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Introduction 

The Abel problem is summarized in the following 

sentences. In 1823, Abel studied how a particle 

moves when it is pulled downward by gravity along 

a smooth, unknowing curve in a vertical plane1, 2, 3. 

Numerous domains of science use the Abel integral 

Eq, such as Seismology, radio astronomy, radar 

ranging, plasma diagnostics, X-ray radiography, 

optical, electron emission, atomic scattering1, 

Seismology, scattering theory, metallurgy, fluid 

flow, chemical processes, electrochemistry, semi-

conductors, mathematical physics, chemistry, 

electrochemistry, population dynamics, and 

chemistry3. The following are the typical forms of 

the (LAI) Eqs of the 2nd and 1st types1, 4 

respectively: 

T(μ) = y(μ) + ∫
1

√μ − θ
 T(θ)dθ,       μ ∈ [a, b]

μ

s

    1 

                                

y(μ) = ∫
1

√μ − θ
 T(θ)dθ

μ

s

,               2 

where s is the value of a real number, y(μ) is a 

well-known function and T(μ) is an unidentified 

function to be determined. In recent years, the (LAI) 

Eq numerical solution has been the focus of intense 

research by academics. Among their works are 

some of the following methods: Taylor-collocation 

approach5, Lagrangian matrix technique6, 

Chebyshev polynomials7, Touchard Polynomials8, 

Orthogonal polynomials method9, the product 

integration and Haar Wavelet techniques10, Hermite 

Abstract 

In this article, a numerical method based on Boubaker polynomials (BPs) was presented to solve the 

Linear Abel integral (LAI) Eqs of first and second types. The matrices were used to form the (LAI) Eq  

into a system of linear Eqs. To get Boubaker parameters, solve this system of Eqs using the Guess 

elimination method. To explain the results of this method, four examples have been provided and 

compared with the results of many methods mentioned in previous research. MATLAB R2018b program 

was used to perform all calculations and graphs.   

Keywords: Abel integral Eqs, Boubaker polynomial, Numerical solutions, Numerical method, Singular 

Voltarra Eq. 

https://dx.doi.org/10.21123/bsj.2023.8167
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6847-3635
mailto:jabd@uowasit.edu.iq
https://orcid.org/0000-0001-8979-5118
mailto:haleemaswaidan@yahoo.com
https://orcid.org/0000-0003-3516-2467
mailto:Waleeda_um@yahoo.com


 

Page | 1618  

2024, 21(5): 1617-1624 

https://dx.doi.org/10.21123/bsj.2023.8167  

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

wavelet approach11, Babenko and fractional 

integrals methods12, Babenko and fractional 

calculus techniques13, Mechanical quadrature 

method14. The following is how the rest of the 

article is structured: the proposed method, 

approximation function, solution accuracy, 

solutions Abel integral Eq, and numerical examples. 

Finally, conclusions and references. 

Materials and Methods 

Method of Boubaker Polynomial 

Boubaker polynomials belonging to the Banach 

space and was first developed by Boubaker et al.15-

18 as a reference for solving the heat Eq within a 

physical model. The following Eq introduces the 

first monomial definition of the Boubaker 

polynomial:      

 

wr(μ) = ∑
(r − 4h)

(r − h)
C𝑟−ℎ

ℎ (−1)hμ2r−h,

γ(r)

h=0

r = 0,1, 2,                             3 

    where Cr−h
h =

(h)!

(r−h)!(2h−r)!
 , γ(r) = ⌊

r

2
⌋ =

2r+((−1)r−1)

4
 ,  γ(r) = ⌊. ⌋ represents the floor 

function, and r is the degree of the polynomials. The 

following first four polynomials of this polynomial 

are defined as follows: 

 w0(μ) = 1 
 w1(μ) = μ  
 w2(μ) = μ2 + 2 
 w3(μ) = μ3 + μ, 
while the following recurrence relation holds for r > 

2:  

wr(μ) = μwr−1(μ) − wr−2(μ) 

 
Approximation Function  
Suppose that the approximate numerical solution to 

Eq be a linear combination of the (BPs) as follows: 

Tr(μ) = ∑xcwc

r

c=0

(μ)  ,    𝑟 = 1, 2,3,… ,   0 ≤  𝜇

≤ 1,                            4 

                       

the function {wc(μ)}c=0
r  specify the basis of the 

(BPs) of r-th degree, as determined by Eq3, the 

unknown parameters xc′s will be determined later. 

Eq  4 can also be written as follows: 

Tr(μ) =

[w0(μ)   w1(μ)…wr(μ)] .  

[
 
 
 
 
x0

x1
.
.
.
xr]

 
 
 
 

 ,                 5                                          

So, Eq 5 can be written as follows: 

Tr(μ) =

[1  μ  μ2 …μr].

[
 
 
 
 

z00      z01       z02     … z0r 
 0         z11       z12      ⋯ z1r  
 0         0            z22     ⋯ z2r  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯ zrr    ]
 
 
 
 

.

[
 
 
 
 
x0

x1
.
.
.
xr]

 
 
 
 

 ,

6                   
where the matrix in Eq 6 is invertible and {z𝑠𝑠}s=0

r  

are used to specify the (BPs) parameters, which are 

power base amounts. 

 

Solution Accuracy 
A precision of the solutions can be verified using 

the proposed method through the following 

procedures: 

The truncated Boubaker series18, 91 in Eq 4 have to 

be approximately satisfying Eq 1. For every 

μ = μβ ∈ [a, b], β = 0, 1, 2, … , r. therefore, the 

error functions: 

 

Ef (μβ) = |∑xcwc(μβ)

r

c=0

− y(μβ)

− ∫
1

√μ𝛽 − θ
 

μβ

s

∑xcwc(θ)

r

c=0

dθ |

≅ 0, then 

Ef (μβ)  ≤∈,  for all μβ in the interval [a, b] and ∈ > 

0, therefore, the truncation limit r is increased until 

the error function Ef (μβ) at each μβ can be smaller 

than any positive number ϵ, so, the following Eq  

represents the error function:  
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Ef (μ) = ∑xcwc(μ)

r

c=0

− y(μ)

− ∫
1

√μ − θ
 

μ

s

∑xcwc(θ)

r

c=0

dθ , 

Efr (μ) → 0 when the r value is large enough, the 

error decreases. 

Hence, Ef (μ) ≤∈. 

Remark 1: The same previous procedure can be 

achieved on Eq 2.  

Solutions Abel Integral Equation 

With aid of the (BPs) to give approximate solution 

to Eq 1, assuming that Eq 4 will be used: 

T(μ) ≅ Tr(μ) = ∑xcwc

r

c=0

(μ),                        7 

when the Eq 7 is substituted into Eq 1, the result is: 

∑xcwc(μ)

r

c=0

= y(μ) + ∫
1

√μ − θ)
 

μ

s

∑xcwc(θ)

r

c=0

dθ ,            8 

                    

after Eq 5 is applied, Eq 8 becomes: 

 

[w0(μ)   w1(μ)…wr(μ)] .  

[
 
 
 
 
x0

x1
.
.
.
xr]

 
 
 
 

= y(μ) +

∫
1

√μ−θ

μ

s
 [w0(θ)   w1(θ)…wr(θ)] .  

[
 
 
 
 
x0

x1
.
.
.
xr]

 
 
 
 

dθ ,       9         

 

 

 

 

 

 

 

 

when using Eq  6, then Eq  9 transforms to the 

following: 

[1  μ  μ2 …μr].

[
 
 
 
 

z00      z01       z02     … z0r 
 0         z11       z12      ⋯ z1r  
 0         0            z22     ⋯ z2r  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯ zrr    ]
 
 
 
 

.

[
 
 
 
 
x0

x1
.
.
.
xr]

 
 
 
 

= y(μ) + ∫
1

√μ − θ

μ

s

 [1  θ  θ2 … θr]. 

[
 
 
 
 

z00      z01       z02     … z0r 
 0         z11       z12      ⋯ z1r  
 0         0            z22     ⋯ z2r  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯ zrr    ]
 
 
 
 

 .  

[
 
 
 
 
x0

x1
.
.
.
xr]

 
 
 
 

dθ ,         10                           

After simplifying Eq 10, the unknown parameters 
{xc}c=0

r  can be calculated by selecting a number of 

values from the given interval [a, b]. In this case, Eq 

10 is transformed into a system of linear Eqs made 

up of (r+1) from Eqs with unknown parameters. 

The Gauss elimination technique can be used to 

solve this system to determine the parameters that 

are unique. Finally, to obtain the approximate 

solution of Eq 1, these values are replaced into Eq 

4. 

Remark 2: The same previous procedure can be 

achieved on Eq 2.  
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Results and Discussion 

Numerical Examples 

Four numerical examples are given in this section to 

demonstrate the capability and effectiveness of the 

method utilized to locate solutions using the 

MatlabR2018b program. The graphs solutions have 

all been converged. 

Example 1: Solving the 1st type of the (LAI) Eq 8, 9,   

19, 20 

 

2√μ

105
(105 − 56μ2 − 48μ3)

= ∫
1

√μ − θ

μ

0

T(θ)dθ ,   0 ≤ μ ≤ 1 

 T(μ) = μ3 − μ2 + 1 is the precise solution. By 

applying the proposed method for this example 

when the degree of polynomials r=3 as mentioned 

in the Eq 10, getting: 

 

2√μ

105
(105 − 56μ2 − 48μ3)

= ∫
1

√μ − θ
. [

1
0
0
0

  

0
1
0
0

 

2
0
1
0

 

0
1
0
1

] . [

θ0

θ1

θ2

θ3

] dθ  ,    

μ

0

 

Rewriting this would be: 

2√μ

105
(105 − 56μ2 − 48μ3

= ∫
1

√μ − θ
(θ0 + θ1μ + θ2(2

μ

0

+ μ2))dθ  ,     

Consequently, after performing the integrations, 

choosing δ σ (σ =  0, 1, 2, 3) in the [0, 1], getting a 

system of four Eqs. This system can be solved in 

MATLABR2018b to obtain the (BPs) parameters. 

To obtain the approximate solution, these 

parameters are replaced into Eq 4 as follows:  

 

T3(μ) = (3) w0(μ) +
(−1) w1(μ)+(−1)w2(μ)+(1)w3(μ) = μ3 − μ2 +
1 . 

 

The comparison appeared that the suggested 

technique gives the same precise solution as this 

example. Also8, 9, 19, 20, the precise solution he had 

when r =3. As a result, these five techniques are 

identical in terms of accuracy of the results. Fig. 1 

provided a comparison with the precise solution for 

r =3. 

 
Figure 1. Compare with the precise solution, r=3. 

 

 

 

Example 2: Solving the 1st type of the (LAI) Eq19, 21 

 

4

3
μ

3
2⁄ −

32

35
μ

7
2⁄ = ∫

1

√μ − θ

μ

0

T(θ)dθ ,   0 ≤ μ ≤ 1 

T(μ) = μ − μ3 is the precise solution. By 

employing the suggested technique with r =3, and 

choosing the points μ0 = 0.1, μ1 = 0.2 and μ3 =
0.3 in the interval [0, 1]. The system in Eq 10 can 

be solved to obtain the (BPs) parameters. To obtain 

the approximate solution, these parameters are 

replaced into Eq 4 as follows:  

 

T3(μ) = (0) w0(μ) +
 (2) w1(μ)+ (0) w2(μ)+ (−1) w3(μ) = μ − μ3 . 

 

The comparison showed that the suggested 

technique yield the same precise solution as this 

example. The references19, 21 obtained the precise 

solution when r ≥3. As a result, these three 

techniques are identical in terms of accuracy of the 

results. Fig. 2 compares the precise solution for r = 

3 and shows the comparison. 

https://dx.doi.org/10.21123/bsj.2023.8167
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Figure 2. Compare with the precise solution, r=3. 

 

Example 3:  Solving the 2nd type of the (LAI) Eq12,    

                                  19, 21, 22, 23 
T(μ) = μ +

4

3
μ

3
2⁄ − ∫

1

√μ − θ

μ

0

T(μ)dμ ,   0 ≤ μ

≤ 1 

T(μ) = μ is the precise solution. By employing the 

suggested technique for r =1 and choosing the 

points the values μ0 = 0.1 and μ1 = 0.2 . Solving 

the algebraic system in Eq 10 using the Gauss 

elimination technique in the range [0, 1], in 

MATLAB R2018b to obtain the (BPs) parameters. 

To obtain the approximate solution, these 

parameters are replaced into Eq 4 as follows:  

 

T1(μ) = (0) w0(μ) +   (1) w1(μ) = μ . 

 

The comparison showed that the suggested 

technique yield the same precise solution as this 

example. The precise solution was obtained by the 

references12, 19, 21 for r =1. Additionally, the 

reference22 found the greatest absolute error and a 

relative error of approximately 5.1*10−3 and 

5.1*10−1 respectively for r =18. Moreover23, found 

an approximate solution of nearly 1 ∗ 10−10 

absolute of error for r =14. As a result, the 

suggested technique is superior to the approaches in 

the references22, 23 and comparable with the 

approaches in the references12, 19, 21 that have the 

same precision. The comparison with the precise 

solution for r = 1 is shown in Fig. 3. 

 
Figure 3. Compare with the precise solution, r=1. 

Example 4: Solving the 2nd type of the (LAI) Eq2, 3,    

                                 5, 19, 21, 23 

T(μ) = μ2 +
16

15
μ

5
2⁄ − ∫

1

√μ − θ

μ

0

T(θ)dθ ,   0 ≤ θ

≤ 1 
T(μ) = μ2 is the precise solution. Using the 

suggested technique in Eq  10 for r = 2 and 

choosing the values μ0 = 0.1, μ1 = 0.2 and μ2 =
0.3. Solving the algebraic system in Eq 10 using the 

Gauss elimination technique in the range [0, 1] in 

MATLAB R2018b to obtain the (BPs) parameters. 

To obtain the approximate solution, these 

parameters are replaced into Eq 4 as follows:                                           
T2(μ) = (−2) w0(μ) +  (0) w1(μ)+(1)w2(μ) = μ2

  
   

The comparison shows that the proposed methods 

yield the same precise solution as this example. For 

r = 6 the largest absolute error of order 10−8,
10−13 and 10−14  were obtained using the 

reference2 for k= 8, 16 and k=32 respectively. 

Furthermore3, 19, found the precise solution for r =2. 

Also5, found the precise solution with r = 5. 

Besides21, obtained the precise solution for r ≥2. 

Moreover23, obtained the maximum absolute error 

of order 10−11 for r =14. Therefore, the suggested 

strategy is better than the techniques in the 

references2, 23, and is comparable to others with the 

same level of precision. Fig. 4 displays the 

comparison with the precise solution for r = 2. 

https://dx.doi.org/10.21123/bsj.2023.8167
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Figure 4. Compare with the precise solution, r=2. 

Conclusion 

In this paper, Boubaker polynomials were used to 

solve (LAI) Eqs of the 1st and 2nd types. The 

MATLAB program was used to calculate the 

integrals as well as to solve the systems of linear 

Eqs for the given numerical examples, where the 

precise solutions were obtained as a result of these 

examples. All the results obtained from solving 

these four examples were compared with the results 

of seven numerical methods in the literature and it 

was found that the proposed method is either 

identical in accuracy to some methods or better. In 

each given example, its results were compared with 

the precise solution as shown in the graphs. 
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 بوبكرمتعددات حدود بيل التكاملية الخطية بطريقة أ تمعادلال ةالعددي ولالحل

 3، وليده سويدان علي2، حليمه سويدان علي 1طلب عبدالله جليل
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 ةالخلاص

. تم والثانيالاول حدود بوبكر لحل معادلات آبيل التكاملية الخطية  من النوع  اتتستند الى عديد عدديةفي هذه المقالة، تم تقديم طريقة 

تحويل معادلات آبيل التكاملية الى نظام جبري من المعادلات الخطية  باستخدام المصفوفات. للحصول على معالم بوبكر، تم حل هذا 

النظام  باستخدام طريقة كاوس للحذف. ولتوضيح نتائج هذه الطريقة تم تقديم اربعة امثلة ومقارنتها مع نتائج العديد من الطرق المذكرة 
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