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Abstract

In this paper, a subspace identification method for bilinear systems is used . Wherein
a " three-block " and " four-block " subspace algorithms are used. In this algorithms the input
signal to the system does not have to be white . Simulation of these algorithms shows that the
" four-block " gives fast convergence and the dimensions of the matrices involved are
significantly smaller so that the computational complexity is lower as a comparison with "

three-block " algorithm .

Introduction

Bilinear systems are attractive
models for many dynamical processes,
because they allow a significantly larger
class of behaviors than linear systems, yet
retain a rich theory which is closely related
to the familiar theory of linear systems .
They exhibit phenomena encountered in
many engineering systems, such as
amplitude-dependent time constants
Many practical system models are bilinear,
and more general nonlinear systems can
often be well approximated by bilinear
models .

Most studies of identification
problem of bilinear systems have assumed
an input-output formulation . Standard
methods such as recursive least squares,
extended least squares, recursive auxiliary
variable and recursive prediction error
algorithms, have been applied to
identifying bilinear systems . Simulation
studies have been undertaken and some
statistical results ( strong consistency and
parameter estimate convergence rates ) are
also available .

Favoreel et al proposed a " bilinear
N4SID " algorithm which gave unbiased
results only if the measured input signal
was white @. Favoreel and De Moor
suggested an alternative algorithm for
general input signals ®. Verdult and

Verhaegen pointed out that this algorithm
gives biased results, and proposed an
alternative algorithm, which involved a
nonlinear optimization step . Chen and
Maciejowski proposed algorithms for the
deterministic and combined deterministic-
stochastic cases which give asymptotically
unbiased estimates with general inputs,
and for which the rate of reduction of bias
can be estimated . The computational
complexity of these algorithms

was also significantly lower than the
earlier ones, both because the matrix
dimensions were smaller, and because
convergence to correct estimates ( with
g)ample size ) appears to be much faster ¢

In this paper, A comparison
between the ™ three-block " and ™ four-
block " subspace algorithms is shown in
two examples.

A " three-block ™ algorithm can
remove the effective of unmeasured noise
sources and obtain accurate estimates . In
the linear system case, its linked with the
systems Markov parameters.
Unfortunately, the realization theory for
bilinear systems is more complicated than
for linear systems.

In " four-block " subspace method
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for bilinear systems, the data
matrix arrangement and the observation
matrix equation are used to linearise the
system equation in the block matrix form
using linear and bilinear algebra . This
allows bilinear models to be obtained from
row and column spaces of certain matrices,
calculated from the input-output data by
means of some  bilinear-algebraic
operations ©.

Notations
The use of much specialized notation
seems to be unavoidable in the current
context . Mostly we follow the notation
used in 7 but we introduce all the
notation here for completeness.
We use ® to denote the Kronecker
product and ® the Khatri-Rao product of
two matrices with FeR" and

G e R"Pas:
A
FOG =[[i®g;, ,®g,,..., [, gy

+, @ and N denote the sum, the direct sum
and the intersection of two vector spaces,
L denotes the orthogonal complement of a
subspace with respect to the predefined
ambient space, the Moore-penrose inverse
is written as T, and the Hermitian as * .
In this paper we consider the

bilinear system of the form:

X = AX, + Nu, ® X, + Bu, +Ww,

Y, =Cx, + Du, +v,

(D)

where,
x, €eR",y, eR',u eR",and
N =[N,N,...N_]e R™™,

N, e R™..(i=1...,m).

The input u; is assumed to be
independent of the measurement noise v;
and the process noise w; . The covariance
matrix of w; and v; is:

) <ls

S
[0 20
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we assume that the sample size is N,
namely that input-output data
{u(t),y(t):t=0,1,....., N} are available . For
arbitrary t we define

Xe B Xeet - Xij1] € R

but for the special cases t=0, t=k, t=2k and
t=3k we define with some abuse of
notation,

nxj

X pé[xoxl...xj_l]e R

xcé[XkaJrl"'XkJrj—l]e R™
nxj

X é[XZkX2k+l“'X2k+j—l] €R

nxj
X ré[xsk X3k+1"'X3k+j—1] eR

where K is the row block size. The suffices
p, ¢, fand r are supposed to be mnemonic,
representing 'past’, ‘current’, ‘future’ and
'remote future' respectively. This division
of the state history into four (overlapping)
segments is the reason for ‘four-block’
method. The 'remote future' segment is not
necessary in 'three-block' method.
We
U,U, U ULYLY LYY

W, W, W WV, V VLV, similarly.

These matrices will later be used to
construct  larger matrices with a
'generalized block-Hankel structure. In
order to use all the available data in these,
the number of columns j is such that
N=3k+j-1 and let

d, = Zipzl(m +1)P1,
e = Zip:l(m +1)"*m

f =€ +g(m+1)k +I[(m +1)f —1]+ek2.

define

and

For arbitrary gand i >q+2 , we define

X :
X A q R(m+1)n><J
q’q=(uq@xq}E
Xi o U
Xi_ A i-2/q c R(m+l) nx
1/q=(Ui—l©xi—2/qJ
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Y, 4 AY

a/lg="q

U, A

alq=

U_++ A Uit;/iJr e Rg(mﬂ)i*qxj
Ui—1©Ui—2/q

i-1/q =
U/ AU;,,0Y,

i-1/q=
Ui+k—1/k+q

++
U i+k-1/k+q

U A

i+k-1/k+q =
= Uiik—l/kJrq

Uiik—l/k+q©ui—1/q
Ui e Wiy, and V., can be defined
similarly ©.

Remark 1. The meaning of U}, is:
X Céxzk—l/k’ X féxsk-uzk’
X réx4k—l/3k
U péuk—uo’ U céuzk—l/kv U féusk-l/zk
U AUPOY U AU 0Y,
u™aurfoy, U™ AU oy,

ue Uf
++C ++f
yewry Y ytery Y
=] Uc,y —] Uf,y
U*ou?’ Uurfoue

Ur,Y p,YC,Yf,Yr,WC,Wf,Wr,VC,Vf,Vr,U+C,
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U +f ,U +r ,U ++C ,U ++f ,U ++r and U r,u,y can
be defined similarly . Finally, we denote
by up the space spanned by all the rows of
the matrix U 0 That is,

u, = span{a*Up,a € ka}

PP f o puy,
uc’uf’ur7yp!yclyflyrlu )y 1u |y |u uy’
u’Y etc are defined similarly.

Analysis

Lemma 1. The system (1) can be rewritten
in the following matrix equation form:

X1 = AX, + NU,OX, + BU, +W,

Y, =CX, + DU, +V,

(2

Lemma 2. For j>0, and the block size k,
we have

X X
k-1+j/j — U;,:HJ/J@)(]

Lemma 3. For F,G,H,J of compatible
dimensions, FeRY, G eR"™,
HeR™,

JeR":

(FGOHI)=(FOH)G®J)
(FGOHJ)=(F @ H)G®J)

Lemma 4. (Input-Output Equation). For
the system (1) and j>0, we have the
following Input-Output Equation:

Xieoj = M Xiajry + AUy + AW,

k+j —1+jlj

X U w
Yk—l+j/j =L Xk—1+j/j + LkUk—l+j/j + Lka—l+j/j

+ LV, . il
where
AX A[AAY

n-11 NlAﬁ—lv"'v NmAﬁ—J

AYA[AN,,- N, ]

A’ AB,AAY | N,AY o N Y
A} AB

&AL,
AY AL,

AAL, NlA\An'_li =N mAvr\‘ll—l]
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‘CAX, 0
LeAl Ly 0
0 LY,
D cA, 0
LAO L, 0
0o 0 LY,
0 cAY, 0
LYalo LY, o0
o o0 LY
l, 0 0
LA O L, O
0 0 L.
with
LYA[CO,,} LYAD, LY A0,,, LIAlL,

Lemma 5. For system (1) , if

eig(A+Zu“Nij
i=1

A= max a4 ...(3)

j=0,-N
then

X, =E(Y, -DU, -V, )+ (1 —EC)A%U ® +o(4")

X, =E(Y, -DU, -V, )+ (1 —EC)A’U° +0(1")

X, =E(Y, -DU, -V, )+ (1 —EC)A%U " +0o(2")

where o(&k) is used to denote a matrix M,
such that [M|, = o(2*) .

Remark 2. This holds for any matrix E of
compatible dimensions. In particular, it

holds for E=C",where CC" =1, and if

I>n, then 1-C'C=0 and the
expression become exact. In the sequel, we
will assume the Moore-Penrose pseudo-
inverse is used.

Theorem 1. The system (1) can be written
in the following form if the condition (3)
holds:

YC =0, X, +T U™ +TU 0V,

(4
LW+ LV +0(2¢) @
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YT =0 X, +T U ™ +T'U* oW

LWLV o(¢)

Y' =0 X, +TU™Y +TU OV,

LWLV +0(2)

X, =FX_ +gU" +g,U "0V,

+AYW© + o(ﬂ" )

X, =FX; +gU"" +gu oV,

+ AW+ o(/1k )

where O, T/, T/, F.,9, and g,

are system-dependent constant matrices.

.(5)

..(6)

Theorem 2. If the linear part of the system
(1) is observable and

YC

U c,u,y

U fuy

U ruy
is a full row rank matrix, denoting
S:=yo+uY 4+u" 4y
and R=TI,y, +u""Y, then
I, LIy =T I, LU™ +0(2*)
—..(8)

where T1
operator ©.

A7)

is the orthogonal projection

Algorithm
Step 1. Decompose Y' into O, X, and

T,'U"" using orthogonal projection .

Step 2. Computing the constant matrix via
pseudo-inverse .

Step 3. Constructing matrices for SVD
decomposition .

Step 4. Performing SVD decomposition
and selecting model order.

Step 5. Determining the system matrices
using constrained least squares .

Examples

Tow second-order bilinear systems
introduced in © are used to see how the
two algorithms work, and how it compare
between them.
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The two examples work in the
same conditions , equal 'j ', 'k ' ,and input
signals.

Example 1. The system matrices are

los o] o)
LS P

03 0 02 0
N, = N, =
0 03 0 04

Table (1) shows the eigen values of the

estimated A and N wusing the two
algorithms .
Table (1): results for different
algorithms.

True ‘Three-block'’ 'Four-block’
A [ 05i 0.0010+0.4920i | +0.5001i
N; | 0.3,0.3 | 0.2520,0.2895 | 0.3021, 0.3015
N, | 0.2,04 | 0.3193,0.4545 | 0.1998, 0.4009

Example 2. The system matrices are

oo o)
o[s 3]

02 0
N, = 05

Table (2) shows the eigen values of the

estimated A and N using the two
algorithms.

Table (2): results for different
algorithms.

True ‘Three-block'’ 'Four-block'

A 05,03 [0.5046,0.3033 | 0.5008, 0.3011
N; | 0.6,0.4 | 0.5518, 0.2864 | 0.6409, 0.3972
N, | 0.5,0.2 | 0.4783,0.1046 | 0.5055, 0.2309
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Conclusions

A two different  subspace
algorithms for identifying the bilinear
systems has been used. Its major
advantage is that the system input does not
have to be white.

From the results above we show
that the ' Four-block ' algorithm gives
accurate estimation in a comparison with
the ' Three-block ' algorithm, its
convergence is faster and its need small
sample size.
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