Fuzzy Subspaces For Fuzzy space of Orderings luma. N. Mohammed Tawfiq* Nagam. M. Nama**

Date of acceptance 27/2/2007

Abstract

The purpose of this paper is to define fuzzy subspaces for fuzzy space of orderings and we prove some results about this definition in which it leads to a lot of new results on fuzzy space of orderings. Also we define the sum and product over such spaces such that: If $f = \langle a_1, \dots, a_n \rangle$ and $g = \langle b_1, \dots, b_m \rangle$, their sum and product are $f + g = \langle a_1, \dots, a_n, b_1, \dots, a_n \rangle$ $b_m > \text{ and } f \times g = < a_1 b_1, ..., a_n b_m, ..., a_n b_m > . \text{ for all } a_1, ..., a_n, b_1, ..., b_m \in G$

Introduction

Let X = (X,A) denoted a space of fuzzy orderings. That is A is a fuzzy subgroup of ablian group G of exponent 2 (i.e. $x^2 = 1$, $\forall x \in G$) and x is a non empty fuzzy sub set of the character group $\chi(A) = \text{Hom}(A, \{1,-1\})$ satisfying:

1- X is a fuzzy closed subset of $\chi(A)$

2- \exists an element $e \in A$ such that $\sigma(e) = -1$, $\forall \sigma \in X$

3- X^{\perp} = { a ∈ A / σ (a) = 1 $\forall \sigma \in X$ } =1 4- If f and g are forms over A and if x $\in D(f \oplus g)$ then $\exists y \in D(f)$ and $z \in D(g)$ such that $x \in D < y$, z > . [1]

Fuzzy Subspaces

We assume that (X,G) is a finite fuzzy space of orderings.

for $a_1,..., a_m \in X$ we can consider all linear combinations

(1)
$$a = a e_1^{e_1} \dots e_m^{e_m}$$
, $e_1 \dots e_m \in \{0,1\}$

in $\chi(G)$, we are more interested in linear combinations which are in X. Since a(-1) = 1 holds for all $a \in X$. a necessary condition for a linear combination (1) to be in X is

$$e_1 + ... + e_m \equiv 1 \pmod{2}$$
.

Let a_1, \ldots, a_m be an arbitrary elements of X, and define Y,Z by:

 $Y = \{a \in X / a \text{ is a linear } \}$ combination of a_1, \ldots, a_m },

 $Z=\{b \in G \setminus a_i (b)=1 \text{ for all } i=1\}$ 1,2,...,m

Then Y, Z satisfy the duality condition.

(2)
$$Z = Y$$
, $Y = Z \cap X$

The system $(Y, G\backslash Z)$ is referred to as the fuzzy subspace of (X,G) generated by a_1, \ldots, a_m . More generally, a subspace of (X, G) is any system $(Y,G\backslash Z)$ where $Y \subset X$, $Z \subset G$ satisfy the duality condition (2).

Conversely suppose we begin with $b_1, \ldots, b_m \in G$, let f denote the Pfister form $<1,b_1>x$... $x<1,b_m>[2]$, and let $X(b_1,...,b_m)$ denote $\{a \in X \setminus a(b_I) = 1 \text{ for } a(b_I) = 1$ all I = 1, 2, ..., m }.

Lemma 1

Let $Y=X(b_1,...,b_m)$ and $Z=D_f$. Then Z satisfy the duality condition(2).

Proof

Let $b \in D_f$, $a \in X (b_1,...,b_m)$. Then af $=2^m$ =dim f, so a(b) =1.

Thus $D_f \subseteq X (b_1,...,b_m)$ and, $X(b_1,...,b_m) \subseteq D_f \cap X$. Since $b_1,\ldots,b_m \in D_f$, it is clear that $D_f \cap$ $X = X(b_1,...,b_m)$. Now let $b \in G$ satisfy a(b) = 1 for all $a \in X$ $(b_1,...,b_m)$. consider the forms af and f.f represents 1, so af represents b.

^{*}Department of Mathematics, College of Education Inb-Al- Haithm, University of Baghdad.

^{**} Department of Mathematics, College of Science for Women University of Baghdad. 314

comparing signatures at $a \in X$, we see that $a(bf) = a(f) = \begin{cases} 2^m \text{ if } a \in X \ (b_1, ..., b_m) \\ 0 \text{ if } a \notin X \ (b_1, ..., b_m) \end{cases}$

thus $f \equiv af$, so f represents b , thus X $(b_1, \ldots, b_m) \subseteq D_f$.

Note

A form f represents $\chi \in G$ if there exist x_2 , ..., $x_n \in G$ such that $f \equiv \langle x, x_2, ..., x_n \rangle$. D_f denotes the set of all elements of G represented by f. [3]

Lemma 2

A form g over G represents $\chi \in G$ modulo X $(b_1,...,b_m)$ if and only if $f \times g$ represents χ modulo X.

Proof

Suppose $g \equiv h \mod X(b_1,...,b_m)$ where h has χ appearing in its diagonal representation. Since f has 1 appearing in its diagonal representation, it follows that χ appears in the diagonal representation of $f \times h$.

Now ag = ah holds for all $a \in X(b_1,...,b_m)$. also af = 0 holds, for at $a \notin X(b_1,...,b_m)$. It follows that

 $A(f\times g)=afag=afah=a(f\times h)$ holds for all $a\in X$.

Thus $f \times g \equiv f \times h \pmod{X}$. thus $f \times g$ represents $\chi \pmod{X}$.

Conversely, suppose $f \times g$ represents $\chi \pmod{X}$.

Write $g = \langle y_1, ..., y_k \rangle$. Thus $f \times g$ $\equiv y_1 f + ... + y_k f (\text{mod } X)$, there exist $s_1, ..., s_k \in D_f$ such that $\langle y_1 s_1, ..., y_k s_k \rangle$ represents χ (mod X).

but $< y_1 \ s_1,..., y_k \ s_k > \equiv < y_1,..., y_k > \pmod{X(b_1,...,b_m)}$.

It follows that g represents χ mod $X(b_1,...,b_m)$.

Theorem 1

Let $(Y,G\backslash Z)$ be any fuzzy subspace of (X,G). then $(Y,G\backslash Z)$ is also a fuzzy space of orderings.

Proof

There exist $b_1, \ldots, b_m \in G$ such that $Y = X(b_1, \ldots, b_m)$, and by lemma 1, $Z = D_f$ where f is the Pfister form associated to b_1, \ldots, b_m . By lemma 2, suppose g, h are forms over G such that g+h represents $\chi \in G$ modulo Y. thus, by lemma 2 the form fx $(g+h)=(f\times g)+(f\times h)$ represents χ modulo X.

Since there exist y,z represented by $f \times g$ and $f \times h$ respectively (mod X) such that $\langle y,z \rangle$ represents χ (mod X). Thus, by the lemma, y and z are represented by g and h respectively (mod Y), and clearly $\langle y,z \rangle$ represents χ (mod Y).

Definition

An fuzzy ordering $a \in X$ will be called fuzzy Archimedian (in X) if $\{a\}$ is a component of X.

Definition

We will say two fuzzy orders a, $\acute{a} \in X$ are fuzzy connected in X denoted by a $\sim \acute{a}$ if there exist fuzzy orders c, $\acute{c} \in X$ {a, \acute{a} } \neq {c, \acute{c} } such that $a\acute{a} = c\acute{c}$.

Notes:

1-If Y is a fuzzy subspace of X and $a, a \in Y$, then it is conceivable that a, $a \in Y$ could be fuzzy connected in X without being fuzzy connected in Y.

2-Let $X = X_1 \cup ... \cup X_k$ denote the decomposition of X deter mined by the equivalence relation \sim . The classes X_i , i = 1,....,k will be referred to as the fuzzy connected components of X.

Theorem 2

Suppose $X_1,...,X_k$ are the fuzzy connected components of X. Then each

 X_I is a fuzzy subspace of X dimension X = $\sum_{i=1}^{k} \dim ensionXi$

Proof

Let $Z_i \equiv X_i$ Then clearly X_i generates $Z_i \cap X$. To show X_i is a fuzzy subspace we must show that $X_i = Z_i \cap X$. This is clear by lemma 2. Let a_{ij} , $j=1,\ldots,n_i$ be a basis for each X_i , $i=1,\ldots,k$; we wish to show that the complete set $\{a_{ij} \setminus i=1,\ldots,k;\ j=1,\ldots,n_I\}$ is a basis for X. It is clear this set spans X. If these elements were independent we could find a relation. $\prod_{i,j} a_{ij}^{e_{ij}} = 1$, $e_{ij} \in \{0,1\}$

With not all $e_{ij}=0$. Of all such relations pick the one with the minimal number of non-zero e_{ij} . By lemma 2 each a_{ij} appearing with a non-zero exponent is equivalent to every other such a_{ij} . thus ,all such a_{ij} lie in the same fuzzy component. Thus, there exists i such that $e_{rj}=0$ for $r\neq i$.

Thus our assumed relation has the form $\prod_{i}a_{ij}^{} \! = \! 1$

This would contradict the independence of a_i ,..., a_{ini} .

Remark. Let $G_i = G/Z_i$ where Z_i = X_i , i=1,....,k. by the above theorem, the fuzzy injection of G in to $G_1 \times G_2 \times ... \times G_k$, is an fuzzy isomorphism. If we identify G with $G_1 \times G_2 \times ... \times G_k$ V_{ia} this fuzzy isomorphism, we see that Z_i is identified with $\prod_{j \neq i} G_j$ for i=1,...,k. Also X identified with U^k Y_i where Y_i is obtained from X_I by extending each element by the identity character on $\Pi_{i\neq j}$ G_j Thus, the structure of (X,G) is completely determined by the structure of the fuzzy subspace (X_i, G_i) , i=1,....,k, we will express this by writing

$$(X,G) = \sum_{i=1}^{k} (Xi,Gi).$$

And will refer to (X,G) as the direct sum of the spaces (X_i ,G_i), $1 \le i \le k$.

Theorem 3

Let X be a fuzzy connected space, dimension $X \neq 1$. Then there exist

 $\infty \in \chi(G)$, $\infty \neq 1$ such that $\infty X = X$.

Proof

Since dimension $X\neq 1$ and X is fuzzy connected there exists $a_1, a_2, \in X$, $a_1 \neq a_2$, $a_1 \sim a_2$.take $\infty = a_1 a_2$. Then X_{∞} has dimension ≥ 3 .of all $\infty \in \chi$ (G) satisfying $\infty \neq 1$, dimension $X_{\infty} \geq X$, then

There exist (since X is fuzzy connected) elements $a_1a_2 \in X$, $a_1 \in X$, $a_2 \notin X_{\infty}$, $a_1 \sim a_2$. Let $\beta = a_1 a_2$ Then $a_1 \in X_{\infty} \cap X_{\beta}$ so by [4, Lemma 4.6], there exists $\delta \neq 1$, $\delta \in X(G)$ such that $X_{\infty} \subseteq X_{\delta}$. Since $a_2 \in X_{\beta} \subseteq X_{\delta}$ it follows that X_{δ} Contains X_{∞} Properly.

This is α Contradiction and $X_{\delta} = X$.

Now let T denote the set of all $\infty \in X$ (G) such that α X=X. T is clearly α fuzzy subgroup of X(G), and will be referred to as the translation group of X. Since we are assuming X is fuzzy Connected, we have, by the above theorem, that T $\neq 1$. if dimension $X\neq 1$. let G= T and let X denote the set of all restriction $\alpha \setminus G$, $\infty \in X$.

Theorem 4

Let X be a fuzzy connected space and define X,G as above , then (X,G) is a fuzzy space of orderings.

Proof

It is clear that $-1 \in G^1 X$ and that is a fuzzy subset of $x(G^1)$ satisfying by definition of fuzzy space of orderings, and by Lemma 4.9, in [5], let f,g be forms over G^1 such that f + g represents $X \in G^1 \pmod{X^1}$. We may assume

neither f nor g is isotropic (mod X) . There exist $y,z \in G$ represented by f,g respectively (mod X) such that $\langle y,z \rangle$ represents x (mod X). By the lemma 2, 2, in [6], it follows that $y,z \in G^1$ and that f, g, in fact, represent y,z respectively mod X^1 . Also it is clear that $\langle y,z \rangle$ represents x(mod X^1).

REFERENCES

- 1. Tawfiq, L.N.M., 2005. Aspace of fuzzy orderings, Ibn-Al-HaithamJ, 18(1)
- 2. Baeza, R. and Knebusch, M., 1999. Annullatoren Von Pfistrformen uber semiloka len ringen, Math. Z. 140: 41-62.
- 3. Marshall, M., 1991. Classification of finite spaces of orderings, Ganad .J. Math.31:320 –330.
- 4. Knebusch, M., Rosenberg, A. and Ware, R., 2000. Signatures on

- semilocal rings, Bull of the Amer. Math. Soc. 78:1.62-66.
- Craven, T., 1988. Characterizing reduced Witt rings of fields, J. of Alg. 53:68-77.
- 6. Mantas, J., 1999. Character recognition by means of fuzzy set reasoning, Fuzzy sets theory and applications, 63(4): 301-316.

الفضاءات الجزئية الضبابية من الفضاءات الضبابية الترتيب لمي ناجي محمد توفيق*

*قسم الرياضيات – كلية التربية أبن الهيثم – جامعة بغداد ** قسم الرياضيات – كلية العلوم للبنات – جامعة بغداد

الخلاصة:

الغرض من البحث هو تعريف الفضاءات الجزئية الضبابية من الفضاءات الضبابية الترتيب وبرهان بعض خواص الفضاءات الجزئية وقد تم التوصل إلى بعض النتائج الجديدة حول الفضاءات الضبابية الترتيب .