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Abstract:
Let G be a graph with p vertices and q edges and f: V(G) — {0,1,2, ..., k} be an injective function,

where k is a positive integer. If the induced edge labeling f*: E(G) — {FZ,F4, Fg,F, Fg, Fw,...,Fq+ng+1}
2

defined by f*(uv) = f(u) + f(v), for each uv € E(G), is a bijection, then the labeling f is called an odd
Fibonacci edge irregular labeling of G. A graph which admits an odd Fibonacci edge irregular labeling is
called an odd Fibonacci edge irregular graph. The odd Fibonacci edge irregularity strength ofes(G) is the
minimum Kk for which G admits an odd Fibonacci edge irregular labeling. In this paper, the odd Fibonacci
edge irregularity strength for some subdivision graphs and graphs obtained from vertex identification is
determined.

Keywords: Edge irregular labeling, Edge irregularity strength, Irregular labeling, Odd Fibonacci edge

irregular labeling, Odd Fibonacci sequence.

Introduction:

By a graph, it means a finite undirected graph
without loops or multiple edges with p vertices and
q edges'®. Graph labeling is an assignment of
integers to the vertices or edges or both. Rosa*
introduced the concept of graceful labeling. The
Fibonacci numbers can be defined by the linear
recurrence Fn = FnitFno, n >3. This generates an
infinite sequence of integers Fi=1, F,=1, Fs=2,
Fs=3, Fs=5, Fe=8, F;=13, etc. The concept of
Fibonacci graceful graphs, total edge Fibonacci
irregular labeling, and odd Fibonacci mean labeling
based on Fibonacci numbers are studied in®%. Also,
some results related to irregular total labeling are
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obtained from®. An odd Fibonacci edge irregular
labeling has been introduced in'° as follows. An odd
Fibonacci edge irregular labeling (OFEIL) which is
an injective function f: V(G) - {0,1,2, ...,k}, k is a
positive integer if the induced edge labeling

f*: E(G) il {Fz, F4_, Fs, F7, Fg, F10, sy Fq+ng+1}

defined by f*(uv) = f(u) + f(v), for each uv e
E(G), is a bijection. If such labeling exists, then G is
called an odd Fibonacci edge irregular graph
(OFEIG) and the minimum possible k is called the
odd Fibonacci edge irregularity strength ofes(G).
Fig. 1 illustrates ofes.
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Figure 1. A graph G with two OFEIL and ofes(G) = 212
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In the odd Fibonacci edge irregularity strength for
the graphs path, star, caterpillar, and bistar graph
have been found and the nonexistence of an odd
Fibonacci edge irregular labeling for the complete
graph and the complete bipartite graph has been
discussed. If each edge of a graph G is broken into
two by exactly one vertex, then the resultant graph
is S(G), the subdivision graph of G. In this paper,
the odd Fibonacci edge irregularity strength for
some subdivision graphs and graphs obtained from
vertex identification is determined.

Theorem. 1: ° Every path P,, (n > 2) is an odd
Fibonacci irregular graph and

, ifniseven

1
e
ofes(Fn) = ;o if nis odd

nefg-s

Theorem. 2:%° Every star graph Kin, (n>1)is an
odd Fibonacci irregular graph and

ofes(K; ) =F 1

aofgen =

Main Results:

Theorem. 3: The subdivision of P,OKj, (n > 2) is
an OFEIG and its strength is Fgn.s.

Proof: Let G = S(PhOK31). In G, g = 4n — 2. Let
V(G) ={v1, V2, ... ,Vn,X1,X2, ..., Xn,U1, U2, ... , Un.1,W1,
Wa, ..., wn }and E(G) = {viui / 1< i < n-1}U {Uivi
/2<i<n}U{viwi/ 1<i<n}U{wixi/ 1<i<n}.
Define f: V(G) — {0,1,2,3, ..., Fg,_3} as follows:
f(Vl) =0 , f(Ul) =1 , f(Wl) = Fenas , f(W?_) =F4 ,

f(x1) = Fen-3,

f(Vi) =F3+Fo+ Fi5s+...+Fsi9, 2<1<n,

f(Ui) = Fgig— (F3 + Fg + Fi5+...+Fsi9) , 2 <i<n-1,
f(wi) = Feie — (Fs + Fo + F15s +...+Fgi.15) , 3 <i<n
and f(Xi) = Feig + (F3 + Fg + Fis+. ..+F6i.g), 2<i<n.
Then f* is obtained as follows:

f*(V1U1) =F, f*(V1W1) = Fena , f*(Vsz) = Fs5,
F*(Wax1) = Fenz , F*(Wax2) = F7,

*(viti) = Fei_a, 2 <1 <n-1,*(Ui.1Vvi) = Feig, 2 <i<n,
*(viwi)=Fsi_7, 3 <1 <n and f*(wiX;)=Fsi5, 3 <i<n.
Since q is even, the last two odd Fibonacci numbers
are not consecutive Fibonacci numbers. In order to
obtain the minimum value for k, the Fibonacci
numbers Fq‘“l%]*l and Fq+BJ_1are to be obtained in

the adjacent edges. If F‘“BJ“ is an edge label of a

non-pendant edge, then one adjacent edge of it will
be received Fq+ng_ , as an edge label but the other
2

adjacent edge cannot have any odd Fibonacci
number. Hence f(xi)) = Fens is the required
minimum value for k. o
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Theorem. 4: The subdivision of Kin, (n > 1) is an
OFEIG and its strength is F,,.
Proof: Let G = S(Ky1n) . InG, g =2n.
Let {v,v1,Va,...,Vn, U,Uz,...,un} and E(G) = {wvi / 1<
i<n}U{viti/ 1<i<nj}.
For n=1, the subdivision of Ky is a path P;and by
Theorem 1, ofes(Ps) = F.
For n>1, define f:V(G) — {0,1,2,3,...,F3,} as
follows:
f(v) =0, f(vn) = Fan-1, f(un) = Fan,
f(v;) = F“’BJ“, 1<i<n-1and

n-1+ip — f(v;), ISi<n-1.

f(ui) =F

Then f* is obtained as follows:
f*(VVn) = Fsan, f*(VnUn) = Fan1,

n+i+l

f*(vvy) = Fi+[§]+1’ 1<i<n-land
f*(viui) = Fn+i+ln_1+i , 1<1<n-1.
2

To obtain F, as an edge label, it is necessary to
assign 0 and 1 to a pair of adjacent vertices.

Case (i) Suppose 0 (or 1) is assigned to the pendant
vertex then 1 (or 0) is to be assigned as a label of a
vertex whose degree is 2. Therefore, it is necessary
to assign 2 (or 3) to the central vertex in order to
obtain the edge label Fs. Then the remaining n-1
vertices which are adjacent to central vertices can
be assigned by the labels F. i, . —2 (or F, ji;,  —

i+[3]+1 i3] +1

3), 3<i < n-1. Hence to obtain the edge label Fsn+1
the pendant vertex can be labeled by Fs,,.q —
Fi"'EJ"'l + 2 (or F3ppq — Fi"'BJ"'l + 3), 3<i <n-1.

Suppose one of the adjacent vertices of the central
vertex can be labeled with F5,_; — 2 (or F3,_; —
3) then to obtain the edge label F5,,,the pendant
vertex can be labeled by F5,, + 2 (or F3, + 3).

Case (ii) If O (or 1) is assigned to the central vertex
then its n number of adjacent vertices can be

assigned by the labels F”H“ (or F”H“ —-1), 1<
2 2

i <n in order to obtain the minimum label. Hence to
obtain the edge label F5,.,, the pendant vertex can
be labeled by F3,,1— F”EJ“ (or

+ 1), 1< i < n. Suppose one of the adjacent

F3n+1 -

Firfifr
vertices of the central vertex can be labeled with
F3,-1 (Or F3,_1 — 1) then to obtain the edge label
F3,41 the pendant vertex can be labeled by F5, (or
F3n, +1). Hence f(un) Fan is the required
minimum value for k. o

The Coconut Tree T(n, m) was obtained by
identifying the central vertex of K, with a pendant
vertex of a path PptL.

Theorem. 5: The graph T(n, m) ,(n>2, m> 1)
an OFEIG and its strength

is
is
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n+m-— 1J -

n+m+l n+m+l

=
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F oo —1
a+[3]

Proof: Let G =T(n, m). In G, g =n+m-1.Let V(G)
= {Vl, Vo, ... , Vn, Vn+1, Vne2 ..., Vm} and E(G) =
{vivisr / 11 < n-13 U {viVisi/ 1<i<m}.

For n=2, graph G is a star Ky, and its strength is
given in Theorem 2. For m=1, G is a path P, and its
strength is given in Theorem 1.

Letn> 3, m > 2. To obtain F; as an edge label, it is
necessary to assign 0 and 1 to a pair of adjacent
vertices.

Case (i) n+tmis odd (i.e q is even)

Let f(vs) = 0 and f(vas) = 1.

Define f: V(G) - {0,1,2, ...,Fn+ +ln+m lJ —

Fn+m+ln+m nimoy) ,} as follows:

f(va) = Fn+m+l

n+m +[n+m 1J -

n+m-— 1J —

f(v,) =

1 .
(5F3i—5 ,3<i<n andiisodd
2

f(vi) =

Foim +[“+m 1J -2

and

1 . ..
EF3i—8 ,b4<i<n andiiseven
2

-
—

(Vnti) =

F in-3+i Fan—s ,1<i<m andnisodd
n+l 2 >

J —2+i

1 . .
F n-3+i . — |=F3n-8[,1<i<m andniseven
n+lTJ—2+1 2 —

Then f* is obtained as follows:

f*(V]_Vz) = +m+ln+m 1]
f*(vav3) = n+m+ln+m 1] -2
Fisi5,3<i<n—1 andiisodd
2
f*(viviz1) ={F3i-4,4<i<n—-1 andiiseven

2

and f*(vpvpei) =F sl<sism

+[n 3+1] —o4
If O is assigned to any one of the pendant vertex or
its adjacent vertex it leads to an OFEIL with k is

n+m-— 1] - F

n+m+lner 1J —-2'

F
more than n+m+[
Case (ii) n+tm is even (i.e g is odd).

Farlg-sive T Farl3]-sg

> alg o+ gy
i=1

n+m-— IJ 2

-1

)+4
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-1

ifn 4+ mis odd

if n + mis even

ifn(= 5), m are odd

if n = 3 and m is odd.

Sub Case (i) n, mis even.

Define f: V(G) = {0,1,2, ..., ¢},

-1
where £ =32 | Fq+l%J_3i+2 +F
as follows:

21

f(ve) = X5, Fq+EJ—3i+2 t Fq+[%]—3(§)+4 -1
f(va) =1,

f(vi) = 1:‘m+n—i+
and f(vn+i) = Fi+BJ+1
Then f* is defined as follows:
f*(ViVi+1) = Fm+n_i+lm+n—iJ+1, 1<i<n-1 and

2
f*(vpvpei) = F 1<i<m.

a+lg-a¢yes 7!

lm+n—iJ+1 - f(Vi+1)' 2<i<n-1
2

—-1,1<i<m

i+BJ+1’

Sub Case (ii) n, m is odd & n > 5.
Define f: V(G) -{0,1,2,..., %},
where £ = Z

follows:

—1as

i=1 q+[qJ 3i+2 Fq+[%]—3(“7_3)

n-1

f(vy) =25 Fq+l%]—3i+2 +1,

n-3

f(v2) =%, Fq+lgl_3i+2 " Fq+ng‘3(nT_3) -t

f(vi) = Fm+n_i+an—iJ+1 —f(viz1),3<i<n-1,
2

f(vy) = 1and

f(Vn4i) =F -1,1<i<m.

i+BJ+1
Then f* is defined as follows:

f*(Vivig1) = Fm+n_i+lm+n—iJ+1, 1<i<n-1 and

2
" (VnVn+i) = F”H“'
2

Sub Case (iii) n = 3 & mis odd.
Define f: V(G) - {0,1,2, o, F
f(vi) = F

1<i<m.

CH[%J — 1} as follows:

q+EJ_1 +1,f(vy) = Fq"'[%J -1,

f(vs) =1and f(vsy) = F —1,1<i<m

1+EJ+1
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Then f* is defined as follows:
f*(vavz) = F‘”EJ“' f*(vav3) = F‘”EJ

f*(V3V3+i) = F1+BI+11 1 S i S m.

and

Since ¢ is odd, the last two odd Fibonacci numbers
are consecutive Fibonacci numbers. So case (i)
labeling does not give the minimum value for k.
Hence by case (ii), if both n and m are even, f(vi) is
the required minimum value for k. If both n (n > 5)
and m are odd, f(v2) is the required minimum value
for k. If n =3 and m is odd, f(v2) is the required
minimum value for k.o

Let Ky m,» Kim,s - Kim, be the n number of
star graphs. Then graph T(Kym ,Kim,, - Kim,)
is obtained by identifying an end vertex of each of
the Ky, stars,1 <i<n. Let the identified vertex
be u, say.

Theorem. 6: T(Kym,, Kim,, - Kim,), (0 =2, mi
>2,1<1i<n)isan OFEIG and its strength is

Z?=1 mt+l—2{1:21 mtJ+1 —F ?2_11 mg+ Ll;llzmﬁl +2.

Proof: Let G = T(Kym,, Kim,, - Kim,)- ING, g =
mi+ma+...+mn. Then V(G) = {vjo/1 <i<n}u
{vij/1<i<n,1<j<m;—1}U {u}and

E(G) = {uVi,O/l <i< n} U {Vi,OVi,j/l <i<n, 1<

Define f:V(G) »{0,1,2,...,F

I’l_ m -
st e e

FZ?;} met w]“ as follows:

f(V10) = 1,f(u) = 0, f(w)) =
in;g me+j+ M]” —f(vio)2<i<n1<
j<m;—1,

f(Vllj) = Fj+lj+71J+2 - 1,1 S ] S m1 - 1 and

f(vig) =F ,2<i<n.

i—1
Yizimet+

i-1
—7 Mmg+1
Et_12 t ] 2

Then f* is obtained as follows:

f* (UVLO) = 1,

f*(uvig) =F

i-1
=1

i-1 ) 2 S 1 S n,
—1 M¢+1
Zt_lz t 2

me+

f*(vi0ve ) = Fj+lj+T1J+2, 1<j<m;-—1and
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f*(vi,OVi,j) =F ,2 <i<

i—1 :
1 metj+1
Zt=1 Mt +2

i-1 ;
t=1Met)+ 2

nl<j<m -1

In order to obtain the minimum value of k, the last
m, odd Fibonacci numbers are to be given for the
edge labels of the pendant edge attached at vno and
q+ EJ —m, , the greatest odd Fibonacci number.
Suppose 0 is assigned to the central vertex of any
one of the stars. Then 1 is assigned either to the
pendant vertex or the identified vertex u. If 1 is
assigned to the pendant vertex then in order to
obtain the minimum value of k, the successive odd
Fibonacci labeling F,,Fs, Fo, ""Fm1+l%J+1 are

obtained in the first m; pendant edges of the star
Ky m,. Hence the identified vertex u can get the
label F‘“l*l%“' Depending upon this u, the

central vertex of the star K, , can get the label.

The last m, odd Fibonacci numbers are to be given

for the edge labels incident at vno and out of them

Fq+[gl_m the odd Fibonacci number is the edge
2 n

label of uvno. If f(u) is non-zero say x then f(vno) is
less than Fq+ng_m . This induces the value of k as
2 n

FQ+[%J-mn_FC1+[%]—mn+X' This will be the

minimum for x = 0. So ofes(G)=F n
© S m +l—zt:21 mtJ+1

t=1 "t
—F n-— . O
e DL
Theorem 7: P,OMKy, (n > 2, m > 2) is an OFEIG
and its strength is
{Fq’“I%J“ - Fq+l%J_3n;—2 , ifmiseven
F‘“’EJ“ - Fq+EJ_3n;-3 , ifmisodd
Proof: Let G = P,OmK;. In G, g = n(m+1)-1.
Let V(G) = {v1, V2, ..., v} U {Uis, Uiz, ..., uim / 1<

<n }and E(G) = {viVis1 / 1<i<n-1}U{vilis / 1<i <
n,1<t<m}.
Define. f: V(G) - {0,1,2, ..., 4}

where £ = {F‘HEJH B Fq+[%J—¥ , ifmiseven
F —F sm-3, if misodd
a+|3+1 T Ta+[3]-2

as follows:

~ Fq*'BJ'%' if m is even
f(vy) =

FQ'*’EJ‘% , if mis odd’

— yi-2 i+j ) ;
f(Vl) - Z}:l (_1)1 ]Fj(m+1)+ll(m2+1)J+1l3 S 1 S n,
f(vy) = 0,f(uy) =F 1<t<m, f(ug,) =
{Fq‘m+t+lq_TmJ+1 - F‘“EJ ifmisevenand1 <t<m
a-mrerftp2 o

F
and

t+EJ+1’
3m-2 ,

T2

ifmisoddandl <t<m

3m-3,
2
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f(u;) = F(i_z)(m+1)+t+l(i—2)(r;1+1)+tJ+1 —

i-2 i+j ) .
Zj:l (-1D! ]Fj(m+1)+l](m2+1)l+1, 3<i<n,

1<t<m.
Then f* is defined as follows:

F |q] sm-2, ifmiseven
o

f*(V1V2) = . . B
Fq+EJ_3n;_-3 , ifmisodd

f*(vivig1) = F(i—l)(m+1)+l(i_l)gm+1)J+1' 2<i<n,

f (Vlul't) = Fq_m+t+lq—12n+tJ+1; 1 <t< m,

f*(vouyy) = Ft+H+1’ 1<t<mand
2

<

f*(viui‘t) =F =
nl<t<m.

If 0 is a vertex label of the path, the value of k is
more than f(uim). Hence f(uy ) =

f“ﬁﬂ‘ﬂw%gﬁ'”mmwm
arlges ~ Tarfgf-en
required minimum value for k. o

i < ]
(i—2)(m+1)+t+17(1 2)(’:+1)+tj+1' 3=i

if mis odd Is the

The graph P(1,2, ..., n) is obtained by joining i
pendant vertices at each of i" vertex of the path Py.

Theorem. 8: P(1,2, ..., n), (n>2) is an OFEIG and
its strength is
{ ifn = 2,3(mod)4

Proof: Let G=P(1,2, ...,n).

InG,g=n-1+ n(n;l).

Let V(G) ={v1, Vo, ..., vai}U {uit/ 1<i<n, I<t<
i } and E(G) = {ViVi+1 /1<1< n-l}U {viui,t /1<1<n
, 1<t <i}.

Case (i) n=2,3(mod 4)(i.e q is even).

Define f: V(G) — {0,1,2, ..., Fq+ng} as follows:
2

ol |
Fq"'lgl - Fq+EJ—5' ifn = 0,1(mod)4

f(vi) = F‘“EJ_F f(v2) =0, f(u1) = F‘“EJ ,
f(vi) =

D A | 3
: PR CE M L L il 2)]+1
i< n f(uy) = FH’E]'H and
f(ui,t) =F 2};%1+(t+i—3) —f(vi),3 <

Tisi+(tHi-3)+ +1

2

i<nl<t<i
Then f* is defined as follows:

336

f*(V1V2) = Fq+l%J_1, f*(vlul,l) = Fq+ng+1’
f*(vauze) = FotprlSts2

f* (vyv; =F i . , 251

( i 1+1) Zic=1t+(i—2)+l2t=1t:(l_2) +1
n—1and
f*(viuge) = F 3=is

; s iveri-z|
2};}j+(t+i—3)+[7"1 - +1

nl<t<i
As in the proof of Theorem 3, f(u11) is the required
minimum value for k.

Case (ii) n =0,1(mod 4) (i.e g is odd).

Define f:V(G) - {0,1,2, ...,Fq_'_lgl — Fq+ng—5} as
follows: ’ ’

0= Farls] ™ Farlg-s 02 = Farfg)os

f(v3) =0, f(ulrl) = Fq+EJ_1 + Fq+EJ_5,

)=
Y2l GO i 4 <
= Tios t+(i_j_2)+127t:3t+2(1—1—2)]+1
i <n,
1<t< 2,

120 = Forfglsn ™ Farfgs
f(uge) = Ft+H+1, 1<t<3and
2

f(uje) = F

23 i+E+=3)
2

. —fvp)4 <
2};§j+(t+i—3)+l ]+1

i<nl<t<i

Then f* is defined as follows:
f*(vyvy) = F‘”EJ’ f*(vpvs) = Fq+EJ_5,

f*(viviz1) = F_ )
Yoz t+(i-2)+

n— 1, f*(VluLl) =F

3<i<

) ) —_

I t+(i-2
Zt_3 - (i-2) +1

arlgfr
f*(Vzuz,t) =F

Fesltar

q+|3]-4+t I=st=2, f(vauzy) =

1<t<3and

f*(viugp) = F
Yjo3i+(t+i-3)+

<i<

iz j+eri-a)
2

4
=

Since q is odd, the last two odd Fibonacci numbers
are consecutive Fibonacci numbers. So case (i)
labeling does not give the minimum value for k. If 0
is a vertex label of the path, then the value of k is

nl<t<i



Open Access
2023, 20(1 Special Issue) ICAAM: 332-338

Baghdad Science Journal

P-1SSN: 2078-8665
E-ISSN: 2411-7986

more than FQ*EJ - FQ*EJ‘S in order to obtain the

OFEIL. Hence ofes(G) = F‘“EJ - Fq+BJ‘5 : o

Conclusion:

In this paper, the odd Fibonacci edge irregularity
strength for some subdivision graphs and graphs
obtained from vertex identification is determined.
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