster than Resilient 

BP, although the results will vary from 

one problem to another. 

          The general procedure for 

determining the new search direction is 

to combine the new gradient descent 

direction with the previous search 

direction: k  gk + k k1 . 

For Fletcher-Reeves update procedure 

(TRAINCGF )[2]   : k  

1k
T

1k

k
T
k

gg

gg



 

For the Polak - Ribiere update 

(TRAINCGP) [3] : k  

1k
T

1k

k
T

1k

gg

gg




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For the Dixon update (TRAINCGD) [4] : 

k  

1k
T

1k

k
T
k

g

gg




 

For the Al-Assady and Al-Bayati update 

(TRAINCGA) [5]: k  

k
T

1k

1k
T
k

g

gg








 

For the Hestenes - Stiefel update 

(TRAINCGH) [6] : k  

1k
T

1k

1k
T
k

g

gg








 

For Reyadh – Luma update 

(TRAINCGR): k  

1k
T

1k

1k
T
k

g

gg








 

The training parameters are :epochs, 

show, goal, time, min-grad, sigma, max-

fail, lambda, srchFcn.  

The training status will be displayed 

every show iterations of the algorithm. 

The other parameters determine when 

the training is stopped. The training will 

stop when the number of iterations 

exceeds an epochs, if the performance 

function drops below goal, if the 

magnitude of the gradient is less than 

mingrad or if the training time is longer 

than time in seconds. The parameter 

srchfcn is the name of the line search 

function and the parameter sigma 

determines the change in the weight for 

the second derivative approximation .

The parameter lambda regulates the 

indefiniteness of the derivative. 

Remark:  
1- For all CG algorithms, the search 

direction will be periodically reset to the 

negative of the gradient. The standard 

reset point occurs when the number of 

iterations is equal to the number of 

FFNN parameters (weights and biases). 

2- For all CG algorithms, the 

parameters show and epoch set to 5 and 

300, respectively. 

Each of the CG algorithms, which we 

have discussed so far, requires a line 

search at each iteration. This line search 

is computationally expensive, since it 

requires that the ANN response to all 

training inputs which should be 

computed several times for each search. 

But the other hand one can designed an 

algorithm to avoid the time consuming 

for performing line search. results for 

many different problems. It does require 

the computation of the derivatives (back 

propagation) in addition to the 

computation of performance function, 

but it over comes this limitation by 

locating the minimum with fewer steps. 

 

7. SPEED AND MEMORY 

COMPARISON: 
It is very difficult to know 

which training algorithm will be the 

fastest for a given problem. It will 

depend on many factors including the 

complexity of the problem, the number 

of data points in the training set, the 

number of weights and biases in the 

FFNN, the error goal, and whether the 

FFNN is being used for pattern 

recognition (discriminant analysis) or 

function approximation (regression). 

In general, on FFNN’s which 

contain up to a few hundred weights the 

LM algorithm will have the fastest 

convergence. The trainrp function is the 

fastest algorithm on pattern recognition 

problems. However, it does not perform 

well on function approximation on 

problems. The CG algorithms, in 

particular traincgp, seem to perform well 

over a wide variety of problems, 

particularly for FFNN’s with a large 

number of weights. The traincgr 

algorithm is almost as fast as the LM 

algorithm on function approximation 

problems (faster for large FFNN’s) and 
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is almost as fast as trainrp on pattern 

recognition problems. The CG 

algorithms have relatively modest 

memory requirements. 

The trainbfg performance is 

similar to that of trainlm. It does not 

require as much storage as trainlm, but 

the computation required does increase 

geometrically with the size of the FFNN, 

since the equivalent of a matrix inverse 

must be computed at each iteration. Of 

the CG algorithms, the traincgd requires 

the most storage, but usually has the 

fastest convergence. The traincgh and 

traincga have easily implemented for 

large problem. 

The variable learning rate 

algorithm traingdx is usually much 

slower than the other methods and has 

about the same storage requirements as 

trainrp but it can still be useful for some 

problems. For most situations, we 

recommend that we try to use the LM 

algorithm first, if this algorithm requires 

too much memory, then try traincgp or 

traincgr or trainbfg algorithm. The 

following table gives some example 

convergence times for the various 

algorithms on one particular regression 

problem. In this problem a 1-15-1 

FFNN’s was trained on a data set with 

41 input/output pairs until a mean square 

error performance of 0.009 was 

obtained. Twenty different test runs were 

made for each training algorithm to 

obtain the average numbers shown in the 

table. 

Function Technique Time(sec) Epochs 

Trainrp Rprop. 12.95 185 

Traincgh Hestenes-stiefel CG 27.22 112 

Traincgf Fletcher-Powell CG 18.03 94 

Traincgp Polak-Ribiere CG 18.66 79 

Traincgd Dixon CG 24.53 101 

Traincgr Reyadh-Luma CG 14.98 58 

Trainbfg BFGS Alg. 9.76 38 

Trainlm LM Alg. 2.07 8 

Traingdx Variable learning rate 63.17 124 

Traincga Al-Assady and Al-Bayati 

CG 

7136 54 

 

Now we introduce the 

following problem. 1-5-1 network, with 

tansig transfer functions in the hidden 

layer and a linear transfer function in the 

output layer, is used to approximate a 

single  period of a sine  wave. The 

following  table summarizes  the results  

of training the ANN using nine different 

training algorithms. Each entry in the 

table represents 30 different trials, where 

different random initial weights are used 

in each trial. In each case, the ANN  is 

trained until the squared error is less than 

0.002. The fastest algorithm for this 

problem is the LM algorithm. On the 

average ,it is over four times faster than 

the next fastest algorithm. This is the 

type of problem for which the LM 

algorithm is best suited -- a function 

approximation problem where the 

network has less than one hundred 

weights and the approximation must be 

very accurate. 

Algorithm Mean.Time(s)  Min.Time(s) Max.Time(s) 

LM 1.14 0.65 1.83 

BFG 5.22 3.17 14.38 

RP 5.67 2.66 17.24 

CGF 7.86 3.57 31.23 

CGP 8.24 4.07 32.32 

OSS 9.64 3.97 59.63 

CGR 5.92 2.31 16.47 

CGA 27.69 17.21 258.15 

CGD 6.09 3.18 23.64 

CGH 6.61 2.99 23.65 

  

The performance of  the various 

algorithms can be  affected by the 

accuracy  required of the approximation.    

8. LIMITATIONS AND 

CAUTIONS: 
The gradient descent algorithm 

is generally very slow, because it 

requires small learning rates for stable 

learning. The momentum variation is 

usually faster than simple gradient 

descent, since it allows higher learning 

rates while maintaining stability, but it is 

still too slow for many practical 

applications. These two methods would 

normally be used only when incremental 

training is desired. Multi-layered 
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networks are capable of performing just 

about any linear or non-linear 

computation, and can approximate any 

reasonable smooth function arbitrarily 

well. Such networks overcome the 

problems associated with the feed 

forward and linear networks. 

Picking the learning rate for a 

non-linear network is still an open 

problem. As with linear networks, a 

learning rate that is too large leads to 

unstable learning. Conversely, a learning 

rate that is too small results in incredibly 

long training times. Unlike linear 

networks, there is no easy way of 

picking a good learning rate for non-

linear multilayer networks.  

The error surface of a non-

linear network is more complex than the 

error surface of a linear network. The 

problem is that non-linear transfer 

function in multilayer networks 

introduce many local minima in the error 

surface. Settling in a local minimum may 

affect the convergence and depending on 

how close the local minimum is to the 

global minimum and how low an error is 

required. In any case, be cautioned that 

although a multilayer back propagation 

network with enough neurons can 

implement just about any function, back 

propagation will not always find the 

correct weights for the optimum 

solution. 
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 الخلاصة:

كـ  تلـ   التقدميـة ويـ يتضمن البحث مناقشة أنواع مختلفـة من خوارزميات تدريب الشبكات العصبيــة اات التغايــة 
ـا مشتقـة دالـة الطاقـة لتحديد كيفيـة ضبط الأوزان بحيث تصبح دالـة الطاقـة أصغر ما يمكـن الخوارزميـات استخدمن

و لقد استخدمنـا خوارزميــة اننتشـار المرتــد لزيــادع سراــة التـدريب. تختلـر الخوارزميـات أاـبا يـ  حسـاباتها و 
د أثبتـت النتـا ا العمليــة بـين أيـا مــن لـال  نحصـ  الـي صـين متنواـة يـ  اتجـاا التفتـين و الخـزن الـاف تقتضيــ  يقـ

 الخوارزميات أابا ن تمتل  خواص ر يسية مث  انستقراريـة و التقـارب و الت  تجعلها مناسبة لك  المسا ـ  .   

 


