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Abstract:

In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite
difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio
fractional derivative. Also discussed conditional stability and convergence of developed scheme.
Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it

is represented graphically by Python.
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Introduction:

In 1948, Harry H. Pennes' firstly developed
mathematical model for temperature in resting
human forearm, this model is called as bio heat
transfer equation, given as below:

2
pC ZEED = ZZED Ly (2, - 2) +
Qmet » X € [0,L], t€ [0,T] 1

Where Z =temperature, t =time, p =density,
C =specific  heat, x =distance, k =thermal
conductivity, Z, = temperature of artillery,
W, =blood perfusion rate, g,,. =metabolic heat
generation in skin tissue, C, =specific heat of
blood.

Researchers are interested to convert above
Penne’s bio heat equation in terms of fractional
partial differential equation®. Damor et. al. (2013)°
developed fractional bio heat model by replacing
time derivative by fractional order derivative in
Eq.1, as below

0% Z(x,t) 9%2Z(x,t)
pC 2= =k ==+ W, C,(Zy — 2) +

Qmet @ €(0,1), x€ [0,L], te€ [0,T] 2

Caputo fractional derivative* having singular kernel
is used for solving Fractional bio heat model
developed by Damor, Ezzat and Ferras. In 2019,
Hristov® revisited various bio heat model, their non-
dimesionalization and fractional approach. Recently
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many researcher developed fractional bio heat
models with new kinds of fractional derivative with
non-singular kernel viz. Caputo-Fabrizio fractional
derivative, Atangana-Balenau fractional derivative,
memory-dependent derivative etc®®.

In this scenario, time fractional derivative

a“azt(;c,t) in Eq. 2 is replaced by Caputo-Fabrizio

fractional derivative of order a, given by H. Yépez-
Martinez and J.F. Gémez-Aguilar ° as follows

Definition 1: Fractional

Derivative

Caputo-Fabrizio

0% Z(x,t) _

at®
1 t - 9 Z(x,t)
a Jy exp [E (t - T)] 5. dr, a €(0,1)

3

In regular diffusion, r?2 « Dt where 7 is
mean square displacement, t is time and D is
diffusion coefficient. In contrast to regular diffusion
anamolus diffusion is given by power law 72 «
D(t) t“ where a is anamolus diffusion operator and
D(t) is time dependent diffusion coefficient'’. Note
that « =1 means regular diffusion, 0 < a <1
implies sub diffusion and a>1 gives
superdiffusion. Note that time fractional derivative
introduce sub diffusion or super diffusion without
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disturbing properties of density and specific heat of
material. To introduce sub diffusion in fractional
bio heat transfer equation, thermal conductivity k is
changed by K = k 91~% as given by Ferras et.al.";

where 9 has no physical meaning.

Finally our time fractional sub diffusion bio heat
transfer equation as follow:

pc L2ED _ ¢ T2ED 4y €2, —2) +

Gmet > € (0,1), xe [0,L], te [0,T] 4
Initial condition: Z(x,0) =Z%, , 0<

x <L 5
Boundary conditions: —K %: ,
where L is the length of tissue and g, is heat

a
flux on the skin surface and aZt(z‘t) is time

fractional derivatives in the sense of Caputo
Fabrizio defined in Eq. 3
By using dimensionless variable as follow

Cc
u= _pK x, v=t, X=(C-
7 \/KpC _Amet _ _ Wy Cp
a) , Q= =——
do pcC

do \/ﬁ
The dimensionless from of time fractional
sub diffusion bio heat transfer equation, Eq. 4 to Eq.
6 is:
9% X(uv) 92X (u,v)
av® a u?

0,1), ue[Of ]

Initial condition: X(1,0) =0, 0<x< /%L 8

ox(fEe v)

—aXuv)+Q ,a€

7

Boundary  conditions: ™ =
0, ZP=-1, v20 9
Several methods are developed by

researchers to find solution of fractional bio heat
equation. Analytical method is discussed by Shih et.
al.’?, H. Pandey et.al.”®, H. Patil**, Takale® and
Jogdand® discussed Explicit and Crank Nicolson'’
Finite difference scheme, Abdulhussein'® discussed
guadratic Spline method for finding solution of
fractional bio heat equation. Following explicit
finite difference scheme will be discussed, in this

paper.

Finite Difference Scheme:

To develop the explicit finite difference
scheme for dimensionless sub diffusion bio heat
transfer equation, Eq.7 to Eq. 9, define u; =
iAu,i=0,1,---,M andv, =nAv,n=0,1,--,N;
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pC

x L

where Au = < ) and Av = % Consider exact

solution of dimensionless sub diffusion bio heat
transfer equation, Eg.7 at mesh point (u;v,) is
X(u;,v,), i=01,---,M and v, = nAv,n =
0,1,-+,N. Also X* be the numerical approximation
at point(u;, v,). Note that Au is dimensionless

space step size and Av is dimensionless time step
2
size. Discretization of the space derivatives 2 ;{(:Z,u)

by using central difference formula is given by
n

(azx). _ Xt —2X7+ X)L, +0((Au) )
L

du? (A )2
10

Discretization’® of the Caputo-Fabirizio
fractional derivative of order «a as follows

arx\"
(av"‘) -

time

1 n+1_Xn Xin—1'+1_Xin—j ,
E[ ] diy +7 Z [ Ay ] dy,

11
Where dl = [exp [% (- 1)Av” —

[exp [—]Av” , J=012,--,n

Now, substituting equations, Eqg. 10 and Eqg. 11 in
equation, Eq. 7,

1

n+1 n
1 [u

, 1 ALl
o ] dgv + —Z?=1 [—] div =
XEa2XT X0 | 0((Aw)?) — a XT + Q

w2
XMl =rX' + (1 —2r—ap)X! + 71X, —

bk ]+1_Xn j i
j=1h [#] dp, +pQ 12
. . a Av a Av 1
by COHSlderlng r= dgv(T)z ) a , h = dgy .
After simplification, for n =0,1,---,N;

n—j+1_ _n—] .
Lk [X—i | al, = hah, xr -

nidl -l XM + hdg, X0
W|th thls substitution equation, Eq. 12 becomes
XMl =rx +(1—2r—ap—hdy,)X]
+ er+1

+h z[d’ — it X

+h dAv XLO +pQ

Now, put n = 0 in equation, Eq. 12, becomes

Xt =rx2,+ 1 -2r—ap)Xx? +rX%, +pQ
Flnally the initial condition Eq. 8 and the boundary
conditions Eq.9 are approximated as X =0,
i=01--M , and Xy =Xpy_,; X¢=X1+
Au,n=01,-,N
Finally, the discretized dimensionless sub diffusion
bio heat transfer equation along with initial and
boundary conditions are as follows,
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Xt =1rX2, 4+ (1 —2r—ap)X? +rX%, + pQ
forn=20 13
Xt =rxy + (1—2r —ap — hdg, )X +

rXTy +h $izi[dh, — dist] X1

+hdAle°+pQ forn>1
14
Initial  condition: X0=0, i=01,,M;
15
Boundary conditions: Xy = Xp_1; Xg =X{'+
Au, n=201,--,N.
16

where r = ag,,a(—izi)z D= Z: h= dm;

Hence, matrix form of discretized explicit finite
difference scheme Eq. 13 to Eq. 16 is as follows

Ul=AU°+B forn=0 17
U™ = A, UM+ h X02Hd), — dlnt UnT +
hd},U°+B forn>1 18

Initial condition:X? =0,i=0,1,--, M; 19
Boundary conditions: Xy = Xp_.; X§ =X+
Au,n=01,-,N

20
where
Un = (X, X3, - ’XAT/lI_l)T’ B =
(PQ +rAu, pQ, pQ, - , pQ) are the constant
matrix, and
A+7r 1
r A r
A= T A g
r A ) r
r A+r
and
Ay =
A+r—hdy, T
( r A—hd}, r \'
. T A— h div r
. - X )
r A+r—nh div
whereA=1—-2r—ap
Stability:
Lemma 1:
The eigenvalues of M x M tri-diagonal matrix
a; a
/a3 a a, \

a, |
k a3 a1 az)
az aq

. im
aregivenas A; = a; + 2 ./a, a; cos (M+1)

where aq;,a, and asare either real or complex
numbers®.
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Theorem 1:
The solution for dimensionless sub diffusion bio
heat transfer equations, Eq.7 to Eq.9 developed by
explicit finite difference scheme Eq. 13 to Eq. 16 is
stable, when

2—-ap 2-ap-hdy,
4’ 4
Proof: For tri-diagonal matrix A, the eigenvalues
are given as
Ai(4) = (1 - 2r —ap)

( i for i
r)(r) C05<ﬁ> , for i
=12,,M
i
~ Ai(A) =1 —-2r—ap)+2rcos (ﬁ)

< A-2r—ap)+2r=1—ap
<1

r< mm{

Ai(A) = (1 —2r —ap) .
i
(r) (r) cos (ﬁ) , for i
=12, ,M .
» Ai(A) =1 —-2r—ap)+2rcos (lﬁn)
> 1—-2r—ap)—2r

=1—4r—ap
~AA) =21 ifl-4r—ap=>-1 = r
2—ap
-4

Thus, eigenvalues of matrix A, can be write as
|/1(A)|<1for0<r<2ap 21

Also, for tri-diagonal matrlx A4, the eigenvalues
are obtained as follow

2i(A) =(1—2r—ap—hd},)
im
(r) (r) cos (ﬁ) , for
=12, M
» A4(4) < (1-2r—ap—hdy,)+2r
=1l-ap—hd;, <1

A;(A) = (1 —2r—ap—nh div)

i
T (r) cos(ﬁ> , for
=12,,M
~ (4 = (1—2r—ap—hdi,,)—2
=1—4r—ap—hd},
A(A)=-1 if 1—4r—ap—hd}, = —
2—ap—hdj,

r

= r< 4

Thus, eigenvalues of matrix A, can be write as
_ _ 1

44| <1 for 0 <7 < PR 22

Therefore, from equations, Eq. 21 and Eq. 22,

solution of dimensionless sub diffusion bio heat

transfer equation, Eq.7 to Eq.9 developed by
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explicit finite difference scheme Eq.13 to Eq.16 is
stable if

. 2—ap 2—-ap—hd}
r< mln{ 4{%

This proves the theorem.

Convergence:
Lemma 2:
Following conditions are satisfied by the coefficient

da, , =012,
Q) div >0
Lemma 3:

If the eigenvalues of A and A, are represented by
A;(A) and 4;(A;) respectively, then

dj+1

(i) d >

) 12@I<1, [4y@A)] =1, i=
1,23, ,M

(Do <1, lADNeo <1

Theorem 2:

The solution for dimensionless sub diffusion bio
heat transfer equation Eq.7 to Eq.9 developed by
explicit finite difference scheme Eq.13 to Eq.16 is
convergent, if
2—ap 2—ap—hd},
4 '’ 4

Proof: The exact solution of the dimensionless time
fractional sub diffusion bio heat transfer equation,
Eq.7 to Eq.9 at time level t, is represented by the
vector U™ = (X7, X2, X%, XE_)T of size +1

, defined on the region [0, L] X [0, T]. The vector of
truncation error is given by
™=}, 7,1}, -, iy )T at time level t,, . Then
using explicit finite difference scheme Eq.13 to
Eq 16, give us
=X —rX), -1 -2r—ap)X) + X2 —

r < min

Q 0(Av + (Au)?) forn=20
Ml = xrHl l”_ (1—2r—ap—
hdy)XP — Xl —h Y02id), — it X

—hdy, XP — Q 0(Av + (Au)?)
forn>1

Let U™ = (XJ', X2, X%, Xn_, )T be the vector
approximate solution of the dimensionless time
fractional sub diffusion bio heat transfer equation,
Eq.7 to Eq.9 respectively at time level v, .
Now, in the solution, error vector can be set as
EM=X"—X"= (e]', el el -, ef_ )T at time
level v, . Suppose
le!l < max |ef*| = [IE"|e ,
1<isM

=1,2,3,

for [

and
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'l < max |t

= 0(Av + (Aw)?) ,

=1,2,3,
Exact solution of the equation, Eq.7 to EQ.9, is
represented by the vector U™.  Therefore the
equations Eq.17 to Eq.20 are satisfy by U™, which is

for [

given by

Ut=AU°+B+1! forn=0 23
U™l = A, U™+ h $721d), —

a0 + hd, U° + B + 71

forn>1 24

It is possible to prove the convergence of scheme by
induction. That is to prove,
IE™l <K O(Av + (Au)?) ,
=123,
For m = 1, from equations, Eq.17 and Eq.23,
El'=AE® + 1!
IE o = A E® + 71| oo
< NEe + 17l
< K 0(Av + (Au)?)
Note that K is not depending on u and v. Hence,
result is true form = 1.
Assume that result is true form <mn, therefore
IEMlew <K O(Av + (Aw)?)
Now, to prove that result is true, form =n + 1.
Therefore from equations, Eq.18 and Eq.24, gives
E™1 = A E"+ h Y0 id), — dit] BV +
hdy,E°+B + r”“
IE™ o < Ay EMlloo + [|h 2721 [dR, —
day EMI|| L+ I dgy E%lleo + 7™l
IE™ | < [1+di, — diy] Ky O(AV
+ (Aw)?) + K, 0(Av + (Au)?)
Finally, [[E"* ]|, < K 0(Av + (Aw)?)
where K = max{K;,K,}is one of the positive
number not dependingon uand v .
Hence, by using mathematical induction, for all m,
IE™ o <K O0(Av + (Au)?)
Therefore, this shows that if

2—-ap 2-a —hd}

Then as (Au,Av) - (0,0), the vectorU,
converges to U,,. Hence, this complete the proof.

m

Test Problem:
In this Paper, Parameter values® are considered as
follow:
p=1050Kgm=3,C = 4180 Kg~1C, W,
=05Kgm=3,C,
=3770JKg~C,
K=05Wm™1C,qy, =5000Kgm™2,qmet
=3681Wm™3,L =0.02m



Open Access
2023, 20(1 Special Issue) ICAAM: 394-399

Baghdad Science Journal

P-1SSN: 2078-8665
E-ISSN: 2411-7986

X(u, v)

— a=0.95
— a=0.90
— a=0.85

0 T T
10 20

u

T T

30 40 50

Figure 1. Approximate solution of dimensionless sub diffusion bio heat transfer equation for a =
0.95,0.90,0.85

Fig. 1 shows that dimensionless temperature
distribution over the dimensionless distance for
various values of @ . Note that result obtained by
our Python code is same as analytical solution
provided by Shih*? and numerical solution obtained
by Damor?®.

Conclusion:

Explicit finite difference scheme for dimensionless
time fractional sub diffusion bio heat transfer
equation is developed. Condition for stability and
convergence of the developed scheme is obtained.
Approximate graphical solution is obtained by using
Python code.
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