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Abstract:

In this paper, the author established some new integral conditions for the oscillation of
all solutions of nonlinear first order neutral delay differential equations. Examples are

inserted to illustrate the results.

Introduction:

Consider the first order nonlinear neutral
delay differential equation:

[x(®) + POXE@)] +a@®) f (x(o(t)) =0 ®

Subject to the conditions:

(c1) p(t) e C[R,R], z(t) and o (t) are
positive nondecreasing continuous
functions, such that

lim o(t) = lim z(t) =
t—oo t—o0
(c2) q:[tg, ) — R is continuous function.

(c3) f :R— R is continuous function
with uf (u) > 0 for u =0,
and there is a positive constant M such

that f(u)/u* >M >0 where & isa
ratio of odd positive integers.

If we let P(t) = max{z(t),o(t)} and
T 2>1; then by a solution of equation (1),

we mean a continuous function
X :[ty,90) = Rsuch that
X(t) + p(t)x(z(t)) is continuously

differentiable for t>t,, and X(t)

satisfies equation (1) for all t=t,. A

solution of equation (1) is said to be
oscillatory if it has arbitrary large zero and
nonoscillatory otherwise.

In [4], Gopasamy, Lalli, and Zhang
considered the linear equation
(x(@®) + px(t—7))" +q(t)x(t—o0) =0 2
Where —1 < p <0 and proved that if

t
lim inf jq(s) ds>1+p,
t-o

then all solutions of equation (2) are
oscillatory. For additional results on the
oscillatory behavior of solutions of the
linear equation (2), we refer the reader to
the monographs by Bainow and Mishev
[2], Erbe, Kong, and Zhang [3], and Gyori
and Ladas [8] as well as the papers of
Agarwal and Saker [1], Pahri [15], Saker
and Elabbasy [17], Tanaka [18], and Zhou
[21] And the references contained therein.

In [5], Graef et al. considered the
nonlinear equation

(x® + px(t—7))" +a(t) f (x(t —@)) =0, ©)

with f nondecreasing,  sublinear,
—1< p<0, andthey proved that if

oyt =ce,

then every solution of equation (3) is
oscillatory. They also proved a similar

result for equation (3) where Tis
superlinear and p < —1.
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Section 2, continuous some basic
lemmas that are needed to prove my main
results, in Section 3, there are some new
integral conditions for the oscillation of all
solutions of equation (1). This research
includes examples to illustrate the main
theorem.

Some Basic Lemmas
In this section, established some

lemmas for the case & :1. These lemmas
will be used to proved the main results.
Lemma 1 Suppose that

q(t) =2 0,z(t) <t,ot) <t, p, = p(t) > p; >Lo(t) <z(t) for t>t,
lim supai (jrc(]t())s) ds>0 4

t—ow t

if X(t)is an eventually positive solution of
equation (1) then

and

(o) _ -
2(0) |

Proof Let X(t)is an eventually positive

liminf

t—oo

solution of equation (1) for t =1, then
z(t) = x(t) + p(t)x(z(t))
Which means, z(t)>0 and so

z'(t) <0 and hence z(t) is decreasing,
we have

POx(z (1)) = z(t) — x(1)
2(z 71 (1)) = x(z () + p(z T (©)xX(1)

z(z7 (1)) = p(z (1)) x(t) = pyx(t)
on the other hand

P, X(z(t)) = z(t) — x(t)

P, plx(r(t)) 2 plz(t) - plx(t) 2 plz(t) -z(t)

then
X(r(t)) = 2=

2P

z(t)
Or
(o) 22 o)

from (1) and the last inequality we get

486

2'(t) + Mg(t)x(c(t)) <0

() +M P2 Lqmz( Lo <0 (®)
P2 Py
by lemma (1) in [10] follow that
-1
liminf 2(z " (a(1)) <
tow© Z(t)
Lemma 2
Assume that

qt)=0,0(t) <z(t),p, 2 pt)= p,>1 for t>t,
if X(t)is an eventually positive
solution of equation (1) then
oMz (1) 0P
J'q(s) ds < _ HirF2
t M (pl _1)

for sufficiently large t.

Proof We have X(t) >0 and q(t) >0,
then Zz'(t)<0,and z(t)>0,
integrating (6) from t to o *(z(t)) we
obtain

(7)

if we

2o ) - 2(t) + M L2 -17 (f(t
P1P2 t

A(s)2(z (o (s)) ds <0

oz (1)

2671z (M) - 2(t) + M ‘;1 2(t) jq(s)dsso

1P2

o“rt

200 ) + (M 2= Iq(s) ds—1) z(t) <0
P1P2

then
D, o (z(1)
M L J'q(s) ds-1<0
1M2 t
(7) follow directly from the last inequality.

Oscillation Results

In this section, get integral conditions
for the oscillation of all solutions of
equation (1). Consider the case =1.
Theoreml Assume
q(t) >0,0(t) <z(t), p, = p(t) = p, >1,

o e )
eM (p —1) jq(s)ds]dtz
P1P2

that

I q(t) In[—————= @),

and (4) holds, then every solution of (1) is
oscillatory.

Proof For the sake of contradiction we
may suppose that X(t) is an eventually
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positive solution of equation (1) then
z(t) >0 and z'(t) <0 fort>t,, from
(6) we get

-1

7'()+M 22 q() 2(c 2o (b)) < 0
2Py

using the integral identity
1Z(s)

in (6) we obtain

2(t) = z(t) e * "

Z (t) ) Z(S)
q(t)e (o) (9)
20 pz P,
er
Applying the inequality €” > X+-——= ( )
for X>O and r>0 to the Iast
inequality we get
_Z® . M(p -1 «© eumﬁﬂ (j (‘))}Zé? 4
) pp,
MY O | O gy
) PPy A Ll 209) s:+In(cAm)]
where
M(p. —1) ° G®
) = M- Tats) ds
1M2 t

it follows that
Z (t) (2 (1) (2 (1)

RICER) i —%dwqmln(w Ja) &
NGO P

for T<t<u,T <z (o(u)) we have

j j "=20 45y st - EM(pl

0 n* jq(s) dsydt  (10)

J J e Z“’)dsdt>]q<t)ln<

from the increasing of order of integrating
we can conclude that

f I q(t)(f@) ds dt > (t)(fﬁ) dt ds

(o) T s z(s)

o) o7z (s)

o () o (z(1)
= [ (s)(f—(t)) ds dt

T t ()
use the Iast inequality in (10) we obtam
[ _zoc eM (p, ~ )" ¢
| _ﬁ( ! (S)dS)dt>J.q(t)|n(7 Iq(s)ds)dt

[NCIO)

using lemma 2 we have
( oMz ()

PP, @)
dt > t) In(————= s) ds)dt
oy 1 jq() & o Iq() )
or
2 W) | M(p, - 1)Iq(t),n(e (0:=D " sy asan
2(u) PP, PP, t

487

according to (8 we must have

i 2 (o)
2()

which contradict

t—w

lemma 1.

Examplel
[x(t) + (a+cos(t))x(t — 7)]’ + (L —a) + 2 cos(t))x(t —3?”) =0, t>0,

such that a>1, a sample verification
yields that the conditions of theorem 1 are
met. Hence all solutions of above equation

oscillate for instance X(t) =cos(t)is
such solution.
Theorem?2 Assume that

q(t)>20,0(t) <7(t),0< p, < pt)<p; <1
and there exists K > 0 such that

1 t

=< [q(s)ds<k
o)

then every solution of equation (1)
oscillatory.

Proof Suppose that equation (1) has an
eventually positive solution X(t), then

from (9)

Z (t)
Z(t)

(€Y

_Z'(s) d

Lowe oo
Pz P,

let B(t) =exp(e jq(s) ds) from (11)

(o (1)
we conclude that K, > B(t) > € for some
ki, >0,t>t; and we claim that (11)

implies that !Eﬂ Iq(S) ds = o, otherwise
to

Iiqu(s) ds < oo,

t—ow

So we can choose t; =1;large enough

< 1
such that jq(S) ds < o which contradict

4

(11) then

B j —@d)
20 gy MU= gy o0
z(t) P.P,
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using the inequality er 21+12, x>0,r>1
r

the last inequality will be

2O gy > MY gy gy 1
z(t) p.pP

70 gy M-
2(0) p

_7'(9)
z(s)

B(t) |
B*(t) - J

1F2 o)

_Z'(s)
2(s)

an O+ | ds)

12 o (1)

for T<t<u,T <z '(o(u)) we get

[-20 80 o - M(pl l’Jq() [ -

2(5) 4o g s MP-D M(pl
(t) Ha(t)

2(s)

by interchange the order of the integrating
we have

ﬁ%) B(t) dt—

M (P1 7 J'u»— 7()° ()
2(t)

t
e [as)ds)
B(ty=e © (O

(0]
(e ]aq(s)ds)

B(o}(z(t))) =e B(t)<k, and B(ol(z(t)>e
so the last inequality lead to

but then

o[-0 M T
1
T Z(t) plpZ T

20,4, MG D

Dt
0 j q(t) B(t) dt

eM (p1 _1)
PP,

20 )
Z(t) '[

where k, <

eM(p, -1) 7
T

2 gy M D
0 DE 190

12

u
then I
(o (u)

IRAONTS jq(t) dt  as
2 (o (1) _
Z(t)

t—>o00 we get lim

t—o0

which is contradict lemma 1.
Example 2 Consider the equation
[x(t)+%(1+Sin2(t))x(t—2n)]’+g(l+sin2(t))x(t—57”):O, t>0,

which satisfies all conditions of theorem
2, therefore  each solution of above
equation oscillate for example

X(t) = sin(t) is an oscillatory solution.
Theorem 3 Suppose that

ds)

Dy j q(t) B(t) dt

Ja(s) ds dt > M-‘iq(t) B(t) dt
PP, 1

488

qt)<0,p; = pt) = py, >Lz o) >t limzr o) = for t=t,
t—oo

and
_17 Mo
fiminf M2 lg(s) ds > 12).
t—o0 P1P2 t €

Then every solution of equation (1) is
oscillatory.

Proof For the sake of contradiction we
may suppose that X(t) is an eventually
positive solution of equation (1) then
z'(t) >0 and z(t) > 0 and we have

z(t) = x(t) + p(t)x(z(t)

p()x(z(t)) = z(t) — x(t)

(1 () = x(z () + p(z " (D)x(t)

z(r (1) 2 p(z " ()X(t) = p,x(1)

on the other hand we have

P, x(z (1)) = z(t) - x(t)

P, P, X(z (1)) = pyz(t) — pyX(t) = pyz(t) —z(t)

P, P X(z (1)) = pyz(t) — z(t)
P, p2X(T(t)) 2 Z(t)(pl -1
then we get
X(r(t) = 2=

1M2

from (1) we can get

, f(x(a(t))
t

2'() =—qt)— — - X(o(D)

but we have the condition

Loy or xo)sPt

1M2

Z(T’1 (o)

X(a (1)

T > m it
-
we applying it in last equation
TEON 3 (1) = -M qO)x(ott
—q(t) X(o(D) (o(t)) q(t)x(o(t))
then
Z'(t) = -M q®)x(co (1))

2(t) = M [q(0)] x(o() = M El—;l\q(t)\ 2 (0(1)

2()-M 2] 2 e 2 0
P. P,

Which is contradict lemma 1.3.2 in [14].
Example 3 Consider the neutral equation
[X(t) + (3— Coz(t))x(t 737”)]' +(cos(2t) — A)x(t — 57”) -0, t>0,

all that the conditions of theorem 3 are
satisfied, hence each solutions of the above
equation oscillate for example

X(t) = cos(2t) is an oscillatory solution.
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Theorem 4 Assume that

qt) <00 pt) < p<Lrz(t)<t,f
IS an increasing function and

fla(s)| ds = (13)

to

then all bounded solutions of equation (1)
are oscillatory.

Proof We suppose that X(t) is bounded
and positive solution of equation (1) for
t>1, which implies to
z'(t)>0,z(t) >0 that means z(t)is
bounded increasing function and we have
z(t) = x(t)and z(z(t)) = x(z(t)) but
Z is increasing then z(z(t)) < z(t) and
we have too,

z(t) = x(t) + p(t) x(z(t)) < x(t) + p x(z(t))
2(z(t)) < z(t) < x(t) + p x(z (1)) < x(t) + p z(z (1))
2(z(t)) < x(t) + p z(z(t))

2(z(t)) - p z(z(1) < x(1)

1-p) z2(z(a(®))) < x(a (1))

"+ T increasing we can get
f(A-p)z(z(o(t))) < f (x(a(1))
—q(t) f(A-p)z(z(c®)))) <-q(t) f(x(c(1)))

then from equation (1) and the last
inequality we obtain

Z(t)+q®) f(A-p)z(z(a(1))) =0

by integrating this inequality from t; to t
z(t) - z(t,) +jQ(S) f(A-p)z(z(o(s))) ds >0
which impI;oes to

2(t) - z(t,) + (- p)Z(T(U(to))))jQ(S) ds >0

then if t —> o0 we get contradiction.
Example 4 Consider the neutral equation
[x(t) +%(2 +cos(t))x(t — 27)] +%(—3—cos(t))x(t —-27)=0, t>0,
all that the conditions of theorem 3 are

satisfied, hence each solutions of the above
equation oscillate for example

X(t) = cos(t) is an oscillatory solution.
Theorem 5 Assume that
qt) >0, p(t) >0,z(t) <t, f isan

489

increasing function and

[a(s) ds =0 (13)

to

then all bounded solutions of equation (1)
are oscillatory.

Proof Suppose that X(t) is an eventually
positive solution of equation (1) then

z'(t)<0,z>0 fort >t, and by (1) we
have

z'(t) =—q(t) f(x(a())
by integrating this equation from t; to
t we get

2(t) - 2(t,) = = [ a(s) f (X(a(s))) ds < —F (X(or(t,))) [ l(s) s

2(t) - 2(t,) < ~ f (x(o¢,))) [ a(s) ds
as t—>00 we can get !im z(t) = —o0
—0

which is contradiction since z(t) > 0.

Example 5 Consider the neutral equation
[x(t) + (6 — cos(t))x(t — 7)]’ + (5+ 2cos(t))x(t —37”) =0, t>0,

all that the conditions of theorem 3 are
satisfied, hence each solutions of the above
equation oscillate for example

X(t) = cos(t) is an oscillatory solution.
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