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Abstract

In this article, a numerical method based on Boubaker polynomials (BPs) was presented to solve the
Linear Abel integral (LAI) Egs of first and second types. The matrices were used to form the (LAI) Eq
into a system of linear Eqs. To get Boubaker parameters, solve this system of Eqs using the Guess
elimination method. To explain the results of this method, four examples have been provided and
compared with the results of many methods mentioned in previous research. MATLAB R2018, program
was used to perform all calculations and graphs.

Keywords: Abel integral Egs, Boubaker polynomial, Numerical solutions, Numerical method, Singular

Voltarra Eq.

Introduction

The Abel problem is summarized in the following
sentences. In 1823, Abel studied how a particle
moves when it is pulled downward by gravity along
a smooth, unknowing curve in a vertical plane® 2 3,
Numerous domains of science use the Abel integral
Eqg, such as Seismology, radio astronomy, radar
ranging, plasma diagnostics, X-ray radiography,
optical, electron emission, atomic scattering?,
Seismology, scattering theory, metallurgy, fluid
flow, chemical processes, electrochemistry, semi-
conductors, mathematical physics, chemistry,
electrochemistry,  population  dynamics, and
chemistry®. The following are the typical forms of
the (LAI) Egs of the 2™ and 1% types® *
respectively:

n
1
T = y(u) + f T@©)d0, pefab] 1
s n—"9
u
v = | L re)a0, 2
s n=0

where s is the value of a real number, y(p) is a
well-known function and T(w) is an unidentified
function to be determined. In recent years, the (LAI)
Eq numerical solution has been the focus of intense
research by academics. Among their works are
some of the following methods: Taylor-collocation
approach®,  Lagrangian  matrix  technique®,
Chebyshev polynomials’, Touchard Polynomials®,
Orthogonal polynomials method®, the product
integration and Haar Wavelet techniques®, Hermite
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wavelet approach!!, Babenko and fractional
integrals methods'?, Babenko and fractional
calculus techniques®®, Mechanical quadrature

method'*. The following is how the rest of the
Materials and Methods

Method of Boubaker Polynomial

Boubaker polynomials belonging to the Banach
space and was first developed by Boubaker et al.™>
18 as a reference for solving the heat Eq within a
physical model. The following Eq introduces the
first monomial definition of the Boubaker
polynomial:

v(r)( 4h)
r_
we () = E mcﬁ-h(—l)huzr‘h,
h=0
r=0,1,2, 3

(h)! _r| —
(r-h)!(2h-1)! v(®) = lzJ -

y() =[]

function, and r is the degree of the polynomials. The

where Ch, =

2r+((-1)"=1)

” , represents the floor

following first four polynomials of this polynomial

are defined as follows:

wo(p) =1
wi(p) =p
wo () = p? +2
wi(W) =+,

while the following recurrence relation holds for r >
2:
wr () = pwr_g (W) — wr_2 (W)

Approximation Function
Suppose that the approximate numerical solution to
Eq be a linear combination of the (BPs) as follows:

r

T. (W) = zXch (W, r=123,..., 0< u
c=0

<1, 4

the function {w.(W)}t=, specify the basis of the
(BPs) of r-th degree, as determined by Eq3, the
unknown parameters x.'s will be determined later.
Eqg 4 can also be written as follows:

article is structured: the proposed method,
approximation  function,  solution  accuracy,
solutions Abel integral Eq, and numerical examples.
Finally, conclusions and references.

Tr(“) = .
0
%
[wo() wy (1) ... w(W)] . | . | 5
x,
So, Eqg 5 can be written as follows:
Tr(u) =
X0
[ Z00 Zoi  Zo2 Zor 1
0 Z11 712 Z1r |Xl
[1pp?.p]] 0O 0 Z2 v Zar | .
Lo o o zee 1[5
6

where the matrix in Eq 6 is invertible and {zs}5—¢
are used to specify the (BPs) parameters, which are
power base amounts.

Solution Accuracy

A precision of the solutions can be verified using
the proposed method through the following
procedures:

The truncated Boubaker series!® ' in Eq 4 have to
be approximately satisfying Eq 1. For every
wu=ug €[ab],=0,1,2,..,r. therefore, the
error functions:

r

Ef (P.B) = Z XCWC(MB) - Y(UB)

c=0

Hp ) r

— f _— ZXCWC(G) do
S \| MB - e c=0

= 0, then

Ef (ug) <€, forall pg inthe interval [a, b] and € >
0, therefore, the truncation limit r is increased until
the error function Ef (ug) at each g can be smaller

than any positive number €, so, the following Eq
represents the error function:
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r

Ef (W) = Z XwWe(w) —y(W

c=0
" r
1
_ f Zxcwc(e) do,
S I'l - e c=0

Ef. (W) — 0 when the r value is large enough, the
error decreases.
Hence, Ef (n) <e.

Remark 1: The same previous procedure can be
achieved on Eq 2.

Solutions Abel Integral Equation
With aid of the (BPSs) to give approximate solution
to Eq 1, assuming that Eq 4 will be used:
r
T = T = ) xewe () 7
c=0
when the Eq 7 is substituted into Eq 1, the result is:

r

Z XeWe (W

c=0
1
n—190)

u r
=y + > xewe®)do, 8
S c=0

after Eq 5 is applied, Eq 8 becomes:
Xo
X1

[Wo() wi(W ...w (W] . [.Ly(u) +

Xr
]
.1 1"
I 755 Wo(®) w1(8) .. wr(6)] | , Ide, 9
lx.J

when using Eq 6, then Eq 9 transforms to the

following:
[ %0 Zo1  Zoz - Zor %o
| © Z11 Z12 e ||
[T pp2..p] O 0 Z32 Zar |[ ‘
l o o o P %
n
1
=y(w) +J. [1662%..07].
n—0
S
Zoo Zo1  Zoz - Zor %o
0 Zy Ziz vz | |
0 |

{
| 0 Zyy  ttZor . |de, 10
[ o 0 0 ez | xlr

After simplifying Eq 10, the unknown parameters
{x.}t-o can be calculated by selecting a number of
values from the given interval [a, b]. In this case, Eq
10 is transformed into a system of linear Eqs made
up of (r+1) from Egs with unknown parameters.
The Gauss elimination technique can be used to
solve this system to determine the parameters that
are unique. Finally, to obtain the approximate
solution of Eq 1, these values are replaced into Eq
4,

Remark 2: The same previous procedure can be
achieved on Eq 2.
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Results and Discussion

Numerical Examples

Four numerical examples are given in this section to
demonstrate the capability and effectiveness of the
method utilized to locate solutions using the
MatlabR2018b program. The graphs solutions have
all been converged.

Example 1: Solving the 1% type of the (LAI) Eq * ¢

19, 20

2
ﬂ(105 — 56p2 — 483)

105
w
_ f 1
0 H=
T(uw) = p3 —p2+1 is the precise solution. By
applying the proposed method for this example

when the degree of polynomials r=3 as mentioned
in the Eq 10, getting:

2
ﬂ(105 — 56p2 — 48u3)

105
1 0207 [6o
0101} |64

T(8)d0, 0<p<1

D

de ,

i
_ 1
_f L—010010| (6
0
0001f L63
Rewriting this would be:

2
F‘/Sﬁ(ws — 56p2 — 483

n
1
=j (80 + B1p + 6,(2
o V=9

+1?))de ,

Consequently, after performing the integrations,
choosing 8 ; (o = 0,1, 2,3) in the [0, 1], getting a
system of four Egs. This system can be solved in
MATLABR2018b to obtain the (BPs) parameters.
To obtain the approximate solution, these
parameters are replaced into Eq 4 as follows:

T3 (W) = (3) wo(w) +
g—l) w1 (W+H(Dw, (W+Dws () = p® — p? +

The comparison appeared that the suggested
technique gives the same precise solution as this
example. Also® ® 19 20 the precise solution he had
when r =3. As a result, these five techniques are
identical in terms of accuracy of the results. Fig. 1
provided a comparison with the precise solution for
r=3.

Precise Solution
®  Approximate Solution for r=3

0.95 -

Solution Axis

0.9 r

0.85 . . . . . . . .
0 0.1 02 03 04 05 06 07 08 089 1

%= Axis

Figure 1. Compare with the precise solution, r=3.

Example 2: Solving the 1% type of the (LAI) Eq*® 2

n

ﬁIJ.S/Z—2 7/2 :f

<u<
3 T T(6)do, 0<p<1

o VAT 0
T(w) =p—p3 is the precise solution. By
employing the suggested technique with r =3, and
choosing the points pg = 0.1, gy = 0.2 and pz =
0.3 in the interval [0, 1]. The system in Eq 10 can
be solved to obtain the (BPs) parameters. To obtain
the approximate solution, these parameters are
replaced into Eq 4 as follows:

T3 (W) = (0) wo () +
(2) wy (W4 (0) wo(W+ (=) wa(p) = p—p.

The comparison showed that the suggested
technique yield the same precise solution as this
example. The references'® 2! obtained the precise
solution when r >3. As a result, these three
techniques are identical in terms of accuracy of the
results. Fig. 2 compares the precise solution for r =
3 and shows the comparison.
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Precise Solution
®  Approximate Solution forr =3
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X- Axis

(=]

Figure 2. Compare with the precise solution, r=3.

Example 3: Solving the 2™ type of the (LAI) Eq'*

19,21,22,23

u
T(W) +43/zf ! T(Wdy, 0<
W=p+-p’z- Wdp, 0<p
3 b
o VH 0
<1

T(w) = w is the precise solution. By employing the
suggested technique for r =1 and choosing the
points the values py = 0.1 and p; = 0.2 . Solving
the algebraic system in Eq 10 using the Gauss
elimination technique in the range [0, 1],

MATLAB R2018b to obtain the (BPs) parameters.

To obtain the approximate solution, these
parameters are replaced into Eq 4 as follows:

T =0 wo(w + (D) wy(p) =p.

The comparison showed that the suggested

technique yield the same precise solution as this
example. The precise solution was obtained by the
references'> 1 2 for r =1. Additionally, the
reference?? found the greatest absolute error and a
relative error of approximately 5.1*1073 and
5.1*1071 respectively for r =18. Moreover?, found
an approximate solution of nearly 1x1071°
absolute of error for r =14. As a result, the
suggested technique is superior to the approaches in
the references?®> 2 and comparable with the
approaches in the references!? % 2L that have the
same precision. The comparison with the precise
solution for r = 1 is shown in Fig. 3.

Presise Solution
®  Approximate Solution for r=1

e
©

Solution Axis
o o o [=] o [=} [=}
[ w A 5] o ~ ™

=4

o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X;Axis

Figure 3. Compare with the precise solution, r=1.

Example 4: Solving the 2™ type of the (LAI) Eg?*

5,19,21,23

T(W) = 12 + EHS/Z _f T(0)d6, 0<0

[u—16
<1

T(w) = p? is the precise solution. Using the
suggested technique in Eq 10 for r = 2 and
choosing the values py = 0.1,y = 0.2 and p, =
0.3. Solving the algebraic system in Eq 10 using the
Gauss elimination technique in the range [0, 1] in
MATLAB R2018b to obtain the (BPs) parameters.
To obtain the approximate solution, these
parameters are replaced into Eq 4 as follows:

T,(W) = (=2) wo(W) + (0) wy(W+(Dwz (W) = p?

The comparison shows that the proposed methods
yield the same precise solution as this example. For
= 6 the largest absolute error of order 1078,
1073 and 107  were obtained using the
reference’ for k= 8, 16 and k=32 respectively.
Furthermore® °, found the precise solution for r =2.
Also®, found the precise solution with r = 5.
Besides?!, obtained the precise solution for r >2.
Moreover?®, obtained the maximum absolute error
of order 10711 for r =14. Therefore, the suggested
strategy is better than the techniques in the
references® 2%, and is comparable to others with the
same level of precision. Fig. 4 displays the
comparison with the precise solution for r = 2.
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Figure 4. Compare with the precise solution, r=2.

Conclusion

In this paper, Boubaker polynomials were used to
solve (LAI) Egs of the 1%t and 2™ types. The
MATLAB program was used to calculate the
integrals as well as to solve the systems of linear
Egs for the given numerical examples, where the
precise solutions were obtained as a result of these
examples. All the results obtained from solving

Authors’ Declaration

- Conflicts of Interest: None.

- We hereby confirm that all the Figures in the
manuscript are ours. Furthermore, any Figures
and images, that are not ours, have been

Authors’ Contribution Statement

J.T.A.,H.S. A and W. S. A. participated in the
planning and carrying out of the study, the analysis

References

1. Wazwaz A-M. Linear and Nonlinear Integral
Equations: Methods and Applications. Heidelberg
Dordrecht London New-York: Springer; 638 p. 2011.

2. Ali MR, Mousa MM, Ma W-X. Solution of Nonlinear

Volterra Integral Equations with Weakly Singular
Kernel by Using the HOBW Method. Adv Math
Phys. 2019; 2019: 1-10.
https://doi.org/10.1155/2019/1705651

these four examples were compared with the results
of seven numerical methods in the literature and it
was found that the proposed method is either
identical in accuracy to some methods or better. In
each given example, its results were compared with
the precise solution as shown in the graphs.

included with the necessary permission for re-
publication, which is attached to the manuscript.

- Ethical Clearance: The project was approved by
the local ethical committee in University of
Wasit University.

of the findings, and the preparation of the
manuscript.

3. Vanani SK, Soleymani F. Tau approximate solution
of weakly singular Volterra integral equations. Math
Comput  Model. 2013; 57(3-4):  494-502.
https://doi.org/10.1016/j.mcm.2012.07.004

4. Bairwa R, Kumar A, Kumar D. An Efficient
Computation Approach for Abel’s Integral Equations
of the Second Kind. Sci Technol Asia. 2020; 25(1):
85-94. https://doi.org/10.14456/scitechasia.2020.9

Page | 1622


https://dx.doi.org/10.21123/bsj.2023.8167
https://doi.org/10.1155/2019/1705651
https://www.sciencedirect.com/science/article/pii/S0895717712001677?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0895717712001677?via%3Dihub#!
https://doi.org/10.1016/j.mcm.2012.07.004
https://doi.org/10.14456/scitechasia.2020.9

2024, 21(5): 1617-1624
https://dx.doi.org/10.21123/bsj.2023.8167
P-ISSN: 2078-8665 - E-ISSN: 2411-7986

e

Baghdad Science Journal

10.

11.

12.

13.

14.

Zarei E, Noeiaghdam S. Solving generalized Abel’s
integral equations of the first and second kinds via
Taylor-collocation method. . arXiv preprint arXiv
2018 Apr 231804.08571.
https://doi.org/10.48550/arXiv.1804.08571

Maurya R, Devi V, Srivastava N, Singh V. An
efficient and stable Lagrangian matrix approach to
Abel integral and integro differential equations. Appl.
Math. Comput. 2020; 374: 1-30.
https://doi.org/10.1016/j.amc.2019.125005

Sakran MRA. Numerical solutions of integral and
integro-differential equations using Chebyshev
polynomials of the third kind. Appl Math Comput.
2019; 351: 66-82.
https://doi.org/10.54287/qujsa.1093536

Abdullah JT. Approximate Numerical Solutions for
Linear Volterra Integral Equations Using Touchard
Polynomials. Baghdad Sci. J. 2020; 17(4):1241-1249.
https://doi.org/10.21123/bsj.2020.17.4.1241
Dascioglu A, Salinan S. Comparison of the
Orthogonal Polynomial Solutions for Fractional
Integral Equations. Math. 2019; 7(1): 1-10.
https://doi.org/10.3390/math7010059

Hamdan S, Qatanani N, Daraghmeh A. Numerical
Techniques for Solving Linear Volterra Fractional
Integral Equation. J Appl Math. 2019; 2019(1): 1-
9. https://doi.org/10.1155/2019/5678103
Mundewadi RA, Kumbinarasaiah S. Numerical
Solution of Abel s Integral Equations using Hermite
Wavelet. Appl. Math nonlinear Sci. 2019; 4(2): 395-
406. https://doi.org/10.2478/AMNS.2019.2.00037

Li C, Clarkson K. Babenko's approach to Abel's
integral equations. Math. 2018; 6(3): 1-15.
https://doi.org/10.3390/math6030032

Li C, Li C, Clarkson K. Several Results of Fractional
Differential and Integral Equations in distribution.
Math. 2018; 6(6): 1-
19. https://doi.org/10.3390/math6060097

Zhang L, Huang J, Pan Y, Wen X. A Mechanical
Quadrature Method for Solving Delay Volterra
Integral Equation with Weakly Singular Kernels.

Complexity. 2019; 20109: 1-12.
https://doi.org/10.1155/2019/4813802

15.0uda EH. An Approximate Solution of some
Variational Problems Using Boubaker Polynomials.
Baghdad Sci J. 2018; 15(1):106-109.
https://doi.org/10.21123/bsj.2018.15.1.0106

16.0Ouda EH, A. New Approach for Solving Optimal
Control Problems Using Normalized Boubaker
Polynomials. Emirates J Eng Re. 2018; 23(4): 33-38.

17.Ahmed IN, Ouda EH. An lterative Method for
Solving Quadratic Optimal Control Problem Using
Scaling Boubaker Polynomials.Open Sci J. 2020;
5(2):1-10.
DOI: https://doi.org/10.23954/0sj.v5i2.2538

18. Salih Yalcinbas S, Akkaya T. A numerical approach
for solving linear integro-differential-difference
equations with Boubaker polynomial bases. Ain
Shams  Eng J. 2012; 3(2): 153-161.
https://doi.org/10.1016/j.asej.2012.02.004

19. Abdullah, J. T, Sweedan, B. N. and Abdllrazak,
B.T, Numerical solutions of Abel integral equations
via Touchard and Laguerre polynomials. IINAA.
2021; 12(2): 1599-1609.

20. Abdullah, J. T, Ali, H. S, Laguerre and Touchard
Polynomials for Linear Volterra Integral and Integro
Differential Equations.  Phys. Conf. Ser.  2020;
1591(1): 1-17

21. Abdelkawy MA, Ezz-Eldien SS, Amin AZM. A
Jacobi Spectral Collocation Scheme for Solving
Abel’s Integral Equations. Prog Fract Differ Appl.
2015;1:187-200.
https://doi.org/10.12785/pfda/010304

22.Pandey RK, Singh OP, Singh VK. Efficient
Algorithms to Solve Singular Integral Equations of
Abel Type. Comput. Math Appl. 2009; 57: 664-676.
https://doi.org/10.1016/j.camwa.2008.10.085

23. Singh KK, Pandey RK, Mandal BN, Dubey N. An
Analytical Method for Solving Integral Equations of
Abel Type. Procedia Eng. 2012; 38: 2726-2738.
https://doi.org/10.1016/j.proeng.2012.06.319

Page | 1623


https://dx.doi.org/10.21123/bsj.2023.8167
https://doi.org/10.48550/arXiv.1804.08571
https://doi.org/10.1016/j.amc.2019.125005
https://doi.org/10.54287/gujsa.1093536
https://doi.org/10.21123/bsj.2020.17.4.1241
https://doi.org/10.3390/math7010059
https://doi.org/10.1155/2019/5678103
https://doi.org/10.2478/AMNS.2019.2.00037
https://doi.org/10.3390/math6030032
https://doi.org/10.3390/math6060097
https://doi.org/10.1155/2019/4813802
https://doi.org/10.21123/bsj.2018.15.1.0106
https://doi.org/10.23954/osj.v5i2.2538
https://doi.org/10.1016/j.asej.2012.02.004
https://doi.org/10.12785/pfda/010304
https://doi.org/10.1016/j.camwa.2008.10.085
https://doi.org/10.1016/j.proeng.2012.06.319

2024, 21(5): 1617-1624 @
https://dx.doi.org/10.21123/bsj.2023.8167 -
P-1SSN: 2078-8665 - E-ISSN: 2411-7986 Baghdad Science Journal

USa60 d9da Calasetia ARy ey ddadl) Atalsil) Juf e alaal Ayasall J glall

3ts Olugmoady 2o g danla ¢ TAlllage b Jula

GIa a5 ala csLaBY) 5 5 1aY1 B colaal) and !
oAl el & S0 Raala ciindl 5 G o gle IS 2
a3l gl ke S el 31 Y15 KA and 3

dadal)

A S s dsY g Al e dadll ALl Jof c¥alas Jad g 3 gaa Slaae ) atied dasse A5 jla a3 Allaal) 020
138 Ja ai ¢ Kig allae e Jpanll il siadll aladiily Lhdll c¥aleall (o g g aUai ) ALK Jal ¥ alae Jy e
5S2al) (3l (pa sl il qa i i Abial A apd o3 A plal) 02 oeilis peanm il iAo S Ay pla lasiindy AUl
Al syl g Sllual maen £ 2y R2018b OLall grali 50 aladiiad o Al & el b

L B3LEN ) 5l b Aolae ¢dpaaad) 43 k) ¢ gaaall Jall ¢ S5 g1 0 gas Claaaia dlalSill Juf Aalas sdsalidal) cilalsl)

Page | 1624


https://dx.doi.org/10.21123/bsj.2023.8167

