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Abstract:

Czerwi’nski et al. introduced Lucky labeling in 2009 and Akbari et al and A.Nellai Murugan et al
studied it further. Czerwi’nski defined Lucky Number of graph as follows: A labeling of vertices of a graph
G is called a Lucky labeling if S(u) # S(v) for every pair of adjacent vertices u and v in G where S(v) =
YueN(v) L(w). A graph G may admit any number of lucky labelings. The least integer k for which a graph G
has a lucky labeling from the set 1, 2, k is the lucky number of G denoted by #(G). This paper aims to
determine the lucky number of Complete graph K, Complete bipartite graph Knn and Complete tripartite
graph Kimn. It has also been studied how the lucky number changes while adding a graph G with K, and

deleting an edge e from K.

Keywords: Complete graph, Complete Bipartite graph, Complete Tripartite graph, Lucky Labeling, Lucky

Number.

Introduction:

Graph Labeling is one of the most interesting
areas in Graph Theory. Lucky Labeling is one
among them yet to be studied in detail. As in other
labelings, trial and error method is used to
determine a lucky labeling of given graph. But it is
a hectic job to determine the lucky number of a
given graph since it is to be justified that there is no
lucky labeling with fewer numbers. Taking little
diversions and defining new labelings happen to be
the second step. Edge lucky labeling has been
introduced by us in the paper “An Exploration into
Lucky Labeling”. R. Sridevi and S. Ragavi have
studied the Lucky Edge Labeling*?, of K, and
Special types of graphs. Numerous studies have
been conducted on various families of graphs using
various fortunate labelling techniques, including
Lucky Edge Lableing®*, Proper Lucky Labeling®, e
Lucky Labeling®, d-Lucky Labeling’, Proper d-
Lucky Labeling® etc. This paper aims to find the
lucky number of prominent families®!! namely
Complete graphs and Complete Bipartite graphs.
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Preliminaries

The  book!,  “Graph  Theory  with
Applications” by J.A.Bondy and U.S.R.Murthy is
followed for definitions of Complete graph,
Complete Bipartite graph and Complete Tripartite
graph.

Definition. 1: ® Let G1=(V1,X1) and G,=(V2,X2) be
two graphs with V; NV, = ¢. Then the sum G1+G;
is defined as G; U G, together with all the lines
joining points of V; to points of V,. Similarly the
cartesian product G, X G, is defined as having
V=V, xV,and u = (uq,uy) and v = (v4,v,) are
adjacent if u; = v4 and u, is adjacent to v, in G, or
u, is adjacent to v, in Gy and u, = v,.

Definition. 2: * Suppose that G is a graph and
f:V(G) = N is a labeling of the vertices of G. Let
S(v) denote the sum of labels of overall neighbors
of the vertex in G. A labeling f of G is called lucky
if S(u) # S(v) for every pair of adjacent vertices u
and v in G. The least integer k for which a graph G
has a lucky labeling from the set {1,2,...,k} is the
lucky number of G, denoted by n(G).
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Example 1: The following graph (Fig.1) G admits
Lucky Labeling and its lucky number is 2.

Figure 1. Lucky Labelling of a graph

Main Results:

Theorem. 1: x(Ky) =n
Proof: Let V(K,) = {vy,v5, ..., v, }. Label v; with i

for i varies from 1 to n.

. +1
SW) = Ljerwi) = 152~
Hence it is a lucky labeling of K;, and lucky number
of K, is less than or equal to n.
Suppose there exists a lucky
maximum label strictly less than n.
In that case, at least one label must be repeated.
Let l(Vl) =r= l(Vz)

i ;Fori#j,S(v) #

labeling with

Then S(vy) = Xsl(wvy) + 17 = S(vy), a
contradiction.
Therefore n(K,,) = n.
lifm#n

Theorem 2: K, =

77( m’n) {2 ifm=n
Proof: Let V(Kmn) =
{ug, g, oo, Uy, V1, V) o, U}
E(Kmn) =

Illustration: The lucky labeling of K23 (Fig.2) is
given below

Figure 2. Lucky Labeling of K, 3

Theorem. 3:  Lucky number of K ,, ,, is less than
or equal to 3.
Proof: Let V(Kimn) =

{uq, Uy, ..., Uy, V1, Vg, oo, Uy, Wy, Wo, o, Wy
E(Kl,m,n) = {uivj,uiwk,vjwk/l <i<lLl1<j<
m1<k< n}

Case.1:1=m=n

Define [(u;) =1 for i lying between 1 and
I;1(v;) = 2 for j taking integer values from 1 and
m; L[(wy) = 3 for k lying between 1 and n.

Then S(u;) = 2m + 3n for i taking integer values
from 1 and 1.

S(v;) =1+ 3n for j taking integer values from 1
and m.

S(wy) = n + 2m for k lying between 1 and n.

S(u) = S(v;) implies [=2m, which is a
contradiction.
S(uy) = S(wy)
contradiction.
S(v;) = S(wy) implies [ = 2(m —n), which is a
contradiction.

Therefore K;,,,,, admits lucky labeling with lucky

implies n =0, which is a

{uivjfor i lying between 1 and m and j lying between Ingnshag 3.

Case.l:m=n

Define [(u;) = 1 for i lying between 1 and m and
1(v;) = 2 for j lying between 1 and n.

Then S(u;) = 2nand S(v;)) =nfor1 <i,j<n
Clearly S(u;) # S(v;) for 1 <1i,j <n. Therefore
K » admits lucky labeling with lucky number 2.
Case.2:m#n

Define I(u;) = 1 = [(v;) for i taking integer values
from 1 and m and j lying between 1 and n.

Then S(u;) =n for i lying between 1 and m and
S(v;) = m for j lying between 1 and n.

Clearly S(u;) # S(v;) forany i and j.

Therefore K., , admits lucky labeling with lucky
number 1.
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Case.2:l=mandm #n

Define I(u;) = 1 for i taking integer values from 1
and L. ;I(v;) = 2 for j taking integer values from 1
and m; [(w;) = 1 for k lying between 1 and n.
Then S(u;) =2m +n for i taking integer values
fromland1.

S(wy) = 2m + [ for k lying between 1 and n.

S(u;)) =S(v;) implies [=2m, which is a
contradiction.
S(u;) =S(wy) implies n=1 which is a

contradiction.

S(v;) = S(wy) implies n=2m, which is a
contradiction.

Therefore K;,,, admits lucky labeling with lucky
number 2.
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Case.3:l+m=#n

Define I(u;) =1 =1(v;) =1(wy) for i taking
integer values from 1 and [, j taking integer values
from 1 and m and k lying between 1 and n.

Then S(u;) =m+n for i taking integer values
from1land 1.

S(v;) = 1 + n for j taking integer values from 1 and
m.

S(wy) = m + [ for k lying between 1 and n.

S(w) =S(v;) implies [=m, which is a
contradiction.
S(u;)) =S(wy) implies n=1[ which is a

contradiction.

S(v;) =S(wy) implies n=m, which is a
contradiction.

Therefore K ,,, , admits lucky labeling with lucky
number 1.

Theorem. 4: n(K, + G) = n for any n.

Proof: Let m be the number of vertices of the graph
G. V(K,) = {uy, uy, ..., un};

V(G) = {vy, vy, ...
Take K, + G = G’
Let [ be any labeling of the vertices of G’; Let K =
2k l(v;)

Ser(w;) = Z;’n=1¢il(uj) +K; Ser(wy) = 56’(“}') if
and only if S (u;) = Sk, (v})

Se'(w;) # Sgr(w;) only when 1 is a lucky labeling
of K,,.

So there should be at least n numbers to label G'.
Therefore n(K,, + G) = n for any n.

» U }

Theorem. 5: n(K, + K,) = n forn,m > 3.
Proof: LetG =K, + K, wheren,m >3

Let V(G) = {vy,vy, ..., U, Ug, Uy, o, Uy 1 E(G) =
{Vivj/l <i qthn}U{viuj/l < iSnl1<Kj<
m};

Label the vertices of G as follows
Iv)=ifor1<i<nandl(y)=nfor1<j<
m

Then S(v;) = n(n;l) —i+mnand S(uj) = n(n;l)
Minimum S(v;) is attained at i = n.
i.e.S(v,) = @ +mn
Claim: S(v;) # S(v;) for i # j
Suppose S(v;) = S(v;; Then 2D b omn =
—n(n;l) —j+mn

=i=j, a

contradiction.
Claim: S(v,,) > S(uj)
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n(n-1)
2

n(n+1)

+mn =

S(v,) — S(uj) = = n(m —
1) >0

It follows that S(v;) # S(w;) for all i and j. If
possible let n(G) <n

Then at least two v;s should receive same labels.
Without loss of generosity assume that 1(v;) =
[(v,). Then there exists a lucky labeling with lucky
number number less than n. i.e there will be two
vertices with same label.

Take YL, l(v) + Tt () = K( say ).S(vy) =
K —1l(vy) and S(v,) = K — l(vy)

l(vy) =1l(vy) = S(vy) = S(v,), a contradiction.
Hence n(G) = n.

Therefore n(K,, + K,) = nforn,m > 3.

Theorem. 6: n(K, + B,) = 2 forn > 3.

Proof: Let V(Ky) = {up, up V(R =
{vi,v9, ..., U}

Take G =K, + P, forn > 3.

Let [ be the labeling of the vertices of G. Define
l(uy) = 1;1(uy) = 2 and

1 for i=15913,..4n-3
l(v;)) =32 for i=246,..2n
2 for i=3711, ..4n-1
Then for n even, S(uy) =
7i+2 fori=48,..,4n
7i+5 fori=6,10,..4n+ 2
7i4+1 for i=48,..,4n
S(up) = , .
7i+4 for i=6,10,..,4n+ 2
For n odd, S(uy) =
7i4+3 fori=59..,4n—-1
7i+7 fori=711,..,4n+ 3
7i+ 2 fori =59, ..4n—-1
S(up) = , .
7i+6 for i=711..4n+3
S(vi)=5 for all n;S(vy)=6 for i=

2,4,6,8,...,2n;S(v3) = 7 fori = 3,5,7,9,..,2n + 1
S(vy) =5 forn=4;S(vg) =5 for n =5;S(vg) =
4 forn=6;S(v;) =5forn=7
S(vg) =5 for n=28;S(vg) =5
9;S(vyp) =4 forn=10

Clearly S(u;) # S(v;) and S(u;) # S(up) for i
taking values 1 and 2 and j varies from 1 to n.
Therefore n(K, + B,) = 2 forn > 3.

for n=

Ilustration The lucky labeling of K + P4 (Fig.3) is
given below
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(9)

(8)

(5) (6)

(7)
Figure 3. Lucky Labeling of K, + P,

(5)

Theorem. 7: n(B, x B,) =2form,n = 2.
Proof: Consider the graph P,,, X P, where m,n > 2
Let V(P,, X B,) = {u;; for i lying between 1 and m
and j taking integer values from i to n}

EPp % Py) = {wjjugjer, wijuirs; for i lying
between 1 and m — 1 and j taking integer values
between 1 and n — 1}

Define l(uij) _ {1 if i and.j are of same parity
2 otherwise

Case. 1: Both m and n are odd Then S(u;;) =
S(uin) = S(um1) = S(Uumy) = 4
S(w1j) = S(umy)
{3 for even values of j from 2 tom — 1

6 for odd values of j from 3 ton — 2
S(u;;) = S(us,) = 3 for even values of i from 2 to

m-—1

S(uiy) = {

8 if i and j are of same even parity
4ifi =2,4,6

S(wiy) = {
S(u;;) = 6 for odd values of i from3tom — 1
S(u;,) = 3 for odd values of i from3tom — 1

S(uyy) = {

Fori=1,S(uy;) =4 # 3 =5(uyy) and S(uyq) =
4+ 3=5(uy)

Wheni=1and j=246,..,n—1,S(u;,) =3 #
6 = S(uqy3) and S(uy,) = 3 # 8 = S(uy,)
Wheni=2,4,6,.,.m—1andj=1,S(uy;) =3 #
8 = S(uy,) and S(uyq) = 3 # 6 = S(uy3)

When i and j are of same even parity, S(u,,) = 8 #
4 = S(uy3) and S(uy,) =8 =4 = S(usy)

When i =3,57,.,.m—2and j=1,S(uz;) =6 #
4 = S(uz,) and S(ugy) = 6 # 3 = S(uyq)

When i and j are of same odd parity, S(uz3) = 8 #
4 = S(uz,) and S(uz3) = 8 # 4 = S(uy3)

The proof is similar for the other cases.

Ilustration: The lucky labeling of P, x P; (Fig.4)
is given below
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S(uyy)
8 if i and j are of same even parity

B {4 ifi =246,..,m—1andj=357..,n—2
S(u;1) = S(u,) = 6 for odd values of i from 3 to

m— 2
S(uj;)
{4 if i and j are of same odd parity

8ifi=35,7,..,m—2andj=3,57,..,n—1
Fori=1,S(u;;) =4 # 3 =5S(uy;) and S(uyq) =
4 # 3 = S(uy,)
When i =1 and j = 2,4,6,..,n—1,S(uyp) =3 #
6 = S(uy3) and S(uy) = 3 # 8 = S(uyy)
Wheni=2,4,6,..,m—1andj=1,S(uy;) =3 #
8 = S(uy,) and S(uy;) = 3 # 6 = S(uy3)
When i and j are of same even parity, S(u,,) = 8 #
4 = S(uy3) and S(uy,) = 8 # 4 = S(usy)
When i =3,57,..,m—2andj=1,S(uz;) =6 #
4 = S(u3,) and S(uz;) = 6 #= 3 = S(uyq)
When i and j are of same odd parity, S(us3) = 8 #
4 = S(uz,) and S(uz3) = 8 # 4 = S(uy3)
Case 2: Both m and n are even
Then  S(upq) =S(Uupy) = 4
S(uml) =2

S(u ) _ {3 for even values of j from2ton — 1
Y 6 for odd values of j from 3 ton — 2
6 for even values of j from2ton —1
S(um;) = :
3 for odd values of j from 3 ton — 2
S(u;;) = 3 for even values of i from 2 to m — 2
S(u;,) = 6 for even values of i from 2 to m — 2

and  S(uyp) =

8 for even values of i from 2 to m — 2 and for even values of j from 2 ton — 2

4 for even values of i from 2 to m — 2 and for odd values of j from 3 ton — 1

4 for even values of i from 2 to m — 2 and for even values of j from 2 to n — 2
8 for odd values of i from 3 to m — 2 and for odd values of j from3ton — 1

(4) (3) (4)
1 N
N
O—O—C
(2) \(3{ (2)

Figure 4. Lucky Labeling of P, X P5

Theorem. 8: n(K, ~e) =n—2forn > 3.
Proof: LetV = {vq,v,, ..., Up}
Consider K,, ~ e where E = {e;e;/i < j}
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Let 1(vy) =
(kfork= 1,2,..,i—1
n—2fork=1i

k—1fork=(+1),(+2),...G—-1
n—3fork=j
k—2fork=0G+1),(G+2),..,n
(n-2)(n-1)
Take SO :f-l' (27’1— 5)
Then A={S(vy):k=12,..,i—1} =
{So—i+1,S—i+2,..,5—1}
S(Ui) =SO—2n+5
B={Sw):k=>0+1),{+2),...,0—-1}
:{SO—]+2,SO—]+3,,SO
—i}
S(v))=So—2n+5
C={Sw):k=0G+1),(+2),..,n}
={Sy—n+2S5—-n+3,..,5
-j+1
minA=S,—i+1>S5,—i=maxB
minB=S,—j+2>S5,—j+1=maxC
In all cases, S(vi) # S(v, + 1)
Therefore n(K, ~e) =n—2forn > 3.

Conclusion:

While working on Complete graphs and Complete
Bipartite graphs, it has been observed that most of
the families have lucky number less than or equal to
two. This motivates to attempt the characterization
problems on the graphs with lucky number 1 in our
previous paper. The characterization of graphs with
lucky number 2 seems to be the next interesting
research problem.
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