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Abstract

Fuzzy programming is especially useful in cases where the coefficients are ambiguous. Because of this
feature, in recent years, numerous techniques have emerged for addressing uncertainty. This paper proposes
a novel ranking function technique with variables of type decagonal fuzzy numbers for solving fully fuzzy
fractional linear programming (FFFLP) problems. This technique is dependent on introducing a new
membership function for a decagonal fuzzy number and using a fully fuzzy simplex method. After
converting the FFFLP problem to the fully fuzzy linear programming (FFLP) problem by a complementary
method, then solved with the fully fuzzy simplex tables, in which all the values are fuzzy decagonal
numbers. With the aid of the arithmetic operations of decagonal numbers, the new iteration of the simplex
table is reached. Steps are repeated until the optimal fuzzy solution is reached. To demonstrate the proposed
method a numerical example is provided to illustrate the steps of finding an optimal fuzzy solution to the
problem.

Keywords: Arithmetic Decagonal Operations, Decagonal membership function, Fully Fuzzy Fractional
Linear Programming, Fully Fuzzy Simplex Method, and Ranking function.

Introduction

The significance of fractional programming programming problem comes in. This is especially

problems (FPP) is derived from the fact that many
important problems are based on the trading of
economic or material values, such as cost/volume,
profit/cost, and cost/time in both production and
financial planning. The FPP is defined as a fractional
linear programming problem when both the
objective function and the constraints are linear. It is
crucial for decision-makers to be able to include
uncertainty and imprecision in their optimization
models, and this is where the fuzzy fractional

helpful when the available data is unclear or lacking
in detail, or when different objectives must be
weighed. Solutions that are both stable and adaptable
over time can be found with the help of fuzzy logic
and fractional programming. This can aid businesses
in making more informed decisions, decreasing
vulnerability, and increasing efficiency. In addition,
fuzzy fractional programming can be used in many
contexts, such as economics, technology, logistics,
and ecology. Using membership degrees for each
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variable based on their relative importance, the
ranking function fuzzy enables the representation of
uncertain or imprecise data. This allows decision-
makers to account for the inherent uncertainty and
imprecision in the data, resulting in better
conclusions. In addition, the fuzzy ranking function
can help find optimal solutions that weren't obvious
when using strict linear programming techniques.
Decision-makers are able to find solutions that are
strong and resilient to changes in the underlying data
when they analyze multiple scenarios and assign a
probability to each one. Bellman RE, Zadeh LA ‘!
initially put the notion of fuzzy decision-making, and
due to its significant use in real-world situations,
there has been a quick growth in theoretical
approaches to examine the theory and draw
beneficial results. Kumar-Das S? developed a new
ranking function to solve a full FLPP, the ranking
function was derived by replacing the non-parallel
sides of the trapezoidal fuzzy number with a
nonlinear function. In order to solve fully fuzzy
linear fractional programming problems, Loganathan
T, Ganesan K® proposed a method in which the
original fractional programming problem was being
transformed into a single objective linear
programming problem in parametric form, with all
parameters and variables expressed in triangular
fuzzy numbers.

Linear fractional programming problems with fully
fuzzy normalized heptagonal fuzzy numbers were
solved by Alharbi MG, Khalif HA* using the closed
interval approximation of normalized heptagonal
fuzzy numbers. Mitlif RJ® recently presented a new
approach to dealing with triangular fuzzy integers.
The fuzzy fractional programming problem was
initially reduced to a fractional programming
problem as the technique's application. Gupta JD, et
al. 8 proposed a unique trapezoidal fuzzy number
ranking function to solve Fully Fuzzy Linear
Fractional ~ Programming  Problems utilizing
trapezoidal fuzzy numbers as the objective function
and constraints. We propose the following strategy
using neat linear fractional programming and the
simplex method. Mustafa R, Sulaiman N 7 developed
two innovative ranking function strategies for
problems in fully fuzzy linear fractional
programming (FFLFP), where the coefficients of the
objective function and constraints are viewed as

triangular fuzzy numbers. Fuzzy values are
converted to discrete ones with the help of the
suggested ranking algorithm. Zhang C, et al. 8
presented a fuzzy credibility-based multi-objective
linear fractional mathematical programming for
establishing the link between the agricultural water-
food-environment nexus and crop area planning.
This technique was created by incorporating fuzzy
credibility-constrained programming into based
multi - objective linear fractional programming
within the optimization model planning.

The aim of this paper is to show that, the ratio
optimization problems can be solved in an efficient
and straightforward manner, reducing computational
difficulties. Here, we proposed a novel ranking
function technique depending on the decagonal
membership function for addressing the FFFLP
problem with the aid of the development of a
Simplex method for solving the FFLP problem,
which enables the optimal fuzzy solution to be
obtained when all variables are decagonal fuzzy
numbers. This paper is divided into nine sections. In
section 2, the simple preface of fuzzy set theory.
Section 3 proposes a decagonal fuzzy function and
its (g-cut) function. The ranking function is derived
in section 4. The fuzzy mathematical operations of
decagonal fuzzy numbers are shown in section 5.
Section 6 shows the mathematical model of fully
fuzzy fractional linear programming problems. The
fully fuzzy simplex method is presented in section 7;
a numerical example is given in section 8. Finally,
section 9 presents conclusions.

Preface of Fuzzy Set
This section includes some basic definitions.

Definition 1: ° Let X = {x} be a set of objects. The
fuzzy set A in X is defined by the membership
function M ;(x), whereM ;(x): X— [0, 1], is the
degree of membership of x € X in the set A and is
denoted by A(x)= {(x, M z(x))| x € X}.

Definition 2:1° A fuzzy set A is a fuzzy number if
satisfies the following conditions:
e A isanormal fuzzy set if there exists at
least one x, in R with M ;(x) = 1
o M ;(x) is piecewise continuous.
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o A(x) .is convex if M ;(x). [ox; + (1
=) x3] 2 Min (M ;(x1), M 4
(X))} x1,x, €EX, 00 €
[0, 1].

Definition 3:* (o — cut) is the crisp set of elements

that belong to A and satisfy
A, =
fxeX|Mzx) =0, 0 €[01]}

Proposed Decagonal Membership Function

In this section, propose a membership function
M z5..(x) of a Decagonal fuzzy number Ap.. =

aq,02,03,04,05 < < <
(%a%%ag'aw), whereasa; < a, < a3 < ay <

as < ag<a; <ag < a9 <ap; € R,andthe
graph function as shown in Fig.1:

M"qDec(x) =
( 0 a; <0
(x—aq)
—%1) <
3(az—ay) I S X<
X—0Uy
<
Ga+(E)  msx<a
% a3 <x < ay
1 X—Qy
Be+(ED)  wsr<e
{ 1 as < x < ag
(x—as)
-5 <
3(a7 @) T =X < a7
§ a; < x<ag
ag<x<a
@ (= “8) i ’
( ) ( ) g <X < g
X10—Q9
\ 0 x> a9

(inf c"TD:C’,y + sups CAFD:;,) = ([ay + 30 (az —a)] +
(inf; CHFD\;,, + sup, cﬂ’D\e?,,) = ([az + Bo — D(az — az)] + [ag + (2 — 30)(ag — ag)]) o€ [l %

(infs Apec, + 5ups Apec,) = (It4 + (o = 2)(as — )] + [as + 31— ) (@; —ag)] o€ [51]

Ranking Function

A ranking function R(A) is a mathematical function
in fuzzy logic that determines a membership or truth
value for a set based on the degree to which its

elements are comparable to a given fuzzy set. In

@y a; @z a4 As Qg '“7 g g Qg
Figure 1. Decagonal membership function.

The (¢ — cut) function is defined as:

((a; + 30(a, — ay) o €]o, l]

a, +Bo—1(az;—ay) oE€]z,=
a,+ Bo—2)(as—a,) o€ [%, 1

]

]

Abeco =\ ag+3(1—0)(a; —ag) o € [2,1]
ag+ (2—-30)(ag—ag) o €[z,7]

3]

Where,

[ag + (1 — 30) (@10 — @9)]) o€ [0' %

order to make informed decisions and better organize
data, a ranking function might help prioritize certain
characteristics. A novel ranking function, based on
the suggested decagonal membership function, is
presented in this section.
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R(Apec) = ) [y Q) (Inf; Apec,, +

Supj‘ﬂDec”)dO'
i+2 i=1
i=123 j={ i i=2
i—2 i=3

MEE%
= (%) Jj (%) (ay +30(a, —ay))do
+ (“29 + (1 =30)(ay — ay) do

+ ff G) (ay+ Bo—1)(az — ay)de
+ (Zg + (2 —-30)(ag —ag)do

11
+ fz (§> (ag+ (Bo —2)(as — a,) do

+ (ag +3(1 —o)(a; — ag)do

1
m(cﬂDeC) = £[0l1 + 2(12 + as + Ay + as + (243
+ a; + ag+2aq + aqg]

Fuzzy Mathematical Operations of
Decagonal Fuzzy Numbers® 3

Let Ap.. and Bp.. be two arbitrary Decagonal
fuzzy numbers, such that

( a1, Ay, A3, Oy, A )
e, A7, qg, g, A10
_ ( by, by, b3, by, bs )
be, b7, bg, by, by

Apec =

»“Dec

Define the Addition, subtraction, and multiplication
operations as follows:

¢ Apec ®Bpec =
( a1,02,03,04,05 ) (bl'bz'b3'b4'b5 ) —
Q6,07,08,09,010 bg,b7,bg,bg,b10
( a1+b1,a2+b2,a3+b3,a4+b4,0l5+b5 )
ag+bg,a7+by,ag+bg,ag+bg,a19+b1g
* Apec © Bpec = (al,az,a3,a4,a5

X6, 07,08,X9,&10

(bl.bz.bg.b4.bs) —
be,b7,bg,bg,b10)
a1—b10,a2—b9’“3—bs'a4—b7'“5—b6)
Qg—bs5,a7—by,ag—b3,a9—b3,a190—b1

¢ Apec®Bpee =
( Aq,02,03,04,05 ) ( b1,b3,b3,b4,bs ) —
Qg,07,08,09,010 bg,b7,bg,bg,b10
( a1%b1,3%by,A3%b3,a4%Dy,5*bs
Ag*bg,a7%b7,ag+bg,A9*bg,a10*b10

° l®cm — (Ja1,1a2,1a3,la4,1a5) if ) >

Adg,A07,208,2A9,3X1 o
0

— (*a10a9,3ag,37,36
Ja5,1a4,la3,la2,la1

if 3<0

( aq,02,03,04,05 )
P Q1,02,X3,04,A5 26,27,28,%9,210/ __
o if 0 then 222102 —
foé¢ (a6,a7,a8,a9,a10 (bbibbzbb3bb4bb5 )
677,089,010
a; az ag Z10

bio’ by’ bg’ "’ by

Fully Fuzzy Fractional Linear Programming
Problem (FFFLPP)

Consider the following FFFLPP problem having m
fuzzy constraints and n fuzzy variables:

Max & = Z:’;gg = %
S.to
AQ% <=>B
x>0

Where, 7" = (ﬁj)l*n ,dT:(dj)l*n %= (%)

S,8 € decagonal fuzzy numbers.

n*1’

A= (dij)m*n ) EZ(Ei)m*l-

Al,d", %, A,B are decagonal
Vi<j<n 1<i<m

fuzzy numbers

The Fully Fuzzy Simplex Method %

In order to reach the optimal fuzzy solution for
FFFLP problem, we first need to convert the FFFLP
problem into FFLP problem utilizing the
development of complementary method!®, then
adding fuzzy slack variables'S;, i = 1,2, ..., m, with
coefficients equal to zero in the objective function,
therefore transforming all the inequalities of the
constraints into equations and construct the fully
fuzzy simplex tableau as shown in Table 1:
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Table 1. Fully fuzzy Simplex Tableau

Basicvar. %, X, . Xy S: S, S, RH.S R(R.H.S)
@6¢) -a & .- 00..0) (00...0) ©0.0,...,0) B R(En)
S iy aip clip 0,0,...,1) (0,0,...,0) (0,0,...,0) by R(by)
s, Gy Ay vy (00,...0)  (0,0,....1) (0,0,...,0) b, R(b,)
Sm am1 G o Gmn (0,0,...,0) ~ (0,0,...,0) 0,0,....1) by, R(bm)

Using the fully fuzzy Simplex method to select the
entering and leaving fuzzy variables. The arithmetic
operations of the decagonal fuzzy numbers facilitate
access to a new fuzzy tableau (new iteration) of a
fully fuzzy simplex table. The optimal fuzzy solution

Results and Discussion
Numerical Example.

The following fractional linear

problem is:

programming

6x1+5x,
2x,+7

Max w =

s.t
x1+2x, <3
3x1+2x, <6
xX1,%; =0
First, the crisp optimal solution of this problem is:
Xy = %,xz = % ,w = 1.28, Example 1 in the paper’
Second, taking the above example with all the

variables are decagonal fuzzy numbers:
5,6,7,8,9 3,5,6,65,7
(10,10.5,11,12,13)63”‘1 69(9,9.5,10.1,11,12)@”62

Max @ =
(670010)8%1 ®(1071 19rs 1)
0511523 1.5,2.2.5.3,4\ _ _
(44 5,4.6,5, 7) (5,7,7.1, 9,10)®x2 S
( 2,34 ,5,7 )
8911,11.512
23456 12345
(7 175121314 ) %0 (6,7,8,9,10) ®%, <
( 5 ,6.,7 ,8 .9 )
10,10.5,11,12,13
%%, >0

Applying the proposed algorithm, the first step uses
the development complementary method to convert
the problem to a fully fuzzy linear programming
problem (FFLPP).

of the maximum problem is reached, when (SR((T) )
¢) =0),in the maximization objective function
and at the minimum (R(@ © ¢) < 0).

Let Max & = (Z—l where, @1 =
2
5,6,7,8,9 . 3,5,6,65,7,8\ .
(10,10.5,11,12,13) ®%; & (9,9.5,10.1,11,12) %,
(12445 5.5,7,8,9,9.5
W2 = (6 7,8,9, 10) ®%, & (10 11,12,13,14)
, 12445\ .
0w 9(678910)®x1

5.5,7,8,9,9.5
© (10,11,12,13,14)
The new form of the fuzzy objective function is:
Max (IJ’ = 51 - 52

, 3 5,6,7.8,9
Max w = (10 10.5,11,12,13
1,2,445\ 3.56,65,7
(6,7,8,9,10) ®%, & (9 9.510.1,11, 12) ®%, O
( 5.5,7,8,9,9.5 )
10,11,12,13,14

)®% ©

( 5-106—-97-88—
10 -5,10.5-4,11-412-2,13 -1

3,5,6,6.5,7 - 5.5,7,8,9,9.5
(9,9.5,10.1,11,12) ®% O (10,11,12,13,14)

_(—5,—3,—1,1,3 3,5,6,6.5,7
- \5,6.5,7,10,12 9,9.5,10.1,11,12
(—14, -13,-12,-11, —10)
-95,-9,-8,-7,-5.5

8 e e

) @6 ) @18

Then the new problem becomes as follows:

Max w' =
—5,-3, 113\ . (3 .5.6.,65,7
(5 65,710 ,12) %O (9,9.5,10.1,11,12

(55555 257,255 )

)®%, ®
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S.t
0511523\ . - (1522534\ _ _
(4,4.5,4.6,5,7) %O (5,7,7.1, 9,10 ) 8%,
2 3 45 .7
= ( 89,11,11.5,12 )
2 3456 112345\ .
( 7.1,7.5,12,13,14 )®x1®(6,7,8,9,10) ®%;
567809
= (10,10.5,11,12,13)
%, %, =0

The second step is to convert the problem to the
standard form by adding the fuzzy slack variables,

(Sooot@se(Sooos)es,
—-14,-13,-12,—11,—-10
9( —9.5,—9 —8,—7,—5.5 )

S.t
(1354657 ©%:@ (5771515 ) ©%:@
0,0,0,0,0% - _ 2345 .7
(0,0,0,0,1) ®s, = ( 8,9,11,11.5,12 )
2 3456 12345
( 7.1,7.512,13,14 ) @1 (6,7,8,9,10) ®%,®

(0,0,0,0,0) ®5, = (

5,6,7,8,9 )
0,0,0,0,1

10,10.5,11,12,13
%1,%,,51,5, =0

Max @' = . . .
The first tableau of the fully fuzzy simplex is shown
(_5'_3’_1’1’3) ®F ea( 3,5,6,65,7 )®f @  inTable 2 below:
5,6.5,7,10,12 1%19,9.5,10.1,11,12 2 )
Table 2. Primary table of the fully fuzzy simplex method
B.V %, %, 3 5, R.H.S 0
~ -12,-10,-7,-6.5,—5\ (—12,-11,-10.1,-9.5,-9\ ,0,0,0,00, 00,000, (—14,-13,-12,-11,-10
4o wey -3,-1,1,3,5 / ( —7,-6.5,—6,—5,—3 ) (0,0,000 (00000 ( —955,—9,-8,—7,-5.5 )
~ 0.5,1,1.523 1.52,2.53,4 0,0,0,00y (0,0,0,0,0 23,45,7 534
A, — 1 (4,4.5,4.6,5,7) (5,7,7.1, 9,10 ) (0,0,0,0,1) (0,0,0,0,0) ( 8,9,11,11.5 12 ) 17
~ 2,3456 1,2,34,5 0,0,0,0,0y  (0,0,0,0,0 567 89 3.04
43 52 (7.1 ,7.5 ,12,13,14) (6,7,8,9,10) (0,0,0,0,0) (0,0,0,0,1) (10,10.5,11,12,13) 183

Determining the entering and leaving variables by
the ranking function technique, as follows:

The entering variable = min{R(%;), R(¥;)} =
min{—1.15,—2.64} = —2.64
The leaving variable = 0 =
2,3,4,5,7 5,6,7,8,9
. m( 8,9,11,11.5,12) g{(10,10.5,11,12,13) _
min ER(1.5,2,2.5,3,4 ' g 12345
5,7,7.1,9,10 ) (6,7,8,9,10)
2.36 3.013

Therefore, the entering variable is ¥, and the leaving
variable is 3.

The pivot element of decagonal fuzzy numbers is:
(1.5,2,2.5,3,4)

5,7,7.1,9,10
Now, using the operation of the decagonal fuzzy
number is as following:

The pivot row A," = G) ®A, , and the other
rows: 4; = (1104, ®A,), A;' = ((-2/
9)RA,)DA;

So, the new alteration of the fully fuzzy simplex
method is shown in Table 3:

Table 3. The optimal table solution for the fully fuzzy simplex method

\l;\’vo B.V X1 X S1 S, R.H.S
A wo: (—9.2,—4.5,1.25,4.5,11.5) ( -3.7,0,3.6,7,13 ) (5.5,0,0,0,0) (o,o,o,o,o) ( —-3,3.5,10,16.5,28.5 )
1 J 19,23.7,26.3,30.5,43.5 20.5,32,33.05,44.5,52 0,0,0,0,0 0,0,0,0,0 34.5,40.5,52.5,56.2,60.5
R (0.25,0.5,0.75,1,1.5) (0.75,1,1.25,1.5,2) ( 0,0,0,0,0 ) (0,0,0,0,0) ( 1,1.5,2,2.5,3.5)
z 2 2,2.25,2.3,2.5,3.5 2.5,3.5,3.55,4.5,5 0,0,0,0,0.5 0,0,0,0,0 4,455.5,5.75,6
PR ( -1.1,0.1,1.3,3.3,4.4 ) (—1.2,0,1.4,2.5,3.9) (—0.2,0,0.0,0) (0,0,0,0,0) ( 2.3,3.4,4.5,6,7.2 )
3 2 5.7,6.3,11.1,12.3,13.5 5.2,6.4,7.5,8.6,9.7 0,0,0,,0 0,0,0,0,1 8.4,9.3,10.1,11.3,12.5
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SinceR(w’' ©¢) =0, andR(R.H.S) > 0, the
optimal solution is reached.

~Max ®
(3 , 5,6,65, 7)®(1,1.5,2,2.5,3.5)
9,9.5,10.1,11,12 4,4.5,5.5,5.7,6
( 5.5,7,8,9,9.5 )
10,11,12,13,14
:( 0.21,2.5,1,1.47,2.4 )
3.78,4.7,6.9,8.9,13.09

Conclusion

In this paper, we have addressed the fully fuzzy
fractional linear programming problem using
decagonal fuzziness numbers. This paper is helpful
in finding solutions to these types of problems. The
proposed new ranking function technique has been
effective in selecting the entering and leaving
variables of decagonal fuzzy numbers in the simplex
table. Through utilizing the arithmetic operations of
decagonal fuzzy numbers, a new iteration of the fully
fuzzy simplex table has been found. The
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