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Introduction 

Peristaltic pumping is a special type of 

pumping when it is simple to transport a variety of 

complex rheological fluids from one location to 

another. This pumping principle is referred to as 

peristaltic 1. Some examples of such physiological 

processes are the passage of food, chyme, and urine. 

Peristalsis is the driving force behind everything 

from worm movement to the transfer of noxious and 

clean fluids to the operation of finger pumps and the 

heart-lung machine. Damping, dispensability, and 

tension in the vasculature play a critical part in 

physiological processes involving peristalsis, such as 

blood flow 2. Studies of peristalsis were first 

introduced 3, 4. Since then, researchers have made 

numerous attempts to dissect the peristaltic 

movement of fluids and its implications in the 

medical and business worlds. In biological systems 

and industrial fluid transport, heat transfer is a 

fundamental principle. One of the most essential 

roles of the cardiovascular system is maintaining the 

body's temperature. Air that enters the lungs must 

also be tempered to the body's temperature. This is 

accomplished through the use of all blood vessels. 

There are three methods of heat transmission; 
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however, convection is the most relevant for fluid 

circulation in the human body. Human and animal 

bodies use convection heat transfer to release heat 

generated by metabolic processes into the 

environment 1. In recent years, the effects of 

changing viscosity, heat transfer, and mass transfer 

on magnetohydrodynamic (MHD) peristaltic flow in 

an asymmetric tapering inclined channel with porous 

material were Examined 5. A hybrid nanoflow of 

Casson fluid was addressed. The theoretical 

formulation is derived by considering spherical and, 

as well as, platelet shape nanoparticles. Electro- 

osmotic flow (EOF) through an asymmetric channel 

endures the simultaneous effects of 

Joule heating, viscous dissipation and magnetic 

fields 6. 

 For a high magnetic field like in MHD 

flows, hall current has significant effects. This 

phenomenon is widely used in a variety of fields, 

including the design of power generators, Hall 

accelerators, refrigeration coils, electric 

transformers, and spacecraft propulsion systems. The 

peristaltic transport in the presence of Hall current 

has been the subject of several published works. The 

effect of Hall current, viscosity variation, and porous 

medium on the peristaltic transport of viscoelastic 

fluid through irregular microchannels was studied 6. 

The effect of magnetohydrodynamic (MHD) on a 

viscous fluid generalized burgers' fluid with a 

gradient constant pressure and an exponentially 

accelerating plate, where the no-slip hypothesis 

between the burgers' fluid and the exponential plate 

is no longer applicable, were studied 7. 

Since Abdulhadi 8, and Sadaf 9 examined the 

mechanism of peristaltic transport, it has attracted the 

interest of numerous researchers. Viscous liquids are 

less prevalent in industrial and physiological 

processes than non-Newtonian fluids. Shampoo, 

ketchup, lubricants, paints, and blood are all 

examples of non-Newtonian substances found in 

nature. Among that, Sutterby liquid 10 is one of the 

materials that characterize ionic high polymer 

solutions. Convection and Hall current were used to 

simulate the MHD peristaltic transport of a Sutterby 

nanofluid 11. Waveform motion of non-Newtonian 

fluids through porous channels is discussed 12, 13, 

where the effects of rotation and an inclined MHD 

are considered. Magnetohydrodynamic (MHD) for 

Williamson fluid with variable temperatures and 

variable concentrations in a slanted channel with 

variable viscosity has been investigated 14. The 

effects of radiation and convection in a Sutterby fluid 

are discussed 15. In Ramesh 16, electroosmotic 

peristaltic transport of Sutterby nanofluids is 

investigated. The peristaltic flow of a Sutterby liquid 

in an inclined channel was investigated 17.  

In this paper, the study will look at the effects of 

rotation on heat transfer for peristaltic transport in an 

inclined asymmetric channel with a porous medium. 

This will be done by using different values of the 

parameters of rotation, amplitude wave, and channel 

taper, as well as different values of the Grashof 

number, the Hartmann number, the Reynold number, 

the Froude number, the Hall parameter, the Darcy 

number, the magnetic field, the Sutterby fluid 

parameter, and heat transfer analysis, based on the 

changes in stream function and pressure gradient. 

 

Materials and Methods 

A mathematical formulation for asymmetric flow 

Consider the peristaltic transport of an 

incompressible Sutterby fluid through a two-

dimensional asymmetric conduit that has a width of 

(𝑑′ + 𝑑). whereas motion is constant within a 

coordinate system pumped at wave speed (c) in the 

wave framer (𝑋̅,  𝑌̅) as shown in 
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Figure 1.  

The geometry of a wall's structure is described as:  

ℎ1
̅̅ ̅(𝑋̅, 𝑡̅) = 𝑑 −  𝑎1 sin [

2𝜋

𝜆
(𝑥̅ − 𝑐𝑡̅)].  1 

ℎ2
̅̅ ̅(𝑋̅, 𝑡̅) = −𝑑′ − 𝑎2 sin [

2𝜋

𝜆
(𝑥̅ − 𝑐𝑡̅) + 𝜙].  2 

In which  ℎ1
̅̅ ̅(𝑋̅, 𝑡̅), ℎ2

̅̅ ̅(𝑋̅, 𝑡̅) are the upper and lower 

wall respectively, (𝑑, 𝑑′) indicates the channel 

width, (𝑎1, 𝑎2) are the wave's amplitudes, (𝜆) 

represents the wavelength, (𝑐) is the speed of a wave, 

(𝜙) varies in the range (0 ≤ 𝜙 ≤ 𝜋), when the value 

of 𝜙 = 0 the channel is symmetric with waves out of 

phase and 𝜙 = 𝜋 waves are in phase the rectangular 

coordinates has been designed in such a method that 

𝑋̅ − 𝑎𝑥𝑖𝑠 is along the path that waves use for 

propagation and 𝑌̅ − 𝑎𝑥𝑖𝑠 perpendicular to 𝑋̅, 𝑡̅  

represents the time. 

Further 𝑎1, 𝑎2, 𝑑, 𝑑′  and 𝜙 satisfy the following 

condition  

𝑎1
2 + 𝑎2

2 + 2a1a2 cos 𝜙 ≤ (𝑑 + 𝑑′)2 .                     3 

Figure 1. An inclined asymmetric channel 

coordinates in the Cartesian and Dimensional 

Systems with porous medium 

Basic equation 

The additional stress tensor for the Sutterby model is 

determined by 19 16: 

 S̅ =
μ

2
[

sinh−1(nγ̇)

nγ̇
]

𝑚∗

A1                               4 

 γ̇ = √
1

2
tras(A1)2                                       5 

 A1 = ∇V̅ + (∇V̅)T                                      6 

Where 𝑆̅ denotes the stress of the extra tensor, n, and 

𝑚∗ represents the material constants of the Sutterby 

fluid, 𝛻 = (𝜕𝑋̅, 𝜕𝑌̅, 0) is the gradient vector, 𝜇 

represents the dynamic viscosity and A1 represents 

the first Rivilin–Ericksen tensor. The phrase sinh−1  

is approximately equivalent to 

sinh−1 (
γ̇

𝑛
) =

γ̇

n
−

γ̇3

6n3                         7 

The constituents of the extra stress tensor of Sutterby 

defined by Eq                               4 are listed below: 

𝑆𝑋̅̅𝑋̅ =
𝜇

2
[1 −

𝑚𝑛2

6
(2𝑈̅𝑋̅

2
+ (𝑉̅𝑋̅ + 𝑈̅𝑌̅)2 +

2𝑉̅𝑌
2

)]2𝑈̅𝑋̅                                                        8 

𝑆𝑋̅̅𝑌̅ =
𝜇

2
[1 −

𝑚𝑛2

6
(2𝑈̅𝑋̅

2
+ (𝑉̅𝑋̅ + 𝑈̅𝑌̅)2 +

2𝑉̅𝑌
2

)] (𝑈̅𝑋̅ +  𝑉̅𝑌̅).                                           9 

𝑆̅
𝑌̅𝑌̅ =

𝜇

2
[1 −

𝑚𝑛2

6
(2𝑈̅𝑋̅

2
+ (𝑉̅𝑋̅ + 𝑈̅𝑌̅)2 +

2𝑉̅𝑌
2

)] 2𝑉̅𝑌̅                                                     10 
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The governing equation 

The flow is controlled by three coupled nonlinear 

partial differentials of continuity, momentum, and 

energy, the governing equations in frame (𝑋̅,  𝑌̅) can 

be written as follows:  

 
𝜕𝑈̅

𝜕𝑋̅
+

𝜕𝑉̅

𝜕𝑌̅
= 0                                                  11 

𝜌 (
𝜕𝑈̅

𝜕𝑡̅
+ 𝑈̅

𝜕𝑈̅

𝜕𝑋̅
+ 𝑉̅

𝜕𝑈̅

𝜕𝑌̅
) − 𝜌Ω (Ω𝑈̅  + 2

𝜕𝑉̅

𝜕𝑡̅
) =

 −
𝜕𝑃̅

𝜕𝑋̅
+

𝜕𝑆̅𝑋̅𝑋̅

𝜕𝑋̅
+

𝜕𝑆̅𝑋̅𝑌̅

𝜕𝑌̅
−

𝜎𝐵0
2  

(1+𝑚2)
(𝑈̅ −

𝑚𝑉̅)+g𝜌𝛽𝑇(𝑇 − 𝑇0) −
𝜇

𝑘0
𝑈 + 𝜌𝑔 sin 𝛼.        12 

 𝜌 (
𝜕𝑉̅

𝜕𝑡̅
+ 𝑈̅

𝜕𝑉̅

𝜕𝑋̅
+ 𝑉̅

𝜕𝑉̅

𝜕𝑌̅
) − 𝜌Ω (Ω𝑉̅ − 2

𝜕𝑈̅

𝜕𝑡̅
) =

 −
𝜕𝑃̅

𝜕𝑌̅
+

𝜕𝑆̅𝑋̅𝑌̅

𝜕𝑋̅
+

𝜕𝑆̅𝑌̅𝑌̅

𝜕𝑌̅
−

𝜎𝐵0
2  

(1+𝑚2)
(𝑉̅ + 𝑚𝑈̅) −

𝜇

𝑘0
𝑉̅ + 

𝜌𝑔 cos 𝛼.                                                        13 

  𝜌𝐶𝑃 (
𝜕

𝜕𝑡̅
+ 𝑈̅

𝜕

𝜕𝑋̅
+ 𝑉̅

𝜕

𝜕𝑌̅
) 𝑇̅ = 𝑘 (

𝜕2

𝜕𝑡̅2
+

𝜕2

𝜕𝑋̅2 +

𝜕2

𝜕𝑌̅2) 𝑇̅ + 𝜑0                                                     14 

Where 𝜌 is the fluid density, (𝑈̅,  𝑉̅) the velocity 

components, 𝑃̅ represents the hydrodynamic 

pressure, 𝑆𝑋̅̅𝑋̅ , 𝑆𝑋̅̅𝑌̅, and  𝑆̅
𝑌̅𝑌̅ are the constituents of 

the extra stress tensor 𝑆̅. 𝜎  is the electrical 

conductivity, 𝜑0 is the steady heat 

addition/absorption, 𝐵0 is an applied magnetic field, 

𝛽𝑇 is the thermal expansion coefficient, g is the 

gravitational acceleration and Ω represents the 

rotation. The specific heat is denoted by 𝐶𝑃, 𝛼 is the 

channel's angle of inclination with respect to the 

horizontal axis, 𝑘0 material constant, the thermal 

conductivity by 𝑘, and the temperature by 𝑇̅. 

Peristaltic movement in reality is an unstable 

behavior, but it can be considered to be steady via 

The change from the experimental frame (fixed 

frame) (𝑋̅,  𝑌̅)  to the wave frame (move frame) 

(𝑥̅, 𝑦̅). The following transformations establish the 

link between coordinates, velocities, and pressure in 

laboratory frame (𝑋̅,  𝑌̅)  to wave frame (𝑥̅, 𝑦̅): 

 𝑋̅ = 𝑥̅ − 𝑐𝑡̅  , 𝑌̅ = 𝑦 ̅  , 𝑈̅ = 𝑢̅ − 𝑐 , 𝑉̅ =

v  ,  𝑃̅(𝑥̅, 𝑦̅) = 𝑝̅(𝑋̅, 𝑌̅, 𝑡̅)                                     15 

Where 𝑢̅ and 𝑣̅ represent the components of 

velocity, and 𝑝̅  denotes the pressure in the wave 

frame. Now, Eqs                                     15 will be 

substituted into Eqs.  1,.  2 

and                                                   11-Error! 

Reference source not found. and then normalize the 

equation that is produced by doing so by utilizing the 

non-dimensional quantities that are listed below: 

 𝑥 =
1

𝜆
𝑥̅, 𝑦 =

1

𝑑
𝑦̅, 𝑢 =

1

𝑐
𝑢̅, 𝑣 =

1

𝑐
𝑣̅, 𝑝 =

𝑑2

𝜆 𝜇 𝑐
𝑝̅, 

𝑡 =
𝑐

𝜆
𝑡̅, ℎ1 =

1

𝑑
ℎ1
̅̅ ̅, ℎ2 =

1

𝑑
ℎ2
̅̅ ̅, 𝛿 =

𝑑

𝜆
, 𝑅𝑒 =

𝜌 𝑐 𝑑

𝜇
, 

𝑇̅ = 𝑇 − 𝑇0,  𝜃 =
𝑇−𝑇0

𝑇1−𝑇0
, 𝑆𝑖𝑗 =

𝑑

𝜇 𝑐
𝑆̅

𝐼 ̅𝐽̅, 𝐺𝑟 =

𝑔𝛽𝑇(𝑇−𝑇0)𝑑2

𝜇𝑐
, 𝑃𝑟 =

𝜇𝑐𝑝

𝑘
, Fr=

𝑐2

𝑔𝑑
, 𝐷𝑎 =

𝑘0

𝑑2.          16 

Where, (𝛿) represents the wave number, 
(ℎ1) and (ℎ2) are the nondimensional upper and 

lower wall surface respectively, (Re) represents the 

Reynolds number, (Pr) represents the Prandtl 

number, (Gr) represents the Grashof number, (Fr) 

represents the Froude number, (M) represents the 

Hartman number, (Da) represents Darcy number, 

(Φ) represents the face difference,(A) represents the 

parameter of Sutterby liquid, and (𝑇0) and (𝑇1)  are 

the wall temperatures at the top and bottom, 

respectively. Then, in view of Eqs.16, .  

1,.  2, and                                                        8 14  

take the form: 

ℎ1(𝑥)  =  1 + 𝑎 𝑠𝑖𝑛 𝑥.                                    17    

ℎ2(𝑥) = −𝑑1 − 𝑏  𝑠𝑖𝑛 (𝑥 + 𝜙).                    18          

𝛿
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0. 19 

 𝑅𝑒 (𝛿
𝜕𝑢

𝜕𝑡
+ 𝛿𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) −

𝜌𝑑2

𝜇
𝛺 (𝛺𝑢 +

2𝛿
𝜕𝑣

𝜕𝑡
) =  −

𝜕𝑝

𝜕𝑥
+ 𝛿

𝜕𝑠𝑥𝑥

𝜕𝑥
+

𝜕𝑆̅𝑥𝑦

𝜕𝑦
−

𝜎𝐵0
2  

(1+𝑚2)
(𝑢 −

𝑚𝑣) +  𝐺𝑟 𝜃 −
1

𝐷𝑎
𝑢 +

𝑅𝑒

𝐹𝑟
sin 𝛼. 20 

𝑅𝑒𝛿 (𝛿
𝜕𝑣

𝜕𝑡
+ 𝛿𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) − 𝑅𝑒

𝑑

𝑐
𝛺 (−𝛺𝛿2𝑣 −

2𝛿2 𝜕𝑢

𝜕𝑡
) =  −

𝜕𝑝

𝜕𝑦
+ 𝛿2 𝜕𝑠𝑥𝑦

𝜕𝑥
+ 𝛿

𝜕𝑠𝑦𝑦

𝜕𝑦
−

𝜎𝐵0
2  

(1+𝑚2)

𝑑2

𝜇
𝛿(𝑣 + 𝑚𝑢) −

1

𝐷𝑎
𝑣 +

𝑅𝑒

𝐹𝑟
cos 𝛼. 21 

𝑅𝑒𝑃𝑟𝛿 (
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
) 𝜃 = (𝛿2 𝑐2𝜕2

𝜕𝑡2 +

𝛿2 𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2) 𝜃 + 𝐵. 22 

Introduction to fluid flow (𝜓) through a relationship:  

𝑢 = 𝜓𝑦 , 𝑣 = −𝛿𝜓𝑥 . 23 
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Substituted Eqs 23 in Eq 𝛿
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0. 19 to 

Eq. 22 respectively, 

𝛿
𝜕𝜓𝑦

𝜕𝑥
− 𝛿

𝜕𝜓𝑥

𝜕𝑦
= 0. 24 

𝑅𝑒 (𝛿
𝜕𝜓𝑦

𝜕𝑡
+ 𝛿𝜓𝑦

𝜕𝜓𝑦

𝜕𝑥
− 𝛿𝜓𝑥

𝜕𝜓𝑦

𝜕𝑦
) −

𝜌d2

𝜇
𝛺 (𝛺𝜓𝑦  + 2𝛿

𝜕𝜓𝑥

𝜕𝑡
) =  −

𝜕𝑝

𝜕𝑥
+ 𝛿

𝜕𝑠𝑥𝑥

𝜕𝑥
+

𝜕𝑠𝑥𝑦

𝜕𝑦
−

𝜎𝐵0
2  

(1+𝑚2)
(𝜓𝑦 + 𝑚𝛿𝜓𝑥) +  Gr 𝜃 −

1

𝐷𝑎
𝜓𝑦 +

𝑅𝑒

𝐹𝑟
sin 𝛼. 25 

𝑅𝑒𝛿 (𝛿
𝜕𝑣

𝜕𝑡
+ 𝛿𝜓𝑦

𝜕𝑣

𝜕𝑥
+ 𝛿2𝜓𝑥

𝜕𝜓𝑥

𝜕𝑦
) +

𝑅𝑒
𝑑

𝑐
𝛺 (𝛺𝛿𝜓𝑥 − 2𝛿2 𝜕𝜓𝑦

𝜕𝑡
) =  −

𝜕𝑝

𝜕𝑦
+ 𝛿2 𝜕𝑠𝑥𝑦

𝜕𝑥
+

𝛿
𝜕𝑠𝑦𝑦

𝜕𝑦
+

𝜎𝐵0
2  

(1+𝑚2)

𝑑2

𝜇
𝛿2(𝜓𝑥 + 𝑚𝜓𝑦) −

1

𝐷𝑎
𝛿𝜓𝑥 +

𝑅𝑒

𝐹𝑟
cos 𝛼. 26 

 𝑅𝑒𝑃𝑟𝛿 (
𝜕

𝜕𝑡
+ 𝜓𝑦

𝜕

𝜕𝑥
− 𝛿𝜓𝑥

𝜕

𝜕𝑦
) 𝜃 =

(𝛿2 𝑐2𝜕2

𝜕𝑡2 + 𝛿2 𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2) 𝜃 + 𝐵. 27 

When (Re and 𝛿 <<1), the Eqs. from 

. 25-

. 27 become in the form : 

 

−
𝜌d2

𝜇
𝛺2𝜓𝑦 = −

𝜕𝑝

𝜕𝑥
+

𝜕𝑠𝑥𝑦

𝜕𝑦
−

𝑀2 

(1+𝑚2)
𝜓𝑦 +

 𝐺𝑟 𝜃 −
1

𝐷𝑎
𝜓𝑦 +

𝑅𝑒

𝐹𝑟
sin 𝛼. 28  

  −
𝜕𝑝

𝜕𝑦
= 0. 29 

𝜕2𝜃

𝜕𝑦2 + B = 0. 30 

While an additional stress tensor component takes 

the following form: 

  𝑠𝑥𝑦 =
𝜕2𝜓

2𝜕𝑦2 − 𝐴 (
𝜕2𝜓

𝜕𝑦2)
3

, 𝑠𝑥𝑥 = 0, 𝑠𝑦𝑦 = 0. 31 

Where 𝑀 = √
𝜎  

μ
𝐵0𝑑 the Hartman number, 𝐴 =

𝒎𝒃𝟐𝒄𝟐

𝟔𝒅𝟐  the Sutterby liquid parameter and B =
𝑑2𝜃

𝑘(𝑇1−𝑇0)
 

the constant heat radiation 

If 

Eq=0.
 31 is substituted into 

Eq. 28 and the derivative with respect to y is taken, 

the following equation is obtained: 

 
𝜕4𝜓

𝜕𝑦4 [1 − 3𝐴 (
𝜕2𝜓

𝜕𝑦2)
2

] − 6𝐴
𝜕2𝜓

𝜕𝑦2 (
𝜕3𝜓

𝜕𝑦3)
2

+

2(
𝜌d2

𝜇
Ω2 −

𝑀2

𝑚2+1
−

1

𝐷𝑎
)

𝜕2𝜓

𝜕𝑦2 + 2𝐺𝑟
𝜕𝜃

𝜕𝑦
+

𝑅𝑒

𝐹𝑟
sin 𝛼 =

0. 32 

 
𝜕2𝜃

𝜕𝑦2 + 𝐵 = 0. 33 

In wave frames, the dimensionless boundary 

conditions are: 

 𝜓 =
𝐹

2
 ,

𝜕𝜓

𝜕𝑦
= −1    𝑎𝑡 𝑦 = ℎ1. 34 

 𝜓 =
−𝐹

2
 ,

𝜕𝜓

𝜕𝑦
= −1    𝑎𝑡 𝑦 = ℎ2. 35 

 𝜃 = 0  𝑎𝑡 𝑦 = ℎ1 , 𝜃 = 1   𝑎𝑡 𝑦 = ℎ2. 36 

Where F is just the flow rate, which is dimensionless 

in time in the frame of the wave. It is associated with 

the form that has no dimensions' temporal flow rate 

Q1 in the experimental frame via the expression: 

 𝑄1 = 𝐹 + 1 + 𝑑. 37 

as 𝑎, 𝑏, Ф and d achieve Eq .                     3: 

 𝑎2 + 𝑏2 + 2𝑎𝑏𝑐𝑜𝑠(Φ) ≤ (1 + 𝑑1)2. 38 

Initially, the nonlinear equation 

Eq.

 

33 is solved by integrating and substituting the 

boundary conditions 

Eq..

 

36, and then the solution to Eq.37 is obtained: 

𝜃 = −
−2h1+h1

2h2𝐵−h1h2
2𝐵

2(ℎ1−h2)
−

(2−h1
2𝐵+h2

2𝐵)𝑦

2(h1−h2)
−

𝐵𝑦2

2
. 39 

By differentiating 

Eq. 39 with respect to y and substituting it into Eq.

 32, now obtaining the following nonlinear 

equation: 

 
𝜕4𝜓

𝜕𝑦4 [1 − 3𝐴 (
𝜕2𝜓

𝜕𝑦2)
2

] − 6𝐴
𝜕2𝜓

𝜕𝑦2 (
𝜕3𝜓

𝜕𝑦3)
2

+

2(
𝜌d2

𝜇
Ω2 −

𝑀2

𝑚2+1
−

1

𝐷𝑎
)

𝜕2𝜓

𝜕𝑦2 +

2𝐺𝑟(−
(2−h1

2𝐵+h2
2𝐵)

2(h1−h2)
−   By) = 0 . 40 
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Solution of the problem 

It is not possible to that construct a solution 

in closed form for each and every one of the arbitrary 

parameters involved in Equation Eq 

. 40, as it is highly non-linear and convoluted. 

Therefore, the perturbation approach is used to get 

the answer. The solution was expanded to include 

perturbation: 18 

 𝜓 = 𝜓
0

+ 𝐴𝜓
1

+ 𝑜(𝐴2). 41 

And by substituting 

Eq.

 36 into 

Eqs.

 28- 

. 33, along with the boundary conditions Eq 

. 34 and Eq 

. 35 and equating the coefficients of similar powers 

of A, The following system of equations is obtained: 

1. Zeroth order system 

When such terms of order (A) in a zero-order system 

are negligible, the result is 

𝜓0𝑦𝑦𝑦𝑦 + 𝜁𝜓0𝑦𝑦 − 𝛾𝑦 + 𝜂 = 0. 42 

Where 𝜁 = 2(
𝜌𝑑2

𝜇
Ω2 −

1

𝐷𝑎
−

𝑀2

𝑚2+1
). 

           𝛾 = 2𝐺𝑟𝐵. 

And 𝜂 = 𝐺𝑟[𝐵(ℎ1 + ℎ2) −
2

ℎ1−ℎ2
]. 

Such that 

 𝜓0 =
F0

2
 ,

𝜕𝜓0

𝜕𝑦
= −1     𝑎𝑡   𝑦 = ℎ1. 43 

and  

 𝜓0 =
−𝐹0

2
 ,

𝜕𝜓0

𝜕𝑦
= −1     𝑎𝑡   𝑦 = ℎ2. 44  

2. First order system 

 𝜓1𝑦𝑦𝑦𝑦 + 𝜁𝜓1𝑦𝑦 = 3𝜓0𝑦𝑦𝑦𝑦(𝜓0𝑦𝑦)
2

+

6𝜓0𝑦𝑦(𝜓0𝑦𝑦𝑦)
2
. 45 

  𝜓1 =
F1

2
 ,

𝜕𝜓1

𝜕𝑦
= 0     𝑎𝑡   𝑦 = ℎ1. 46 

and  

 𝜓1 =
−F1

2
 ,

𝜕𝜓1

𝜕𝑦
= 0     𝑎𝑡   𝑦 = ℎ2. 47 

Solving the relevant zeroth-order and first-order 

systems yields the final stream function equation. 

 𝜓 = 𝜓0 + A𝜓1. 48 

Results and Discussion 

This section consists of two subsections. 

Using Mathematica, the stream function is depicted 

in the first and the pressure gradient is presented in 

the second. 

1. Trapping Phenomena 

Trapping is another fascinating phenomenon 

of peristaltic motion. Essentially, it is the production 

of an internally circulating fluid bolus by means of a 

closed streamline. This captured bolus propelled the 

head along peristaltic waves. in Figs (a)                                                    

(b)                                                    (c) 

Figure 2Error! Reference source not found. 

Describes the effect of the parameters 

𝛺, 𝑀, 𝐺𝑟, 𝐵, 𝐷𝑎, 𝑚, 𝐴, 𝜙, 𝑎𝑛𝑑 𝛼 on stream function. 

As for Fig (a)                                                    (b)                                                    

(c) 

Figure 2, the trapped bolus size close to the 

upper wall increases but the trapped bolus size close 

to the lower wall decreases with an increase in the 

rotation (Ω). While Fig Error! Reference source 

not found. illustrates that the trapped bolus size 

close to the upper wall increases but the trapped 

bolus size close to the lower wall decreases with 

increasing the Hartmann number (M). With 

increasing the Thermal Grashof number (Gr), the 

size of the trapped bolus close to the lower wall 

decreases while the trapped bolus close to the upper 

wall doesn't change in Fig Error! Reference source 

not found.. In Fig Error! Reference source not 

found. the sizes of trapped boluses close to the upper 

and the lower wall decrease with increasing the 

constant heat radiation (B).Error! Reference source 

not found. shows that as the Darcy number (Da) 

goes up, the trapped bolus size close to the upper wall 

rises slightly but the trapped bolus size close to the 
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lower wall reduces slightly. Error! Reference 

source not found. illustrates a rise in the size of the 

trapped bolus close to the upper wall and goes down 

in the size of the trapped bolus close to the lower wall 

of a channel with increasing Hall parameter (m). The 

trapped bolus size close to the upper wall increases 

while the trapped bolus size close to the lower wall 

decreases with the increase of the fluid parameter (A) 

that is in FigError! Reference source not 

found..While in Error! Reference source not 

found., the trapped bolus size close to the upper wall 

decreasing but the trapped bolus size close to the 

lower wall increasing with the increase of the 

wavelength (𝜙). 

2. Pressure gradient 𝐝𝐩/𝐝𝐱: 

Graphically, the influence that relevant 

parameters 𝛺, 𝑀, 𝐺𝑟, 𝐵, 𝑅𝑒, 𝐹𝑟, 𝐷𝑎, 𝑚, 𝐴, 𝜙 𝑎𝑛𝑑 𝛼  

have on the pressure gradient 𝑑𝑝/𝑑𝑥 can be seen in 

Error! Reference source not found.-Figure 10. As 

seen in Error! Reference source not found., 

increasing the rotation (Ω) results in an increasing 

pressure gradient. Figure 3 illustrates how increasing 

values of the Hartmann number (M) are associated 

with a diminishing pressure gradient. Increasing the 

thermal Grashof number (Gr) increases the pressure 

gradient in the left edge of the channel, but has no 

effect in the central region toward the right side of 

the channel wall, as depicted in Error! Reference 

source not found.. Figure 4 shows that as the 

constant heat radiation (B) goes up, the pressure 

gradient goes up toward the right edge of the channel 

wall but has no effect in the center and the left side 

of the channel wall. In Error! Reference source not 

found., the pressure gradient has no change with the 

increasing Reynold number (Re). As shown in Figure 

5, increasing the value of the Froude number (Fr) 

doesn't change the pressure gradient. Also, the 

pressure gradient doesn't change with the increasing 

of the Darcy number (Da) as clear in Figure 6. Figure 

7 demonstrates that the pressure gradient grows as 

the Hall parameter value (m) increases. Figure 8 

shows that the pressure gradient rises as the value of 

a fluid parameter (A) increases. Figure 9 displays, 

that the pressure gradient reduces in the middle 

towards the left wall gradually and then has no effect 

as the face difference () increases whereas increases 

near the right wall. Figure 10, shows that the pressure 

gradient does not affect increasing of the channel's 

angle of inclination with respect to the horizontal 

axis(𝛼). 

 

 

(a)                                                    (b)                                                    (c) 

Figure 2. Distribution of streamlines for (a)𝛀=0.5, (b)𝛀=2.5, (c)𝛀=4.5, M=5, Gr=5, B=0.5, Da=8, 

m=6.5, A=0.3, 𝝓=1.5 
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(a)                                                    (b)                                                    (c) 

Figure 3. Distribution of streamlines for  Ω=1, (a)M=5.1, (b)M=5.2, (c)M=5, Gr=5, B=0.5, Da=8, 

m=6.5, A=0.3, ϕ1.5 

 

(a)                                                    (b)                                                    (c) 

Figure 4. Distribution of streamlines for  Ω=1, M=5, (a)Gr=5.3, (b)Gr=5.4, (c)Gr=5.5, B=0.5, Da=8, 

m=6.5, A=0.3, ϕ=1.5 

 

(a)                                                    (b)                                                    (c) 

Figure 5.  Distribution of streamlines for  Ω=1, M=5, Gr=5, (a)B=0.5, (b)B=1.5, (c)B=2.5, Da=8, m=6.5, 

A=0.3, ϕ=1.5 
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(a)                                                    (b)                                                    (c) 

Figure 6.  Distribution of streamlines for  Ω=1, M=5, Gr=5, B=0.5, (a)Da=8, (b)Da=9, (c)Da=10, m=6.5, 

A=0.3, ϕ=1.5 

 

(a)                                                    (b)                                                    (c) 

Figure 7.  Distribution of streamlines for  Ω=1, M=5, Gr=5, B=0.5, Da=8, (a)m=6.5, (b)m=6.6, 

(c)m=6.7, A=0.3, ϕ=1.5 

 

(a)                                                    (b)                                                    (c) 

Figure 8. Distribution of streamlines for  Ω=1, M=5, Gr=5, B=0.5, Da=8, m=6.5, (a)A=0.3, (b)A=0.35, 

(c)A=0.4, ϕ=1.5 
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(a)                                                    (b)                                                    (c) 

Figure 9. Distribution of streamlines for  Ω=1, M=5, Gr=5, B=0.5, Da=8, m=6.5, A=0.3, (a)ϕ=1.5, 

(b)ϕ=1.7, (c)ϕ=1.9 

 

Figure 10. Pressure gradient and variation for 

different of Ω when M=5, Gr=1, B=0.08, Re=0.2, 

Fr=0.2, Da=8, m=7, A=5, ϕ=Pi⁄6, α=0.5 

 

Figure 3. Pressure gradient and variation for 

different of  M when 𝛀=1, Gr=1, B=0.08, Re=0.2, 

Fr=0.2, Da=8, m=7, A=5, 𝝓=Pi⁄6, α=0.5 

 

 

Figure 12. Pressure gradient and variation for 

different of  Gr when Ω=1, M=5, B=0.08, Re=0.2, 

Fr=0.2, Da=8, m=7, A=5, ϕ=Pi⁄6, α=0.5 

 

Figure 4. Pressure gradient and variation for 

different of B when 𝛀=1, M=5, Gr=1, Re=0.2, 

Fr=0.2, Da=8, m=7, A=5, 𝝓=Pi⁄6, α=0.5 
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Figure 14. Pressure gradient and variation for 

different of  Re when Ω=1, M=5, Gr=1, B=0.08, 

Fr=0.2, Da=8, m=7, A=5, ϕ=Pi⁄6, α=0.5 

 

 

 

Figure 5. Pressure gradient and variation for 

different of Fr when 𝛀=1, M=5, Gr=1, B=0.08, 

Re=0.2, Da=8, m=7, A=5, 𝝓=Pi⁄6, α=0.5 

 

Figure 6. Pressure gradient and variation for 

different of Da when 𝛀=1, M=5, Gr=1, B=0.08, 

Re=0.2, Fr=0.2, m=7, A=5, 𝝓=Pi⁄6, α=0.5 

 

Figure 7. Pressure gradient and variation for 

different of m when 𝛀=1, M=5, Gr=1, B=0.08, 

Re=0.2, Fr=0.2, Da=8, A=5, 𝝓=Pi⁄6, α=0.5 

 

 

Figure 8. Pressure gradient and variation for 

different of A when 𝛀=1, M=5, Gr=1, B=0.08, 

Re=0.2, Fr=0.2, Da=8, m=7, 𝝓=Pi⁄6, α=0.5 

 

Figure 9. Pressure gradient and variation for 

different of 𝝓 when Ω=1, M=5, Gr=1, B=0.08, 

Re=0.2, Fr=0.2, Da=8, m=7, A=5, α=0.5 
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Figure 10. Pressure gradient and variation for different of 𝜶 when Ω=1, M=5, Gr=1, B=0.08, Re=0.2, 

Fr=0.2, Da=8, m=7, A=5, ϕ=pi/6 

Conclusion 

In this article, the influence of heat transfer 

and rotation on a Sutterby fluid in an asymmetric 

channel was investigated. In this investigation, a lot 

of attention has been paid to the analysis of things 

like  stream function and pressure gradient based on 

a simple analytical solution. The key findings of the 

current research are summarized below: 

 The trapped bolus size close to the upper wall 

increases but the trapped bolus size close to 

the lower wall decreases with an increase in 

(Ω), (Da), (m), and (A).  

 The trapped bolus size close to the upper wall 

increases but the trapped bolus size close to 

the lower wall decreases with increasing (M) 

and (𝜙).  

 With increasing (Gr), the trapped bolus size 

close to the lower wall decreases while the 

trapped bolus close to the upper wall doesn't 

change.  

 The sizes of trapped boluses close to the upper 

and the lower wall decrease with increasing 

constant heat radiation (B). 

 Increasing (Ω), (m) and (A) results in an 

increasing the pressure gradient. 

 The increasing value of (M) is associated with 

a diminishing pressure gradient.  

 As (Gr) and (B) goes up, the pressure gradient 

goes up toward the right edge of the channel 

wall but has no effect in the center and the 

left side of the channel wall.  

 The pressure gradient has no change with the 

increasing of (Re), (Fr), (Da), and (α).  

 The pressure gradient grows as (m) increases.  

 The pressure gradient reduces in the middle 

towards the left wall gradually and then has 

no effect as the face difference (𝜙) increases 

whereas increases near the right wall.  
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Baghdad Science Journal 

في قنلة ملئلة وغير ربي توسالحراري والدوران على القدفق القمعجي لسلئل  نتقال تأثير الا

 مقملثلة ذات مسلمية

 1الء زكي حملدي، ل2,1دأسملء عبد الحسين محم

 .كلية العلوم، جامعة بغداد، بغداد، العراققسم الرياضات، 

 .، جامعة بغداد، بغداد، العراقللبنات كلية العلومقسم الرياضات، 

 

 

 ةالخلاص

ة مائلة ربي في قناة غير متماثلوتفي هذا البحث تم دراسة تأثير متغير الدوران والمتغيرات الأخرى على التدفق التمعجي لسائل س

تحتوي على وسط مسامي مع انتقال الحرارة. في وجود الدوران، تم تطوير النمذجة الرياضية باستخدام المعادلات الاساسية القائمة على 

م حل المعادلة ز. تنموذج سائل سوتربي. في تحليل التدفق، يتم استخدام افتراضات مثل تقريب طول الموجة الطويلة وانخفاض عدد رينولد

، مان، ورقم رينولدشوف، ورقم هارتباستخدام طريقة الاضطراب. يتم تحليل تأثيرات رقم كرا تحليليا  خطية الناتجة ال غيرالتفاضلية الاعتيادية 

 دفق وتدرج، وتحليل نقل الحرارة على وظيفة التفرود، ومعلمة هال، ورقم دارسي، والمجال المغناطيسي، ومعلمة سائل سوتربيورقم 

علمات ، بينما يتناقص مع زيادة بعض الم فقاعاتتم اكتشاف أن حجم ال الضغط بيانيا . باستخدام برنامج ماثيماتيكا، تم حساب النتائج العددية.

 مع غالبية المعلمات. تناسب طردييتناسب تدرج الضغط 

 .سائل سوتربي المسامية،جي، الحرارة، المجال المغناطيسي، التدفق التمع انتقال الكلملت المفقلحية:

https://dx.doi.org/10.21123/bsj.2023.8312

