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Abstract:

This paper aims to study the fractional differential systems arising in warm plasma, which exhibits
traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara
equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock
wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the
convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the
presented method, the solutions of these equations are obtained and compared with the exact solution.
Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.

Keywords: Caputo fractional derivative, Fractional Adomian decomposition method, Fractional Kawahara
equation, Fractional Korteweg—De Vries equation, Riemann-Liouville fractional integral.

Introduction: described by the KdV equation. The time-fractional
The study of nonlinear fractional systems becomes KdV model for the potential ¢ (&, 1) can express as
crucial in all fields of mathematics, engineering, follows™

physics, etc. Due to their nonlinear behavior, Time-fractional Kawahara equation is given by
numerous applications of such fractional systems

can be found in fluid dynamics, plasma physics, W_¢+
nonlinear biological systems, viscoelasticity, solid 06 0% otr
mechanics, quantum field theory, etc™. Findingthe ~ Af(W) 5z +B55=00<y =<1 1
exact solutions to such differential equations is not a

straightforward task so; researchers prefer the best- LYz + azzy + bZyyy —
estimated solutions®. Tools like series solution CZyxxax =0, 0 <y <1 2

methods and numerical methods are widely used for
such determination®®. The existence of traveling  which is the fifth-order KdV equation. Due to the
wave behavior occurs in many physical phenomena  fifth-order term .y, it is used for analyzing the

such as plasma physics, fluid mechanics, waves in cold collision-free plasma having magneto-acoustic
shallow water, etc. The Adomian decomposition waves.

method which is invented by George Adomian is
extensively used for solving nonlinear PDEs™™*, The Adomian decomposition method is
Moreover, solutions obtained by this method are  explored to solve these equations. Many facts can
convergent. be explored by incorporating time-fractional
The KdV equation narrates the appearance  derivatives. The arrangement of the paper is as
of collision-free shock wave'**’. The behavior of  follows: Definitions related to fractional derivatives
weak non-linear dispersive waves arising in gravity  and integrals are given in section 2. A description of
waves, plasma waves, and lattice waves can be  the fractional Adomian decomposition method is
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narrated in Section 3. The convergence and
uniqueness of the solution are proved in section 4.
To check the performance of the proposed methods,
numerical illustrations are given in the last section.

Basic Preliminaries:

Some basic definitions related to fractional ordered
calculus are given in this section.

Definition. 1:

The Riemann-Liouville fractional integral of a
function f is defined as®

1 t
JYf(t) = mfo (t—1) " 1f(r)dr, for0 <y

<1
Definition. 2:
The Caputo fractional derivative of a function f is
defined as™

g 1 (7

L xz____j x

fx) =5 ), (
— 0B M (D)dr, forr—1
<B<r

where r = [B].

Remark. 1:

(i) J7 (t5) = =D r+s for s > —1,y = 0

F(y+s+1)

(i) JY LY (FGO) = £() = BbFO 01 x >
0,y=0

(i) J/JP(f () = 7P (F (1)), fory, B 2 0

Fractional Adomian Decomposition Method:
To demonstrate the proposed method, consider the
non-linear PDE:
LYz4+ Mz4+ Nz=0,r—1<y<r 3
where z =z(x,t),r =[y] €N, the differential
operator LY is the yth order fractional derivative, N
is a nonlinear operator and M is a linear differential
operator. Applying J¥ to Eq.3 and from the above
remarks, Eqg.3 becomes,
z(x,t) =

=g z(0) ’;—k —JY(Mz + Nz)
The method decomposes z(x,t) into a sum
Z = Yn—0Z, and the nonlinear term Nz can be
expressed as Nz = Yn_oAn (20,21, 22, ) Zp),

1H(2) = H(z")|

where Adomian polynomials A,, 's are determined
as follows®:

=0,1,2,.. 4

nl ain [ (Z Aizi)],1=0’ n

Substituting decomposition series for z and Nz in
Eq.4,

>

n=

o

The values z,(x,t) are determined by the
recurrence relation:

r—1 xk
— B oty __
zZy = Z zU(0 )k'
k=0
Zpny1 = —JY[Mz, +A,], forn=0,12,..
Therefore, the required solution z(x,t) can be

obtained by calculating the values of z,(x,t), for
n = 1. Eventually, the solution z(x, t) is as follows
z(x, t) = Al’im ¢y (x, t), where ¢y (x, t)
N-1

Z Zn(x,t)

n=0
Uniqueness and Convergence:
Theorem 1:
Time-fractional partial differential equation
LYz+Mz+Nz=0,r—1<y<r
5
with z(x,0) = z, has a unique solution for 0 <

4
ct < 1, for some constant C.
r(y+1)

Proof: Let an interval / = [0, T] and Banach space
of all continuous functions X = (C(I), Il.1l). Define
norm || z(t) ll= max.¢;|z(t)|. Consider a function
H:X—X, such that H(z(t)) =z, —JY(Mz) —
JY(Nz). If the nonlinear term Nz is Lipschitzian,
then

IN(z) = N(P)| < Cy]z = pl
where p € X and C; is Lipschitz constant. Let
z,z' € X. Consider

= max|—J"N(z(t)) —J"M(z(t)) +J'N(z'(t)) +]"M(z'(1))]

= rrtlealxl—]”(NZ —Nz'")—=JY(Mz—Mz")|
= rrtlngUV(NZ —Nz")+]JY(Mz—-Mz")|
< rrtléilxljy(Nz —NzD|+ |J¥(Mz — Mz")|

319



Open Access
2023, 20(1 Special Issue) ICAAM: 318-325

Baghdad Science Journal

P-1SSN: 2078-8665
E-ISSN: 2411-7986

Also, if M(z(t)) is Lipschitzian, then
M(p)| < Cy|z—p| where C,
constant. Therefore,

|M(z) -
is the Lipschitz

I1H(z) — H(Z)II
< Yiz—2Z'
_I’rtlglx(Clj |z —Z'|
+GJYz—2'))
Y
S (CL+C)lz—2 F( DS <{lz—Z'Il
where { = Gty Hence, whenever 0 < { <

{y+1) -
1, H would be a contraction mapping. Therefore, by

the Banach fixed point theorem, the time-fractional
partial differential Eg.5 has a unique solution.

To prove the convergence, consider the following
theorem.

Theorem. 2:

Let ¢, = X1,z (x,t) be the nt" the partial sum
then the sequence {¢,} is a Cauchy sequence in
Banach space X.

Proof: For p € N, consider

||¢n+p - ¢n|| = r?glx|¢n+p - ¢n|
n+p
= max z;i(x,t)
i=n+1
n+p n+p
=max -] Y Mz, =) ) Nz,
i=n+1 i=n+1
= r?glx|]yM¢n+p 1~ Mon_4q +]VN¢n+p—1 - N¢n—1|
< r{}EaIX]ylM(.bn+p 1 M¢n—1| + r?glxjle¢n+p—1 - N¢n—1|
< Cmax” (| (¢n+p_1 =~ bnet )+ Cmax)” (| (bnap-1 = bne 1)
< (Cl + CZ) l—-( + 1) "¢n+p 1 ¢n—1" < Z"(bnﬂ)—l - ¢n—1"
where (= (C; +C,) l"(y+1) The following
inequality can be obtained similarly,
||¢n+p - ¢n" < {2"¢n+p—2 - ¢n—2" < = (n"qu - ¢0" < Zn"(ﬁl - ¢0”: fOI‘p =1
< "l
Assume n > m, forn,m € N. Consider
P = Il < NPms1 — dmll + 1 Pmez = Pmaall + -+ llpn — D1l

1 —¢n-m
< @M+ T e D) g < O [%(] s

Since 0 < ( <1, 1-{*""™<1, therefore (¢, —
Il < 7= IIu1 . As z(t) is bounded, ||z, || < oo.

This |mpI|es lim,_, |, — P |l = 0. Therefore,
¢, is a Cauchy sequence in X. Hence, the solution
of the given equation is convergent.

Numerical Examples:
Example 1: Consider the time fractional KdV
equation

L)t/z+6zzx +Zyy =0, for0<y <1
6

with

z(x,0) = %sech2 (’2—6)

7

The exact solution to Eq.6 for y =1 is z(x,t) =
%sech2 (xT_t) To solve Eg.6 by the Adomian

decomposition method, apply the integral operator
J¥ on both sides. Using initial condition Eq.7,
Z=2(x,0)+]JY(—622y — Zyyx) =0

8

Now, inserting z = Y0z, and the polynomial
representation for the non-linear term zz, =
Yo—oA, into EQ.8, the recurrence relation can
obtain to estimate the values of u,, as follows:

zy = z(x,0)
9
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03
Znr =J (—64n — 5= 2,(x,0)),n 20 10

Thus, by solving Eq.9 and Eq.10,

_ sinh(g) tY
1= 2cosh3(32—c) F(y+1)

i sinh6(§)+3 sinh“(g)—l £2v

Z3 =

72 = 4cosh8(§) r2y+1)
1 2(x
Zy = Esech (E)
[Zcosh“(g)r‘(]ﬁl)z—6(3F(y+1)2—F(2y+1))cosh2(’2—6)+9(2F(y+1)2—F(2y+1))] sinh(g) £3v
4-cosh7()2—c) IrGy+1)r(y+1)32

The required solution u(x, t) is given by

x tY

Zsinh6(§)+351nh4 (;)—1 £2v

2

)+ sinh(3)

1
z(x, t) = Esech2 ( Zeost® (5 TOFD)

[2cosh4()2—‘)F(y+ 1)2-6(3I(y+1)?-T'(2y+1))cosh? (§)+9(2F(y+ 1)2-ry+ 1))]sinh(§)

4co

rzy+1) +

sh°(3)

t3v

4cosh7(§)

The numerical solution obtained using the fractional
Adomian decomposition method is compared with

rBy+1)r(y+1)2 +

the exact solution in Table 1, which shows the
efficiency and effectiveness of the method.

Table 1. Comparison of approximate solution with an exact solution at t = 1.

x Approximate solution Exact solution Absolute error
0 0.3750000 0.3932238 0.0182238
1 0.4984448 0.5000000 0.0015551
2 0.4018358 0.3932238 0.0086119
3 0.2113086 0.2099871 0.0013215
4 0.0896437 0.0903533 0.0007095
5 0.0348090 0.0353254 0.0005163
6 0.0130655 0.0132961 0.0002305
7 0.0048423 0.0049330 0.0000906
8 0.0017862 0.0018204 0.0000341
9 0.0006577 0.0006704 0.0000126
10 0.0002420 0.0002467 0.0000046

A comparison of the exact and approximate
solutions is given in Fig. 1(a), and observe that the
approximate solution is enormously agreed with the
exact solution. In Fig. 1(b), the behavior of

solutions for y = 1.0,0.9,0.7 and observed that the
obtained solutions are stable and sufficiently
approximate to the exact solution.

—Exact solution
«sApproximate solution

-10

-10

(@)

(b)

Figure 1. (a) Comparison of the exact and approximate solutions at ¢ = 1.
(b) Comparison of the approximate solutions at ¢t = 1.
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In Fig. 2, the obtained solution z(x, t) is presented
for the parametersy = 1,0 <t <1,-10 < x < 10,

and observe the soliton solution exists in plasma
waves which has infinite support or infinite tails.

1.0

10.00

Figure 2. Graph of soliton solution of KdV equation in plasma waves for y = 1.

Example. 2: Consider the time-fractional Kawahara
equation

L)t/z +62Zy + Zyyx — Zyyxxx = 0, for 0 <y <111
with
z(x,0) = ﬁsech“( jﬁ) 12

The exact solution to Egq.11 fory =1 is
35
——sec

J 1 36
)
338 2413 169
Apply the integral operator /¥ to Eq.11 inserting
zZ=Yr0zZn and z, = Y _,A, the following
recurrence relation is obtained to estimate values of

z(x,t) =

Zy.

zo =u(x,0)
Znr =] (_6An - Zn(x 0) + Zn(x 0))
13

Thus, by solving Egs.13, the solution u(x,t) is
obtained in a series form as follows

1260v1

371293
22680

62748517
5sech® (

ech* (5753) tanh (575) o

[45ech4 (zxﬁ) -

)| ey

136080
137858491849

— 90+/13sech’ ( ad
—140(2F T'(y +1)% -

1))sech’ (2\7_)

— V13T 2y +

1))tanh? (2«7_)

[48\/_sech5 ( ad
)T +1)2 +

V13T 2y +

+  +175(2V13T(y +

)F(y+

sech® (2«7_)] F(3y+1t)3:(y+1)2

The estimation obtained by the fractional Adomian
decomposition method and the exact solution are
compared in Table 2, which shows the efficiency of
the method. The Kawahara equation is the key
model for to study of magnet-acoustic waves.

z(x,t) =
35 4 X
ﬁ sech (ﬁ) +
Table 2. Comparison of approximate solution with the exact solution at t = 1.
x Approximate solution Exact solution Absolute error
0 0.1033697 0.1033695 1.838423e-7
1 0.1011175 0.1011174 1.430337e-7
2 0.0916956 0.0916955 4.319975e-8
3 0.0773600 0.0773600 5.084331e-8
4 0.0610750 0.0610751 9.508468e-8
5 0.0454548 0.0454549 8.915362e-8
6 0.0321486 0.0321486 5.803359¢e-8
7 0.0217826 0.0217826 2.567129e-8
8 0.0142464 0.0142464 3.490274e-9
9 0.0090547 0.0090547 7.503175e-9
10 0.0056251 0.0056250 1.074931e-8
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In Fig. 3, a comparison of the exact and  the approximate solution is enormously agreed with
approximate solutions is given, and observed that  the exact solution.

=Exact solution
—Approximate solution

20 15 10 5 5 10 15 20

Figure 3. Comparison of the exact and approximate solutions at ¢ = 1.

In Fig. 4, the obtained solution z(x, t) is presented 20, and observed the soliton-type solution in plasma
for the parametersy =09,0<t< 1,-20<x < waves which has infinite support or infinite tails.

1.00
20.00

Figure 4. Graph of soliton solution of time-fractional Kawahara equation in plasma waves for y = 0.9
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